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Abstract. Despite satisfying only completeness and continuity requirements,
elements often perform erroneously in a certain class of problems, called the locking
situations, where they display spurious stress oscillations and enhanced stiffness
properties. The function space approach that effectively substantiates the postulates
of the field consistency paradigm is an efficient tool to reveal the fundamental
cause of locking phenomena, and propose methods to eliminate this pathological
problem. In this paper, we review the delayed convergence behaviour of three-noded
Timoshenko beam elements using the rigorous function space approach. Explicit,
closed form algebraic results for the element strains, stresses and errors have been
derived using this method. The performance of the field-inconsistent three-noded
Timoshenko beam element is compared with that of the field-inconsistent two-
noded beam element. It is demonstrated that while the field-inconsistent two-noded
linear element is prone to shear locking, the field-inconsistent three-noded element
is not very vulnerable to this pathological problem, despite the resulting shear
oscillations.

Keywords. Strain projection; field-inconsistent/consistent function subspaces;
variational correctness; shear locking; delayed convergence; spurious shear
oscillations.

1. Introduction

It is well-known that isoparametric Timsoshenko beam elements, in general, display enhanced
stiffness properties and spurious stress oscillations, despite satisfying completeness and con-
tinuity requirements (Zienkiewicz & Taylor 1991; Prathap 1993). Various explanations have
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been offered for the origin of these pathological symptoms that are associated with a phe-
nomenon known as locking. It has been argued (Tessler & Hughes 1983) that locking is caused
by ill-conditioning of the stiffness matrix due to the very large magnitude of the shear stiff-
ness terms as compared to the those of bending stiffness. Carpenteret al (1986) have shown
that locking occurs due to coupling between the shear deformation and bending deforma-
tion, and that it can be eliminated by adopting strain fields such that these are appropriately
decoupled. Prathap (1982, 1987) has shown that elements lock because they inadvertently
enforce spurious constraints that arise from inconsistencies in the strains developed from the
assumed displacement functions. Using the two-noded Timoshenko beam element as illus-
tration, Mukherjee & Prathap (2001) have recently shown how locking manifests itself in low
order elements, and proposed methods to predict and eliminate locking, using the function
space approach.

In this paper, we address the characteristic features of delayed convergence phenomenon in
higher order elements like the three-noded Timoshenko beam element using the mathemati-
cally rigorous function space approach that unifies the arguments forwarded by Carpenteret
al (1986) with the field consistency paradigm of Prathap. Mild locking behaviour and delayed
convergence in the three-noded beam element have earlier been observed, and explained by
Prathap using the field consistency paradigm. For completeness, we first review the princi-
ples, based on the function space approach, behind locking phenomena.

2. Function space analysis of strain projections under field inconsistency

2.1 Strain projections in finite element analysis

For conservative systems, finite element analysis involvesnormal equationsof the following
form in an element (Zienkiewicz & Taylor 1991),∫

ele

[B]T [D][B]dx{δe} =
∫

ele

[B]T [D]{ε}dx, (1)

where [D] is the symmetric, positive definite, rigidity matrix and{ε} is the true (analytical)
strain. Here the element nodal displacement vector is{δe}. The finite element strain vector
(of r-rows i.e. ofr components), expressed as

{ε} = [B]{δe} (2)

is given as the orthogonal projection (Mukherjee & Prathap 2001) of the analytical strain
vector{ε} onto the subspaceB that arises out of the strain-displacement matrix [B], as

{ε̄} =
m∑

j=1

〈uj , ε〉
〈uj , uj 〉 {uj }, (3)

where the vectors{ui}, (i = 1, 2..m) represent them-orthogonal basis vectors that span the
m-dimensional subspaceB, (i.e. 〈ui, uj 〉 = 0 for i 6= j ). The inner product of two vectors,
{a} and{b}, each ofr rows, is given here by

〈a, b〉 =
∫

ele

{a}T [D]{b}dx. (4)
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The size of the positive definite rigidity matrix [D] is r × r, and the integration in (4) is
done over an element. The orthogonal basis vectors{ui} spanning the subspaceB can be
determined by a standard procedure of linear algebra (Edwards & Penny 1988), known as
theGram–Schmidt algorithm, applied to the column vectors of the matrix [B]. These basis
vectors can be arbitrarily normalized. A brief review of the Gram–Schmidt algorithm for
determining the orthogonal basis vectors is presented in the Appendix.

If {q} is the error in the element strain vector havingr components,

{q} = {ε} − {ε̄}, (5a)

then the error norm squared, also interpreted as the energy of the error, is given by

‖q‖2 = 〈q, q〉 =
∫

ele

{q}T [D] {q} dx. (5b)

From the normal equation (1) we have the projection theorems (Edwards & Penny 1988),

‖q‖2 = ‖ε‖2 − ‖ε̄‖2 , (6a)

i.e. the strain energy of the error= error in the strain energy.

It is also evident that

‖ε̄‖2 = 〈ε̄, ε〉 . (6b)

A geometric analogy of the finite element strain vector{ε̄} as the orthogonal projection of
the analytical strain vector{ε} onto them-dimensionalB subspace is presented in figure 1.
Herem = total number of element degrees of freedom–total number of element rigid body
motions. In general, for a strain vector involvingr components (i.e.r rows), theB space
(arising out of the [B] matrix of r rows) of maximum degree(n − 1) of the parameterξ , is
a subspace of ther × n dimensional spacePr

n(ξ) of orderedr-tuples of polynomials inξ ,
denoted here byPr

n(ξ) upto degreen − 1, bounded within the closed domain(−1, 1). The
spacePr

n(ξ) is represented by

Pr
n =

{
{p} : {p} =

n∑
i=1

{αi}ξ i−1, −1 ≤ ξ ≤ 1, {αi} ∈ Rr

}
. (7)

HereRr is ther-dimensional space of real numbers. Standard orthogonal basis vectors, called
the Legendre Orthogonals span ther × n dimensional spacePr

n for a given degree(n − 1)

of the polynomial inξ . For instance, a system having a finite element strain vector of two

Figure 1. Geometric interpretation of the finite element strain
vector as the orthogonal projection of the analytical strain vector
onto a function subspaceB generated by the strain-displacement
relationship.



510 Somenath Mukherjee and Gangan Prathap

components with maximum degree ofξ being one (linear inξ ), will generate aB space
that is a subspace of the four-dimensional spaceP2

2 (linear inξ ). The standard basis vectors
spanning the spaceP2

2 are the Legendre Orthogonals, given by

{L1} = [0, 1]T , {L2} = [1, 0]T , {L3} = [0, ξ ]T , {L4} = [ξ, 0]T . (8)

Similarly, for the six-dimensional spaceP2
3 (quadratic inξ ), corresponding to a finite ele-

ment strain vector of two components, or rows, with quadratic variation inξ , the Legendre
Orthogonals spanning it are

{L1} = [0, 1]T , {L2} = [1, 0]T , {L3} = [0, ξ ]T , {L4} = [ξ, 0]T ,

{L5} = [0, (3ξ2 − 1)]T , {L6} = [(3ξ2 − 1), 0]T (9)

2.2 Field-inconsistent and field-consistent projections

Using the two-noded Timoshenko beam as illustration, Mukherjee & Prathap (2001) have
shown that the subspaceB originating from the strain-displacement operators is field-
inconsistent, and yields locked strain projections with spurious stress oscillations if the
subspace cannot be spanned by the corresponding Legendre Orthogonals for the parent
spacePr

n. In general, locking and spurious stress oscillations result only in multi-component
strain vectors when the subspaceB cannotbe spanned by the standard basis vectors of the
parent space.Field-inconsistent finite element solutions, as a rule, are variationally correct,
for they satisfy the projection theorems (energy-error rule); they agree with the orthogonal
projections (best-fits) of the analytical strain vectors onto subspaceB. Elements (like the
simple bar element and the Euler beam element) involving single-strain component, do not
lock, for their formulations are always field-consistent since strains having single component
can always be expressed as a linear combination of Legendre polynomials. Field-consistent
formulations involve strain projections in which spurious strain oscillations and locking
are absent. In these formulations, the strains are effectively projected on field-consistent
subspaces, thatcanbe spanned by standard basis vectors of the parent space.

Locking and the associated spurious stress oscillations in field-inconsistent elements are
generally suppressed throughreduced integration(an extra-variational method) for deriv-
ing the stiffness matrix. As a general rule,a field-consistent finite element solution obtained
through reduced integration is variationally correct (i.e. agrees with the best-fits, or orthog-
onal projections onto an artificially generated field-consistent subspaceB∗) only if∫

ele

[B]T [D] {ε} dx =
∫

ele

[B∗]T [D] {ε} dx, (10)

where [B] is the original field-inconsistent strain-displacement matrix, and [B∗] is theeffective
field-consistent strain displacement matrix from the reduced integration process. If (10) is
violated, the field-consistent finite element solution obtained through an extra-variational
technique like reduced integration willnot be variationally correct (i.e., will deviate from
the orthogonal projection of the analytical strain vector onto the field-consistent subspace
B∗ by an extraneous response). For instance, reduced integration-induced field-consistent
finite element results are variationally incorrect with the three-noded beam element having
a distributed load that varies withξ linearly. Further research is being made to establish a
rigorous and general method based on the function space approach to test the variational
correctness of reduced integration-induced finite element solutions.
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The examples considered in this paper involve loading conditions so that (10) is satis-
fied. Therefore the field-consistent finite element results for such problems, obtained through
reduced integration, are variationally correct. The field-consistent finite element strain vec-
tors can therefore be predicted directly, using (3), as orthogonal projections of the analytical
strain vector{ε} on anartificially generated field-consistent subspaceB∗ that can be spanned
by the standard basis vectors.

3. Field inconsistent and field consistent solutions of the three-noded Timoshenko beam
element

3.1 Field-inconsistent solution

The three-noded isoparametric beam element, formulated to cater to curved geometry in the
plane, is shown in figure 2a. The general geometry and displacement field of this element are
given by

x =
3∑

i=1

Nixi y =
3∑

i=1

Niyi

w =
3∑

i=1

Niwi θ =
3∑

i=1

Niθi (11a,b)

where the quadratic Lagrangian shape functions are given by

N1 = −ξ(1 − ξ)/2, N2 = 1 − ξ2, and N3 = ξ(1 + ξ)/2. (12a–c)

Figure 2. Isoparametric three-noded
Timoshenko beam element.(a) General
two-dimensional curved beam element,
(b) straight beam element.
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We restrict ourselves to the special case of the straight beam, of lengthL (figure 2b) to
demonstrate in a simple fashion the principle behind the generation of field-inconsistent and
field-consistent solutions. For that reason, we may express the geometry simply as a linear
function of the non-dimensional coordinateξ , with origin at the beam center, the position of
the middle node.

x = ξ(L/2), y = 0. (13a,b)

The finite element strain vector is given by

(ε̄) =
(

dθ
/

dx

θ − dw
/

dx

)

=


 0

(2ξ − 1)

L
0

−4ξ

L
0

(2ξ + 1)

L

− (2ξ − 1)

L
−ξ(1 − ξ)

2

4ξ

L
(1 − ξ2) − (2ξ + 1)

L

ξ(1 + ξ)

2


 {

δe
}

= [B]
{
δe

}
, (14)

where{δe} is the element nodal displacement vector,{δe} = [w1, θ1, w2, θ2, w3, θ3]T . The
rigidity matrix for the element is given by

[D] =
[

EI 0
0 kGA

]
, (15)

whereEI andkGA represent respectively the bending and shear rigidities of the beam section.
Since there are six degrees of freedom of the element, the strain-displacement matrix [B]
consists of six column vectors. These vectors are not all linearly independent, showing that
there are inherent rigid body motions in the element. We thus expect the dimension of the
subspaceB, originating from the six column vectors of [B] matrix , to bem = 6 − 2 = 4,
assuming two rigid body motions. Using the Gram–Schmidt procedure, we find the four
orthogonal basis vectors spanning the four-dimensional subspaceB, (B ⊂ P2

3) as

{u1} =
{

0
ξ

}
, {u 2} =

{
0
1

}
, {u3} =

{
(2ξ − 1)/L

(3ξ2 − 1)/6

}
, and

{u4} =
{ {2ξ(1 − λ) + (1 + λ)}/L

(1 − λ)(3ξ2 − 1)/6

}
, (16a–d)

where

λ = 1 + (4e/5)

7 + (4e/5)
, e = kGAL2

12EI
. (16e,f)

One may normalize the basis vector{u4} further, through division by(1−λ), so that a simpler
form can be obtained as

{u4} =
{

(2ξ + κ)/L

(3ξ2 − 1)/6

}
, where κ = 1 + λ

1 − λ
= 4(e + 5)

15
. (16g)
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It should be noted that for this beam element, the inner product of two vectors{a} and{b},
each of two rows,(r = 2), is defined as

〈a, b〉 =
∫ 1

−1
{a}T [D] {b} L

2
dξ. (17)

Since not all the orthogonal basis vectors spanning the subspaceB are Legendre Orthogonals,
we can infer that this subspace is field-inconsistent (Mukherjee & Prathap 2001). The finite
element strain vector, as projection of the analytical strain vector onto this field-inconsistent
subspaceB, is given by

{ε̄} =
4∑

i=1

〈ui, ε〉
〈ui, ui〉 {ui}. (18)

3.2 Field-consistent solution

Conventionally, field-consistent finite element solutions in elements are obtained through
reduced integration of the stiffness matrix. Exact integration for the element stiffness matrix
of the three-noded beam element, given by

[Ke] =
∫ L/2

−L/2
[B]T [D][B]dx = L

2

∫ 1

−1
[B]T [D][B]dξ, (19a)

requires athree-pointrule by Gaussian quadrature, leading to field-inconsistent solution. For
field-consistent finite element solution, thetwo-pointrule is adopted, effectively yielding an
element field-consistent stiffness matrix [Ke∗], given as

[Ke∗] =
∫ L/2

−L/2
[B∗]T [D][B∗]dx = L

2

∫ 1

−1
[B∗]T [D][B∗]dξ, (19b)

where [B∗] is the field-consistent strain-displacement vector, given by the following expres-
sion of the field-consistent strain vector,

{
ε̄∗} =


 0

(2ξ − 1)

L
0

−4ξ

L
0

(2ξ + 1)

L

− (2ξ − 1)

L
−{ξ − (1/3)}

2

4ξ

L

2

3
− (2ξ + 1)

L

{ξ + (1/3)}
2


{

δe
}

= [
B∗] {

δe
}
. (20)

The field-consistent matrix [B∗] is obtained from the field-inconsistent [B] of (14), by first
expressingξ2 in terms of the Legendre quadratic polynomial as

ξ2 = (3ξ2 − 1) + 1/3 = P3 + 1/3,

and then dropping the Legendre polynomialP3 = (3ξ2 − 1). Thus by replacingξ2 of the
field-inconsistent [B] by (1/3), the field-consistent [B∗] is obtained.

Using the Gram–Schmidt procedure, the orthogonal basis vectors spanning theB∗ subspace
originating from the column vectors of the field-consistent strain displacement matrix [B∗],
can be obtained as

{u∗
1} =

{
1
0

}
, {u∗

2} =
{

0
1

}
, {u∗

3} =
{

ξ

0

}
and {u∗

4} =
{

0
ξ

}
. (21a–d)
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Since this four-dimensional subspaceB∗(B∗ = P2
2) can be spanned by the Legendre Orthog-

onals, that are the standard basis vectors, it is field-consistent for strain projections. This sub-
space is artificially generated through the reduced integration process. The field-consistent
best-fit strain vector is obtained as the orthogonal projection of the analytical strain vector
onto this field-consistent subspaceB∗ from the expression

{
ε̄∗} =

4∑
i=1

〈
u∗

i , ε
〉

〈
u∗

i , u
∗
i

〉 {
u∗

i

}
. (22)

This equation can be used to makea priori estimates of the field-consistent finite-element
solutions determined from reduced integration process, provided the following condition, that
guarantees variational correctness of such solutions, is satisfied

L

2

∫ 1

−1
[B]T [D]{ε}dξ = L

2

∫ 1

−1
[B∗]T [D]{ε}dξ. (23)

If (23) is violated, finite element solutions with reduced integration will not be variationally
correct, and will deviate from the orthogonal projections onto the artificially generated sub-
spaceB∗ (or best-fits) given by (22) by anextraneous responseof the field-consistent element
to aself-equilibrating, spurious load vector, given by

{Fe
E} = −L

2

∫ 1

−1

[
[B] − [B∗]

]T
[D]{ε}dξ. (24)

Further research is in progress to establish a general method to predict the variational correct-
ness of reduced integration induced finite element solutions. In this paper, nodal loads and
uniform distributed loads are considered so that (23) is satisfied. Therefore reduced integra-
tion induced field-consistent solutions are variationally correct and can be predicted directly
from the best-fit strain expression of (22).

4. Some solutions using the three noded element and error estimation

4.1 Conventional finite element analysis

As illustration, the cantilever beam with different loading conditions is analysed using asingle
element, with field-inconsistent and consistent formulations. From (11) the conventional
compact form of the displacement field is given by{

w

θ

}
= [N ]{δe}, (25)

where [N ] is the quadratic Lagrangian shape function matrix of size 2×6. Using the conven-
tional methods of finite element analysis, one first solves for the unknown nodal displacement
{δe} for the element from the equation,

[Ke]{δe} = {Fe} + {Re}, (26)

where the element stiffness matrix [Ke] and the nodalappliedgeneralised force vector{Fe}
are respectively given by

[Ke] =
∫ 1

−1
[B]T [D][B]

L

2
dξ, {Fe} =

∫ 1

−1
[N ]T {ρ}L

2
dξ . (27a,b)
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Here{ρ} = [ρ, µ]T represents the distributed load intensity (transverse loadρ and moment
µ per unit beam length). In general, when multiple elements are taken in the analysis, the
vector {Re} for a particular element represents thereaction vectoracting on the element
from adjacent elements/supports through nodal connections. For a single element, the force
vector{Re} is thereactionvector from boundary constraints at nodes. For our problem of
the cantilever beam discretised using a single element, the nodal point 3 (whereξ = +1)
is clamped, so the boundary conditions arew3 = θ3 = 0 (figures 3 and 4). The initially
unknown vector{Re} corresponding to these nodal boundary kinematic conditions does not
appear in the following reduced equation where rigid body motions are eliminated,

Bending moment
m

Shear force

Bending moment

Zero shear force

Figure 3. Analysis of cantilever beam using a single three-noded beam element under different nodal
loads. Heree = kGAL2/(12EI). 3FI–field inconsistent solution; 3FC–field consistent solution.(a)
Tip moment,(b) tip transverse load.
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Bending moment

Shear force

Figure 4. Analysis of cantilever beam using a single three-noded beam element subjected to a
uniformly distributed load of intensityρ. Heree = kGAL2/(12EI). 3FI- field inconsistent solution;
3FC- field consistent solution.

[K]{δe} = {F }. (28)

In practice, (28) is actually solved for determining the unknown displacement vector{δe}.
Here the modified stiffness matrix [K] and the force vector{F } are derived respectively from
[Ke] and{Fe} using the conventionalpenaltymethods to incorporate the boundary conditions.
After solving for the unknown nodal displacement vector{δe}, the element strain vector{ε̄},
the element stress resultant vector{σ̄ } and the reaction vector{Re} can be obtained from the
following expressions

{ε̄} = [B]{δe}, {σ̄ } = [D][B]{δe}, (29a,b)

{Re} = [Ke]{δe} − {Fe}. (29c)
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A field-inconsistent element stiffness matrix [Ke] will involve a field-inconsistent strain-
displacement matrix [B]. To avoid field-inconsistency for the quadratic beam element, a
reduced integrationscheme is adopted, i.e., atwo-pointrule for Gauss integration for stiffness
matrix is usedinsteadof the necessarythree-pointrule. This step effectively replaces the
field-inconsistent [B] matrix by the field-consistent [B∗] matrix. The results obtained from
the finite element codes based on the conventional formulation and procedures agree with
those predicted by the function space approach.

4.2 The function space projection method

The function space projection approach is used here to derive element strain vectors anda
priori error estimates for the cantilever beam with a single element discretization (figures 3
and 4). The entire beam is taken as a single element, clamped at the nodal point 3(ξ = +1).
The results of the analyses are presented in tables 1 and 2.

4.2a Cantilever beam subjected to a tip momentM0 (figure3a): This is a case of a beam
subjected to pure momentM0, applied at the tip (node 1 whereξ = −1). The finite element
strain vector in the field inconsistent solution is as good as the field consistent solution, for
both are identical to the analytical strain vector.

{ε} = {ε̄} = {ε̄∗} =
{ −M0/EI

0

}
. (30a)

Table 1. Field-inconsistent (3FI) and field-consistent (3FC) solutions of the cantilever beam, sub-
jected to nodal loads, using a single element.

Cantilever with tip Cantilever with tip loadP
momentM0 (figure 3a) (figure 3b)

Analytical strain vector
(hogging bending strain
and anticlockwise shear
couple are negative)

{ε} =
{ −M0/EI

0

}
{ε} =

{ −PL(1 + ξ)/(2EI)

−P/kGA

}

Field inconsistent (3FI)
strain vector and error
norm squared value

{ε̄} =
{ −M0/EI

0

}

‖q‖2 = 0
{ε̄} =




− PL

2EI

(
1 + 5

e + 5
ξ

)

−
[

P

kGA
+ PL2

2EI

5(3ξ2 − 1)

12(e + 5)

]



‖q‖2 = L

2

(PL)2

6EI

(
e

e + 5

)

Field consistent (3FC)
strain vector and error
norm squared value

{ε̄∗} =
{ −Mo/EI

0

}
‖q∗‖2 = 0

{ε̄∗} =
{ −PL(1 + ξ)/(2EI)

−P/kGA

}
‖q∗‖2 = 0

e = kGAL2

12EI
, ‖q‖2 = (L/2)

∫ 1

−1
{q}T [D]{q}dξ
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Table 2. Field-inconsistent (3FI) and field-consistent (3FC) solutions of the cantilever beam subjected
to uniformly distributed load(figure 4), using a single element..

Analytical strain vector
(hogging bending strain
and anticlockwise shear
couple are negative).

{ε} =




− ρL2

8EI
(1 + ξ)2

− ρL

2kGA
(1 + ξ)




Field-inconsistent (3FI)
strain vector

{ε̄} =




− ρL2

4EI

(
5

e + 5
ξ + 2

3

)

−
[

ρL

2kGA
(1 + ξ) + ρL3

8EI

(
5

e + 5

) (
3ξ2 − 1

6

)]



Field-consistent (3FC)
strain vector

{ε̄∗} =




− ρL2

4EI

(
ξ + 2

3

)

− ρL

2kGA
(1 + ξ)




Here the load per unit length is denoted byρ, ande = kGAL2/(12EI).

The stress resultant vectors are thus given by

{σ̄ } = {σ̄ ∗} =
{ −M0

0

}
. (30b)

Thus for the case of pure moment,boththefield-inconsistent(3FI) andfield-consistent(3FC)
solutions yieldlock-freeresults, withno shear oscillations (table 1). This is a case of pure
coincidence, and it should be noted that the element isnot purely lock-free for arbitrary
loading, for the subspaceB is field-inconsistent. Such an observation has been earlier made
by Prathap (1993), and an explanation for this phenomenon is presented using the field-
consistency paradigm.

4.2b Cantilever beam subjected to a tip transverse load P (figure3b): The results of the
analyses are presented explicitly in Table 1. The quadratic shear strain oscillations in thefield-
inconsistent(3FI) solution can be noticed. The parametere = kGAL2/(12EI), reflecting the
non-dimensional rigidity ratio, plays an important part in the field-inconsistent formulation.
The error norm squared value for the analysis using a single element is given by

‖q‖2 = (PL)2L

12EI

(
e

e + 5

)
. (31a)

The norm squared values of the analytical strain vector and thefield-inconsistentstrain vector
are given by the following expressions

‖ε‖2 = 〈ε, ε〉 = (PL)2L

12EI

(
4 + 1

e

)
, (31b)

‖ε̄‖2 = 〈ε̄, ε̄〉 = (PL)2L

12EI

(
5

e + 5
+ 1

e
+ 3

)
. (31c)
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From (31a–c) it can be easily shown that even thefield-inconsistentsolution satisfies the
projection theorems given by (6a) and (6b), i.e. it is variationally correct. Thefield-inconsistent
element stress resultant vector is given as

{σ̄ } =



−
M

−
V


 = [D] {ε̄} =




−
(

PL

2
+ PL

2

5

e + 5
ξ

)

−
[
P + 5

2
P

e

e + 5
(3ξ2 − 1)

]



. (32)

As the beam becomes thinner, the parametere = kGAL2/(12EI) increases. Thus the limiting
case of the field-inconsistent formulation for very thin beams is represented by the following
limits,

Lim
e → ∞ {σ̄ } =




−PL

2

−
[
P + 5

2
P(3ξ2 − 1)

]

 ,

Lim
e → ∞ ‖q‖2 = (PL)2L

12EI
.

(33a,b)

These expressions are in complete agreement with numerical results from finite element
computer codes. It is obvious that the oscillations in the shear strain and shear stress resul-
tant are quadratic in nature. Interestingly, it may be observed from table 1 and (33a) that
as the beam gets thinner (increasinge), the linear parts of the bending strain and bending
moment gradually die out, and these tend to flatten out to constantnon-zerovalues. Further-
more, while the quadratic oscillations for the shear strain component die out with increasing
values ofe, resulting from increasing slenderness of the beam, the quadratic oscillations
for the shear stress resultant persist. It is evident thatthe quadratic oscillatory part of the
shear strain for the field inconsistent(3FI) formulation behaves like the Euler beam for-
mulation in the limiting case of the thin beam, where shear strains vainish, but finite values
of shear stress resultant persist, due to the large ratio of the shear rigidity to the bending
rigidity.

As expected, there are no locking and shear oscillations in thefield-consistent(3FC) solu-
tion. For nodal loading, the solution is identical to the analytical strain vector with linear
variation of the bending strain with the coordinateξ (table 1, figure 3b). Thefield-consistent
stress resultant vector can also be obtained by substitutinge = 0 in the corresponding expres-
sions for thefield-inconsistentstress resultant vector.

4.2c Cantilever beam subjected to uniformly distributed load (figure4): The uniform
load intensity (transverse load per unit length) is represented here byρ. The results of the
analysis are presented in table 2. The field-inconsistent element stress resultant vector is
given by

{σ̄ } =
{ −

M
−
V

}
= [D] {ε̄} =




−ρL2

4

(
5

e + 5
ξ + 2

3

)

−
[
ρL

2
(1 + ξ) + 5

4
ρL

(
e

e + 5

)
(3ξ2 − 1)

]

 .

(34)
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It can be observed that for the distributed load case the field-inconsistent solution shows
behaviour similar to that of the nodal point load case. With decreasing thickness (or increas-
ing e value) the quadratic oscillatory part of the shear strain tends to vanish, the shear force
oscillation tends towards a saturation quadratic function independent ofe, and both the bend-
ing strain (curvature) and bending moment tend to flatten out to constants.

Lim
e → ∞ {σ̄ } =




−ρL2

6

−
[
ρL

2
(1 + ξ) + 5

4
ρL(3ξ2 − 1)

]

 . (35)

Again it may be noted that thefield-consistentstress resultant vector can also be obtained by
substitutinge = 0 in the corresponding expressions for thefield-inconsistentstress resultant
vector. As expected, there are no locking and shear oscillations in thefield-consistent(3FC)
solution (figure 4).

5. Comparison of the three-noded beam element with the two-noded beam element

We first review briefly the two-noded Timoshenko beam element for the purpose of compar-
ison with the three noded Timoshenko beam element.

5.1 Field-inconsistent and field-consistent formulations of the two-noded beam element

Mukherjee & Prathap (2001) have presented an explanation for shear locking in the field-
inconsistent isoparametric two-noded Timoshenko beam element, in whichlinearLagrangian
shape functions are used for interpolation of the geometry and displacement field.

Orthogonal basis vectors spanning the originalfield-inconsistent, two-dimensional(m = 2)

subspaceB are given as

{u1} =
{

0
1

}
and {u2} =

{
2/L

ξ

}
. (36)

The basis vector{u2} is not a Legendre Orthogonal, and therefore contributes to the
field-inconsistency problem. Orthogonal basis vectors spanning thefield-consistent, two-
dimensional(m = 2) subspaceB∗ (artificially generated through reduced integration) are
given as

{u∗
1} =

{
0
1

}
and {u∗

2} =
{

1
0

}
, (37)

which are Legendre Orthogonals. It has been shown how by adopting the technique of reduced
integration, i.e. using theone-pointGaussian quadrature rule (instead of the necessarytwo-
point rule for exact integration for the stiffness matrix involving originally field-inconsistent
strains) the field-consistent finite element solution is effectively obtained. Using (3), with
m = 2 and the appropriate basis vectors, the field-inconsistent finite element strain vectors
can be obtained as orthogonal projections of the analytical strain vector onto theB subspace.
For beams with only nodal loading, (10) is satisfied, making the reduced integration induced
field-consistent finite element results match the field-consistent best-fits obtained from (3)
with field-consistent (standard) orthogonal basis vectors. However, reduced integration-
induced field-consistent finite element results for the two-noded element are, in general,
variationally incorrect with distributed loading conditions.
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m

f

mBending moment Bending moment

Shear force
Shear force

Figure 5. Cantilever beam analysis using a single two-noded beam element under different nodal
loads. 2FI- field inconsistent (locked) solution; 2FC- field consistent (lockfree) solution.(a)Tip moment
(b) tip transverse load.

In thin beams, severe locking and linear shear oscillations occur in the field-inconsistent
solution of the two noded element (2FI), while such features are completely eliminated in
the field-consistent solution (2FC). The results of analysis of the cantilever beam with a
single two-noded Timoshenko beam element (figures 5a and b), and the corresponding error
norm squared values are presented explicitly in table 3. Both solutions satisfy the projection
theorem, viz., (6a) and (6b).

5.2 Comparisons between the field-inconsistent solutions of the three-noded element (3FI)
with two-noded element solutions (2FI and2FC)

We show here how the behaviour of the three-noded element is remarkably different from that
of the two-noded element. Results of the analysis using the two- and three-noded elements
for the limiting case of thin beam are presented in table 4.
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Table 3. Field-inconsistent (2FI, locked) and field-consistent (2FC, lockfree) solutions using a singletwo-nodedelement representing
a cantilever beam, subjected to nodal loads.

Cantilever with tip moment Cantilever with tip loadP
M0 (figure 5a) (figure 5b)

Analytical strain vec-
tor (hogging bending
strain and anticlock-
wise shear couple are
negative).

{ε} =
{ −M0/EI

0

}
{ε} =

{ −PL(1 + ξ)/(2EI)

−P/kGA

}

Locked (2FI) strain
vector and error norm
squared value {ε̄} =




−M0/EI

1 + e

− 6e

(1 + e)

M0ξ

LkGA




‖q‖2 = L

2

2M2
0

EI

e

1 + e

{ε̄} =




−PL/2EI

1 + e

−
(

P

kGA
+ PL2ξ

4EI (1 + e)

)

 =




−PL/2EI

1 + e

− P

kGA

(
1 + 3eξ

1 + e

)



‖q‖2 = L

2

(PL)2

2EI

(
e

1 + e
+ 1

3

)

Lock-free (2FC) strain
vector and error norm
squared value

{ε̄∗} =
{ −Mo/EI

0

}
‖q∗‖2 = 0

{ε̄∗} =
{ −PL/(2EI)

−P/(kGA)

}
∥∥q∗∥∥2 = L

2

(PL)2

6EI

e = kGAL2

12EI
, ‖q‖2 = (L/2)

∫ 1

−1
{q}T [D] {q} dξ
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Table 4. Comparison of results from thefield-inconsistent three-noded element(3FI) with those of
the field-inconsistent(2FI) andfield-consistent(2FC) two-noded elementsfor the limiting case of a
very thin beam (e is very large).

Cantilever with tip Cantilever with tip transverse
momentM0 loadP

Field-inconsistent three-
noded element (3FI)

‖q‖2 = 0

{σ̄ } =
{ −M0

0

} ‖q‖2 = L

2

(PL)2

6EI

{σ̄ } =



−PL/2

−
[
P + 5

2
P.(3ξ2 − 1)

] 


Field-inconsistent two-
noded element (2FI) ‖q‖2 = L

2

2M2
0

EI

{σ̄ } =



0

−6M0ξ

L




‖q‖2 = L

2

(
2(PL)2

3EI

)

{σ̄ } =
{

0

−P(1 + 3ξ)

}

Field-consistent two-
noded element (2FC)

‖q∗‖2 = 0

{σ̄ ∗} =
{ −M0

0

}
∥∥q∗∥∥2 = L

2

(PL)2

6EI

{σ̄ ∗} =
{ −PL/2

−P

}

Results for the pure bending case of the cantilever reveal that locking and shear oscillations
get more intense with increasinge values in the field-inconsistent two-noded element (2FI),
tending to reach asymptotically the limiting values presented in table 4. Analysis with the
three-noded field-inconsistent formulation (3FI) shows that the there is no locking at all for
pure bending .

For the case of cantilever with nodal transverse load, it is obvious from table 4 that for
very thin beams(e � 1), the behaviour of the field-inconsistent solutions of the three-noded
beam element (3FI) tends towards that of the field-consistent solution of the two-noded beam
element (2FC). With decreasing thickness of the 3FI element, the bending strain tends to
flatten out to a non-zero constant, while quadratic shear strain oscillations die out. Thus, in
the limiting case of the thin beam, the strain components, error norm and convergence rate of
the 3FI element tend towards those of the 2FC element.

Lim
e → ∞ ‖q‖2

(3FI) = L

2

(PL)2

6EI
= ‖q∗‖2

(2FC) . (38)

For the pure moment case, of course, we have for both thick and thin beams

‖q‖2
(3FI) = ∥∥q∗∥∥2

(2FC)
= 0. (39)

The convergence rates of the 3FI, 3FC and 2FC formulations for the analysis of thethin
cantilever beam with tip transverse load, studied earlier by Prathap (1993), is presented
graphically in figure 6.
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Figure 6. Comparison of the convergence trends of
the different formulations of the three-noded element
(3FI and 3FC) with the two-noded field-consistent
element (2FC) for a very thin beam under nodal trans-
verse load.

6. Conclusions

A method based on the function space approach is employed to identify field-consistent
and field-inconsistent spaces for strain projections of the three-noded Timoshenko beam
element. Numerical results from an in-house finite element computer code confirm that
field-inconsistent finite element solutions always agree with the strain projections onto field-
inconsistent subspaces, and are therefore variationally correct. For the loading cases consid-
ered here, reduced integration-induced field-consistent finite element solutions agree with the
strain projections onto artificially generated field-consistent subspaces, and are therefore vari-
ationally correct. This is a fortuitous condition that arises from the vanishing of the spurious
force vector, leading to the satisfaction of the normal equations. It has been pointed out that
under certain loading conditions, reduced integration induced finite element solutions deviate
from the field-consistent best-fits, or orthogonal strain projections by extraneous responses
excited by self-equilibrating spurious forces that can be predicted using the function space
method.

It has been demonstrated here that contrary to the general faith, the field- inconsistent
solutions of the three-noded Timoshenko beam element do not lock severely. The deterioration
is of a mild kind, i.e. delayed convergence is the consequence. This behaviour is in sharp
contrast with that of the lower order two noded Timoshenko beam element, which locks
severely and shows spurious linear shear oscillations in the field-inconsistent formulation,
and the rate of convergence of the locked solution is too slow to reach an acceptable level of
convergence economically. Furthermore, it has been shown how the field-inconsistent three-
noded formulation (3FI) behaves like the field-consistent two-noded (2FC) formulation for
the limiting case of very thin beams.

For uniform elements (constant section properties) and rectilinear geometry (constant Jaco-
bian over the element), the standard basis vectors are the Legendre Orthogonals, which are
mutually orthogonal with any constant as the kernel function included in the integrand defin-
ing the inner product. For non-uniform elements with curved geometry, the characteristic
standard basis vectors associated with the corresponding polynomial function spaceneed
not be equal to the Legendre Orthogonals, for the associated kernel functions are not nec-
essarily constant over the element, but become functions of the coordinateξ . In practice,
determination of the basis vectors for such cases can be tedious, and is beyond the scope
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of the present paper. However, the principle behind identifying field-inconsistent and field-
consistent solutions remains the same. From the observations made in this paper, one may
investigate the possibilities of formulating lock-free, field-consistent elements by first assum-
ing suitable strain-displacement expressions that generate the corresponding field-consistent
spaces whichcanbe spanned by the standard basis vectors.

Appendix A – The Gram–Schmidt procedure

The orthogonal basis vectors{ui}, (i = 1, 2.., m), spanning the subspaceB can be determined
from theN column vectors{bj }(j = 1, 2, .., N; N = total number of element degrees of
freedom) of the matrix [B]. The initial basis vector can be taken as any of the column vectors
of [B],

{u1} = {b1}.
The other(m−1) non-zero orthogonal basis vectors can be obtained from the general formula

{uk+1} = {bk+1} −
k∑

j=1

〈
uj , bk+1

〉
〈
uj , uj

〉 {
uj

}
These basis vectors can be arbitrarily scaled.

List of symbols

A area of section normal to beam axis;
{bj } column vectors of the [B] matrix;
[B] strain-displacement matrix;
B function subspace for strain projections;
[D] rigidity matrix;
e non-dimensional rigidity ratio;
E Young’s modulus of beam material;
{F }, {Fe} force vectors;
G shear modulus of beam material;
I section moment of inertia about neutral axis;
k shear correction factor (0.833 for rectangular section);
[K], [Ke] stiffness matrices;
L element length;
{Li} standard orthogonal basis vectors spanning spacePr

n;
m dimension of theB subspace;
M0 applied end moment;
Ni, [N ] shape function and shape function matrix respectively;
P applied nodal load;
Pr

n polynomial function space;
{q} strain error vector;
{Re} nodal reaction vector;
Rr real number space ofr-dimensions;
{ui} orthogonal basis vectors spanning theB subspace;
w transverse displacement;
x coordinate of a point with element centre as origin;
{αi} coefficient vector ofr-rows for the spacePr

n;
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{δe} nodal displacement coordinate vector;
{ε} analytical strain vector;
{ε̄}, {σ̄ } field-inconsistent finite element strain and stress resultant vectors respectively;
{ε̄∗}, {σ̄ ∗} field-consistent finite element strain and stress resultant vectors respectively;
µ moment load per unit length;
ρ transverse load per unit length;
{ρ} load intensity vector for element;
θ rotation of section normal to beam axis;
ξ non-dimensional coordinate.
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