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Abstract —TIt is welt known that finite elementsshow paints where strains or stresses are of higher accuracy
than elsewhere. Two competing models. the adiasing and the best approximation or best fit approaches are
now available which attempt to explain how this emerges. Here. we compare the two and critically evaluate

them.

INTRODUCTION

ithas been known for some time that there are points
i a finite element where strains/stresses are very
jecurate, sometimes exact[l]. These are called the
garlow points and it is also acknowledged that these
may OF may not coincide with the Gauss-Legendre
points. Recently, Prathap][2, 3} offered a fresh in-
erpretation on the variational basis for these points.
Anafternative interpretation was also put forward by
MacNeal recently in terms of a concept called afias-
ing [4]. According to MacNeal 4], the term aliasing is
borrowed from sample data theory where it is used to
describe the misinterpretation of a time signal by a
sampling device. An original sine wave is represented
i the output of a sampling device by an altered sine
wave of lower frequency —this is called the alias of
the true signal. This concept can be extended to finite
element discretization — the sample data points are
now the values of the displacements at the nodes and
the alias is the function which interpolates the dis-
placements within the element from the nodal dis-
placements. Barlow developed his theory of optimal
points using an identical paiadigm — the term subsi-
tute function is used instead of alias.

The aliasing concept can be used to derive the
location of the optimal points, as Barlow did [I] and
as MacNeal did recently {4]. Implicit in this approach
5 the assumption that the finite element method
FEM) seeks discretired displacement fields which are
substitutes or aliases of the true displacement fields,
b sensing the nodal displacements directly.
Prathap’s approach [2, 3] takes a different route—it
fecoghizes that a proper variational basis of the
displacement type FEM approach actually leads to
the conclusion that the finite element method essen-
tally seeks discretired strain/stress fields which are
the substitutes/aliases of the true strain/stress fields
and that it does this in a “best fit” or “best approxi-
Mation™ sense. In most cases, this coincides with a
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least squares error approximation, but a subtle dis-
tinction is implied here (see Refs [2, 3]). It is interest-
ing now to see how these two alternative paradigms,
the “displacement aliasing” approach and the “best
approximation of strain” approach lead to subtle
differences in interpreting the relationship between
the Barlow points and the Gauss points.

Before we procecd lo the main body of the argu-
ment it may be worthwhile to state what we mean by
aparadigm here. The dictionary meaning of paradigm
is pattern or model or example. Here, we use the word
in the greatly enlarged sense in which the philosopher
T. S. Kuhn introduced it in his classic study on
scientific progress. In this sense, a paradigm is a
“framework of suppositions as to what constitutes
problems, theories and solutions.” It can be a collec-
tion of metaphysical assumptions, heuristic models,
commitments, values, hunches, which are all shared
by a scientific community and which provides the
conceptual framework within which they can recog-
nize problems and solve them [6]. The aliasing and
best-fir paradigms are therefore two competing scen-
arios which attempt to explain how the finite element
method computes strains and stresses.

WHAT DOES THE FINITE ELEMENT
METHOD DO—SAMPLE DISPLACEMENTS OR
STRAINS/STRESSES?

It will be educational here to bricfly review what is
understood of the finite element discretization pro-
cess. It is often believed that the finite element
method, i.e. the discretization process it implies, seeks
approximations to the displacement fields and that
the strains/stresses are computed by differentiating
these fields. Thus, Barlow‘s‘argument{l] implicitly
accepts that elements are “capable of representing the
nodal displacements in the field to a good degree of
accuracy.” MacNeal [4] assumes that each finite el-
ement samples the displacements at the nodes and
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internally, within the element, the displacement field*
is interpolated using the basis functions. The strain
fields are computed from these, using a protis that
involves differentiation. The course of the a4#ument
runs further—that as a result, displacements are
more accurately computed than the strain and stress
field. This follows from the generally accepted axiom
that derivatives of functions are less accurate than
the original functions. It is also argued that
strains/stresses are usually most inaccurate at the
nodes and that they are of greater accuracy near the
element centres —this, it is thought, is a consequence
of the mean value theorem for derivatives.

However, several years of experimenting with finite
element design [2] have taught this writer that in
actual fact, the Ritz approximation process and the
displacement type FEM, which can be interpreted as
a piecewise Ritz procedure, does exactly the oppo-
site—it is the strain fields which are computed, almost
independently, as it were, within each element. This
can be derived in a formal way —many attempts have
been made to give expression to this idea (e.g.
Barlow [1] and Moan [7]), hut the present writer feels
that the most intellectually satisfying proof can be
arrived at by starting with a mixed principle known
as the Hu-Washizu theorem [S]. This proof has been
taken up in greater detail in Ref. [3] and will be
reviewed only briefly in the next section. Having
said that the Ritz type procedures determine strains,
it follows that the displacement fields are then
constructed from this in an integral sense—the stiff-
ness equation actually reflecting this integration pro-
cess and the continuity of fields across element
boundaries and suppression of the field values at
domain edges being reflected by the imposition of
boundary conditions. It must therefore be argued
that displacements are more accurate than strains
because integrals of smooth functions are generally
more accurate than the original data. We have thus
turned the whole argument on its head.

The “beést-fir™ rule

In Ref. [3]it was shown that the “best-fit’”” manner,
in which finite elements compute strains, can be
shown to follow from an interpretation using the
Hu-Washizu theorem. To see how we progress from
the continuum domain to the discretized domain, it
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was found that it is best to develop the %
from the generalized Hu-Washizu theorem 8] Fathg,
than the minimum potential theorem. We Proce
thus:

Let the continuum linear elastic problem gy,
exact solution described by the displacement field
strain field ¢ and stress ficid 6 (we project thay 4,
strain field ¢ is derived from the displacement g,
through the strain—displacement gradient Operatars
of the theory of elasticity and that the stress fieyq ;
derived from the strain field through the constityy,
laws). I.et us now replace the continuum domaip by
a discretized domain and describe the computed stag
to be defined by the quantities #, € and d, where again,
we take that the strain fields and Stress fields z,
computed from the strain—displacement and consit,.
tive relationships. It is clear that ¢ is an approy.
mation of the true strain field ¢ What e
Hu-Washizu theorem does, following the interpret.
ation given by de Veubeke[9]. is to introduce 4
“dislocation potential” to augment the usual tott
potential. This dislocation potential is based on 4
third independent stress field # which can be cep.
sidered to be the Lagrange multiplier, removing the
lack of compatibility appearing between the tru
strain field ¢« and the discretized strain field ¢. Note
that & is now an approximation of 6. The three-field
Hu-Washizu theorem can be stated as

Sn =0, it

where

n = f{&T€f2+&T(e — &Y+ Py AV

and P is.the potential energy of the prescribed
loads.

In the simpler minimum total potential principle.
which is the basis for the derivation of the displace.
ment type finite element formulation in most text-
books, only one field(i.e. the displacement field«), s
Subject to variation. However, in this more genera!
three field approach, all three fields are subject ¥
variation and lead to three sets of equations which
can be grouped and classified as follows:

Variation on Nature
u Equilibrium
d Orthogonality

(compatibility)

™

Orthogonality

(equilibrium)

Equation
v& +terms from P =0 (3a)
J'aaT(gg)dvzo {30
JaaT(a —§)dV =0. (3c)




Equation (3a) shows that the variation on the
gsplacement field © requires that the independent
< field & must satisfy the equilibrium equations (V
gpifies the operators that describe the equilibrium
wndition}. Equation (3c) isa variational condition to
wlore the equilibrium imbalance between 5 and . In
s displacement type formulation, we choose & =4
mis satisfies the orthogonality condition, seen in egn
y, identically. This leaves us with the orthogonality
oadition in egn (3b). We can now argue that this
ges (o restore the compatibility imbalance between
e €xact strain field ¢ and the discretized strain field
¢ In the displacement type formulation this can be

stated as

f&&T(E-()deo (4)

Thus we see very clearly that the strains computed
w the finite element procedure are a variationally
orrect (in a sense, a least squares correct) “best
gproximation” of the true state of strain.

Reference [3] shows how to determine from this
“best-fit” orthogonality condition, why Gauss point
sampling gives strains of a higher accuracy than at
any other point within an element damain, using the
Same beam element example that was used originally
by Barlow [I]. In this note, we shall confine attention
to the aliasing and best fit paradigms to see how they
operate to determine the optimal points. We shall
designate the optimal points detcrmined by the alias-
ing algorithm as &, the Barlow points (aliasing), and
the points determined by the best-fit algorithm as &, ,
the Barlow points (best-fit). Note that ¢, are the
Points established by Barlow{l} and MacNeal{4],
while £, will correspond to the points given in Refs
[2,3]. Note that the natural coordinates system ¢ is
being used here for convenience.

4 one-dimensionat problem

We shall take up the simplest problem, a bar under
axal |oading. This is the one-dimensional problem
that Corresponds to the problem used by MacNeal [4]
© determine the Barlow points (aliasing) and com-
pare them with the Gauss points corresponding to the
order of polynomial chosen to do the discretization.

As in MacNeal [4], we shall assume that the bar is
ttplaced by a single element of varying polynomial
order for jts basis function (i.e. having varying num-
ber of equally spaced nodes). Thus, from Table §, we
®ethat p = |, 2,3 corresponds to the basis functions
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Table 1. Barlow and Gauss points for one-dimensional case, Scenario A

~—""" Node Gauss Barlow poi s

, locations u u € € points “Best-fit” Aliasing

| =1 ¢ ¢ 5 I 0 0 0

2 0, &1 2 & 5 +1//3 +1/./3 £1/./3

) 173, +1 & g g z? 0. +./3/5 0, +./3/5 0.+/5/3
’ﬁ: .., ¢* indicate polynomial orders from constant to quartic.

oflinear, quadratic and cubic order, implying that the
corresponding elements have 2, 3, 4 nodes, respect-
ively. These elements are therefore capable of repre-
senting a constant, linear and quadratic state of
strain/stress, where strain IS taken to be the first
derivative of the displacement field. We shall adopt
the following notation: the true displacement, strain
and stress field will be designated by «, ¢ and #. The
discretized displacement, strain and stress field will be
designated by @, € and ¢. The afiased displacement,
strain and stress field will be designated by «?, ¢* and
o*. Nodal displacements will be represented by w,.

We shall examine three scenarios. In the simplest,
Scenario A, the true displacement field « is exactly
one polynomial order higher than what the finite
element is capable of representing— it is in this case,
and only in this case, that the Barlow points can be
determined exactly in terms of the Gauss points. In
Scenario B, we consider the case where the true field
u is two orders higher than the discretized field U. The
definition of an identifiable optimal point becomes
difficult. In both Scenarios A and B, we assume that
the rigidity of the beam is a constant, ie. o = De. In
Scenario C, we take up a case where the rigidity can
vary, i.e. ¢ = D(&)e. We shall see that once again, it
becomes difficult to identify the optimal points by any
simple rule.

Thus, for Scenarios A and B, the orthogonality
condition becomes simply

jéé’(('—é)dl/ =0, (3)
whereas for Scenario C, it becomes
Jée‘TD(f)(g—e)dV=o. (6}

Note that we can consider eqn (5) as a special case
of the orthogonality condition in eqn (6) with the
weight function D{&)= 1. It is well known that this

Table 2. The Legendre polynomials P,

Order of
polynomial Polynomial
P
0 [

(3 — 3087 +35¢8Y)
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case corresponds to one in which a straightforward
application of Legendre polynomials can he made.
This point was observed very early by Moan [7]. In
this case, one can determine the points where ¢ =« as
those corresponding to points which are the zeros of
the Legendre polynomials. See Table 2 for a list of
unnormalized Legendre polynomials. We shall show
below that in eqn {5), the points of minimum error
are the sampling points of the Gauss-Legendre inte-
gration rule only if € is exactly one polynomial order
lower than ¢. And in eqn (6). the optimal points no
longer depend on the nature of the Legendre poly-
nomials, making it difficult to identify the optimal
points.

Scenario A

This is the example worked out in detail in Mac-
Neal [4] (sce Table 7.1 in Ref. [4] and Table 1 here).
We shall consider FEM solutions using a linear
(two-noded), a quadratic (three-noded) and a cubic
(four-noded) element. The true displacement field is
taken to be one order higher than the discretized field
in each case.

Linear element {p =1}

u =quadratic = b, + #,& 4,°

P
e =linear =u; =b, T2b,¢ =¥ ¢ P,(¥)

§=0

Note that we have written ¢ in terms of the
Legendre polynomials for future convenience. Note
also that we have simplified the algebra by assuming
that strains can be written as derivatives in the
natural co-ordinate system. It is now necessary to
work out how the algebra differs for the aliasing and
best-fir approaches.

Aliasing: at &, = 41, w?=u; then points where
e*=¢ are given by &, =0. (The algebra is very
elementary and is left to the reader to work out.)
Thus. the Barlow point (aliasing) are &, =0, for this
case.

Best-fit: 7 = linear, is undetermined at first. Let
€ =¢q, as the element is capable of representing only
a constant strain. Equation (5) will now give
€ =cy=b,. Thus, the optimal point is £, =0, the
point where the Legendre polynomial P,(£) =¢ van-
ishes. Therefore, the Barlow point (best-fit) for this
example is &, =0.

Quadratic efement (p =2).
u=cubic= by+ b, & Th,e + b3
¢ =quadratic =u;

={b +b,)+2b,¢ —b,(1 —3&Y)

f=1

=¥ ¢P(¢)

s =0
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Aliasing: at &, =0, +1, u! =u,: then poipy
€' = ¢ are given by &, = +1/./3. (Again, the algg;
is left to the reader to work out.) Thus. the g, N
points (aliasing) are &, = + lf\/B, for_lt_his case,
Best-fit: 7 = quadrajic. Let ¢ =c - .
element is “capgble of representing a Ifhgaraflrg;?

Equation (5)will now give ¢ = (b, t5,) +2p,¢, Thag

the optimal points are ¢, = % l,f\/3, the points wher
the Legendre polynomial Po(&) = (1 — 3¢%) vanige,

Therefore, the Barlow points (best-fit) for g
example are & = +1/,/3.

Note that in these two examples, 1.c. for the linear
and quadratic elements, the Barlow points from y,
schemes coincide with the Gauss points (the pojp
where the corresponding Legendre polynomials y,,
ish). In our next example we will find that this will e
be so.

Cubic element (p = 3)
u = quadratic = by + b6, + b E* + by EF 4 o
€ =Cubic =u,
= (B + b))+ (2b, + 128,/5)E — (1 — 389

—4b,[5(3¢ — SEY)
=S P -
s=0 )

Aliasing: at & = +1/3, 41, «? = u,: then points
where e* =¢ are given by &, =0, +./5/3. Thus, the
Barlow points (aliasing) are &, =0, i\/5/3, for this
case. Note that the points where thc Legendre poly-
nomial P;{¢) = (35 — 3&% vanishes are &; =0, \/ﬁ

Best-fit: @ = cubic. Let ¢ =¢, T e & Ty (1 -38,
as this element is capable of representing a quadratic
strain. Equation (5) will now give C=(b,+5)t
(2b, + 12b,/5)¢ — by(1 —3&Y. Thus. the .Barlow
points (best-fit) for this example are &, =0. 4'3%
the points where the Legendre polynomial F,(¢) =
(35 — 5&%) vanishes.

Therefore, we have an example where the aliasing
paradigm does not give the correct picture about the
way the finite element process computes strains
However, the best-fit paradigm shows that, as long &
the discretized strain is one order lower than the tru¢
strain, the corresponding Gauss points are the opt-
mal points. Table | summarizes the results obtained
so far.

The experience of this writer and many of s
colleagues is that the best-fit model is the one that
corresponds to reality—-that if one were to actuaily
solve a probldin where the true strain varies cubicall}
using a four-noded element which offers a discretized
strain which is of quadratic order, the points
optimal strain actually coincide with the Gaus
points.

)
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seenario B
So far, We have examined simple scenarios where
the tru¢ strain is exactly one polynomial order higher
an the discretized strain with which it is replaced.
P (¢), denoting the Legendre polynomial of order
dcscnbes the order by which the true strain exceeds
he discretized strain, the simple rule is that the
opttmal points arc obtained as P,{£,) = 0. These are
merefore the set of p Gauss points at which the
[egendre polynomial of order p vanishes. Consider
wow @ case where the true strain is two orders higher
pan the discretized strain——c.g. a quadratic element
=2) modelling a region where the strain and stress
gld vary cubically. Thus, we have

€= (b + by) + (28, + 12b,/5)¢ — by(1 — 389

-db,/5(3¢ —5¢8%).
+C|é

£ =¢y
Equation (5) allows us to determine the coefficientsc,
n terms of &,; it turns out that

£ =(b, +b,) T(26, T128,/5)¢;

a representation made very easy by the fact that the
Legendre polynomials are orthogonal and that there-
fore ¢ can be obtained from ¢ by simple inspection.
It is not, however, a simple matter to determine
whether the optimal points coincide with other well
known points like the Gauss points. In this example,
we have to seek the zeros of

by(1 38 + 4b, /5(38 — 569

Since b, and b, are arbitrary, depending on the
problem, it is not possible to seek universally valid
points where this would vanish, unlike in the case of
Scenario A earlier. Therefore, in such cases, it is not
worthwhile to seek points of optimal accuracy. It is
sufficientto acknowledge that the finite element pro-
cedure yields strains £, which are the most reasonable
one can obtain in the circumstances.

Scenario C

So far, we have confined attention to problems
where s is related to ¢ through a simple constant
rigidity term. Consider an exercise where (the one
dimensional bar again) the rigidity varies because the
cross-sectional area varies or because the modulus of
elasticity varies or both, i.e. ¢ = D(&)e. The orthogo-
nality condition that governs this case is given by eqn
{(6). Thus, it may not be possible to determine univer-
sally valid Barlow points a priori if D{£) varies
considerably.

CONCLUSIONS

In this paper, we have critically evaluated two
competing paradigms for the basis of the optimal
points in finite element stress predictions. It would
seem that the best-fit or best-approximation model is
the one that has a more rational basis.
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