
I 
BARLOW POINTS AND GAUSS POINTS AND THE ALIASING 

AND BEST FIT PARADIGMS 

G.  Prathap 
National Aerospace Laboratones, Post bag No, 1719, Kodihallt, Bangalore 560 017 and 

Jawdharial Nehru Centre for Advanced Scientific Research, Bangalore 560 01 2, India 

(Recrtr’ed 30 June 1994) 

AbslraCl-11 is well known that finite elements show points where strains or stresses are of  higher accuracy 
than elsewhere. Two competing models. the oliosing and the hmr oppro.~;moriim or b a t  f i r  approaches are 
now available u,hich attempt to explain how this emerges. Here. we compare the two and critically evaluate 
them. 

INTRODUCTION 

lIhas been known for some time that there are points 
in a finite element where strains:stresses are very 
accurate, sometimes exact [ I]. These are called the 
 low points and it is also acknowledged that these 
may or may not coincide with the Gauss-Legendre 

Recently, Prathap [2,3] offered a fresh in- 
lerpretation on the variational basis for these points. 
~nalternative interpretation was also put forward by 
MacNeal recently in terms of a concept called alias- 
i~ [4]. According to MacNeal[4], the term aliasing is 
borrowed from sample data theory where i t  is used to 
describe the misinterpretation of a time signal by a 
sampling device. An original sine wave is represented 
in the output of a sampling device by an  altered sine 
uave of lower frequency-this is called the alias of 
the true signal. This concept can bc.extended to finite 
element discretization-the sample data points are 
iiow the values of the displacements a t  the nodes and 
the alias is the function which interpolates the dis- 
placements within the element from the nodal dis- 
placements. Barlow developed his theory of optimal 
points using an identical paiadigm-the term subsri- 
rule/unction is used instead of alias. 

The aliasing concept can be used to derive the 
location of the optimal points, as Barlow did [ I ]  and 
as MacNeal did recently [4]. Implicit in this approach 
IS the assumption that the finite element method 
IFEM) seeks discretired displacement fields which are 
~ u h l u l r s  or  aliases of the true displacement fields, 

sensing the nodal displacements directly. 
Prathap’s approach [2, 31 takes a different route-it 
recognizes that a proper variational basis of the 

type FEM approach actually leads to 
‘he conclusion that the finite element method essen- 
‘‘ally seeks discretired strain/stress fields which are 
Ih2 substitutesialiases of the true strain/stress fields 
and that i t  does this in a “best fit” or “best approxi- 
W o n ”  sense. In most cases, this coincides with a 

least squares error approximation, but a subtle dis- 
tinction is implied here (see Refs [2,3]). I t  is interest- 
ing now to see how these two alternative paradigms, 
the “displacement aliasing” approach and the “best 
approximation of strain” approach lead to subtle 
differences in interpreting the relationship between 
the Barlow points and the Gauss points. 

Before we procecd lo the main body of the argu- 
ment it may be worthwhile to state what we mean by 
aparadigm here. The dictionary meaning of paradigm 
is pattern or  model or example. Here, we use the word 
in the greatly enlarged sense in which the philosopher 
T. S. Kuhn introduced i t  in his classic study on 
scientific progress. In this sense, a paradigm is a 
“framework of suppositions as to what constitutes 
problems, theories and solutions.” It can be a collec- 
tion of metaphysical assumptions, heuristic models, 
commitments, values, hunches, which are all shared 
by a scientific community and which provides the 
conceptual framework within which they can recog- 
nize problems and solve them [6]. The aliasing and 
best-fir paradigins are therefore two competing scen- 
arios which attempt to explain how thc finite element 
method computes strains and stresses. 

WHAT DOES THE FINITE ELEMENT 
METHOD D O S A M P L E  DISPLACEMENTS OR 

STRAINS/STRESSES? 

It will be educational here to bricfly review what is 
understood of the finite element discretization pro- 
cess. I t  is often believed that the finite element 
method, i.e. the discretization process it implies, seeks 
approximations to the displacement fields and that 
the strainslstresses are computed by differentiating 
these fields. Thus, Barlow‘s‘argument [I] implicitly 
accepts that elemcnts are “capable of representing the 
nodal displacements in the field to a good degree of 
accuracy.” MacNeal[4] assumes that each finite el- 
ement samples the displacements at the nodes and 
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internally, within the element, the displacement field‘ 
is interpolated using the basis functions. The strain 
fields are computed from these, using a pro ss that 
involves differentiation. The course of the a t ument 
runs further-that as a result, displacements are 
more accurately computed than the strain and stress 
field. This follows from the generally accepted axiom 
that derivatives of functions are less accurate than 
the original functions. I t  is also argued that 
strains/stresses are usually most inaccurate a t  the 
nodes and that they are of greater accuracy near the 
element centres-this, i t  is thought, is a consequence 
of the mean value theorem for derivatives. 

However, several years of experimenting with finite 
element design [2] have taught this writer that in 
actual fact, the Ritz approximation process and the 
displacement type FEM, which can be interpreted as 
a piecewise Ritz procedure, does exactly the oppo- 
site-it is the strain fields which are computed, almost 
independently, as it were, within each element. This 
can be derived in a formal way-many attempts have 
been made to give expression to this idea (e.g. 
Barlow [ I ]  and Moan [7]), hut the present writer feels 
that the most intellectually satisfying proof can be 
arrived at by starting with a mixed principle known 
as the Hu-Washizu theorem [S]. This proof has been 
taken up in greater detail in Ref. [3] and will be 
reviewed only briefly in the next section. Having 
said that the Ritz type procedures determine strains, 
it follows that the displacement fields are then 
constructed from this in an integral sense-the stiff- 
ness equation actually reflecting this integration pro- 
cess and the continuity of fields across element 
boundaries and suppression of the field values a t  
domain edges being reflected by the imposition of 
boundary conditions. It must therefore be argued 
that displacements are more accurate than strains 
because integrals of smooth functions are generally 
more accurate than the original data. We have thus 
turned the whole argument on its head. 

The “bistrfir” rule 

In Ref. [3] it was shown that the “best-fit’’ manner, 
in which finite elements compute strains, can be 
shown to follow from an interpretation using the 
Hu-Washizu theorem. To see how we progress from 
the continuum domain to the discretized domain, it 

was found that it is best to develop the 
from the generalized Hu-Washizu theorem [sl 
than the minimum potential theorem. We 
thus: 

Q‘kl 
P‘W 

Let the continuum linear elastic problem have an 
exact solution described by the displacement field 

u, strain field c and stress field u (we projcct that 
strain field L is derived from the displacement field 
through the strain4splacement gradient operaton 
of the theory of elasticity and that the stress field 
derived from the strain field through the constitutive 
laws). Let us now replace the continuum domain by 
a discretized domain and describe the Computed stat? 
to be defined by the quantities U. <and i, whereagain 
we take that the strain fields and Stress fields 
computed from the strain4splacement and constit”. 
tive relationships. I t  is clear that i is an approxi. 
mation of the true strain field f .  What the 
Hu-Washizu theorem does, following the interpret. 
ation given by de Veubeke [91, is to introduce a 
“dislocation potential” to augment the usual total 
potential. This dislocation potential is based on a 
third independent stress field 5 which can be con. 
sidered to be the Lagrange multiplier, removing tiit 
lack of compatibility appearing between the he 
strain field c and the discretized strain field <. Note 
that ; is now an approximation of 6. The three-field 
Hu-Washizu theorem can be stated as 

where 

and P is.  the potential energy of  the prescribed 
ioaos. 

In the simpler minimum total potcntial principle. 
which is the basis for the derivation of the displace. 
ment type finite element formulation in most text- 
books, only one field (i.e. the displacement field u),is 
Subject to variation. However, in this more general 
three field approach, all three fields are subject 10 

variation and lead to three sets of equations which 
can be grouped and classified as follows: 

Vuriarion on Nature Equation 

U Equilibrium VC + terms from P = 0 

,. 
Orthogonality 

(compatibility) 

Orthogonality 

(equilibrium) 

6CT(E - 6 ) d V  = 0 J ,  
I 6CT(C - 6 ) d V  = 0. (3Cl 
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Table 1. Barlow and Gauss points for one-dimensional case, Scenario A 
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Gauss Barlow poi ts ” L L points “Best-fit” Aliasing locations ? 

5 ‘  € 2  5 & l l J 3  & l lJ3 & l l J 3  

/ Node 

4- - +I 5 ?  t 5 I 0 0 0 I 
1 0. ? I 

- t l / 3 , + I  5‘ 5’ 5’ 5‘  0. .JT3 0. ?Jiis 0. ?,,I513 < , , ,<‘ indicate polynomial orders from constant to quartic. . 2 ’  

muation (3a) shows that the variation on the 
field u rcquires that the independent 

inss field ir must satisfy the equilibrium equations (V 
the operators that describe the equilibrium 

&tion). Equation (3c) is a variational condition to 
theequilibrium imbalance between 5 and 5 .  In 

be displacement type formulation, we choose ir = 6. 
ks satisfies the orthogonality condition, seen in eqn 
p), identically. This leaves us with the orthogonality 
modition in eqn (3b). We can now argue that this 
ma to restore the compatibility imbalance between 
,he exact strain field 6 and the discretized strain field 
i. In the displacement type formulation this can be 
itated as 

/’RFT(i - 0 d V  = 0. (4) 

Thus we see very clearly that the strains computed 
y the finite elcment procedure are a variationally 
nrrect (in a sense, a least squares correct) “best 
qproximation” of the true state o f  strain. 

Reference [3] shows how to determine from this 
“best-fit” orthogonality condition, why Gauss point 
sampling gives strains of a higher accuracy than a t  
any other point within an element damain,  using the 
Same beam element example that was used originally 
by Barlow [I] .  In this note, we shall confine attention 
10 the aliasing and best fit paradigms t o  see how they 
operate to determine the optimal points. We shall 
designate the optimal points detcrmined by the alias- 
ing algorithm as &, the Barlow points (aliasing), and 
the points determined by the best-fit algorithm as thr 
the Barlow points (best-fit). Note that 5, are the 
Points established by Barlow [I] and MacNeal[4], 
while tb will correspond to the points given in Refs 
1&31. Note that the natural coordinates system 5 is 
kin?, used here for convenience. 

A one-dimensional problem 

We shall take up the simplest problem, a bar under 
axla[ loading. This is thc one-dimensional problem 
[hat Corresponds to the problem used by MacNeal[4] 
‘10 determine the Barlow points (aliasing) and com- 
pare them with the Gauss points corresponding to the 
order of polynomial chosen to do the discretization. 

As in MacNeal[4], we shall assume that the bar is 
’eP1aced by a single element of varying polynomial 
Order for its basis function (1.e. having varying num- 
berofequally spaced nodes). Thus, from Table 1, we 
=ethat p = I ,  2 , 3  corresponds to the basis functions 

of linear, quadratic and cubic order, implying that the 
corresponding elements have 2 , 3 , 4  nodes, respect- 
ively. These elements are therefore capable of repre- 
senting a constant, linear and quadratic state of 
strain/stress, where strain is taken to be the first 
derivative of the displacement field. We shall adopt 
the following notation: the true displacement, strain 
and stress field will be designated by u, t and u. The 
discretized displacement, strain and stress field will be 
designated by U, i and d. The aliased displacement, 
strain and stress field will be designated by u’, t a  and 
u‘. Nodal displacements will be represented by ui.  

We shall examine three scenarios. In the simplest, 
Scenario A, the true displacement field u is exactly 
one polynomial order higher than what the finite 
element is capable of representing-it is in this case, 
and only in this case, that the Barlow points can be 
determined exactly in terms of the Gauss points. I n  
Scenario B, we consider the case where the true field 
u is two orders higher than the discretized field U.  The 
definition of a n  identifiable optimal point becomes 
difficult. In both Scenarios A and B, we assume that 
the rigidity of the beam is a constant, i.e. u = Dc. In 
Scenario C, we take up a case where the rigidity can 
vary, i.e. u = D ( t ) c .  We shall see that once again, i t  
becomes ditlicult to identify the optimal points by any 
simple rule. 

Thus, for Scenarios A and B, the orthogonality 
condition becomes simply 

/hi’(? - 6 )  d V  = 0, 

s 
( 5 )  

whereas for Scenario C, it becomes 

hiTD(()(<--C)dV=O. (6 )  

Note that we can consider eqn ( 5 )  as a special case 
of the orthogonality condition in eqn (6 )  with the 
weight function D( i ; )=  I. It is well known that this 

Table 2 .  The Legendre polynomials P, 

Order of 
polynomial Polynomial 

P 

0 I 
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case corresponds to one in which a straightforward 
application of Legendre polynomials can he made. 
This point was observed very early by Moan [7j. In 
this case, one can determine the points where i = L as 
those corresponding to points which are the zeros of 
the Legendre polynomials. See Table 2 for a list of 
unnormalized Legendre polynomials. We shall show 
below that in eqn (5).  the points of minimum error 
are the sampling points of the Gauss~-Legendre inte- 
gration rule only if  E is exactly one polynomial order 
lower than c .  And in eqn (6). the optimal points no 
longer depend on the nature of the Legendre poly- 
nomials, making it difficult to identify the optimal 
points. 

4$1; " 
G. Prathap 

Scenario A 

This is the example worked out in detail in Mac- 
Neal (41 (see Table 7.1 in Ref. [4] and Table 1 here). 
We shall consider FEM solutions using a linear 
(two-noded), a quadratic (three-noded) and a cubic 
(four-noded) element. The true displacement field is 
taken to be one order higher than the discretized field 
in each case. 

Linear element 0, = 1 )  

11 = quadratic = h, + h ,  i + b,{? 

c = linear = u; = h ,  + 26,5 = 1 c s P . , ( t )  
p = i  

> = n  

Note that we have written < in terms of the 
Legendre polynomials for future convenience. Note 
also that we have simplified the algebra by assuming 
that strains can be written as derivatives in the 
natural co-ordinate system. It is now necessary to 
work out how the algebra differs for the aliasing and 
best@ approaches. 

Aliasing: at  5 , =  - t i ,  uf=  u,;  then points where 
c d  = t  are given by 5, = O .  (The algebra is very 
elementary and is left to the reader to work out.) 
Thus. the Barlow point (aliasing) are 5 ,  = 0, for this 
case. 

Best-fit: li = linear, is undetermined a t  first. Let 
C = co, as the element is capable of representing only 
a constant strain. Equation (5) will now give 
i = co = b ,  . Thus, the optimal point is tb = 0, the 
point where the Legendre polynomial P,(t) = 5 van- 
ishes. Therefore, the Barlow point (best-fit) for this 
example is &, = 0. 

Quadratic elemem @ = 2) .  

u =cubic= bo+ b , t  + b,<'+ b,(' 

t = quadratic = u( 

= (b ,  + h,) + 2b,( - b,( I - 352) 

W h  
Aliasing: at t, = 0. + I ,  u;  = u,:  then points 

L' = c are given by Ca = ? l/J3. (Again, the algebra 
is left to the reader to work out.) Thus. the narlOv 
points (aliasing) are  5 ,  = ? I!J3, for this case, 

Best-fit: ri = quadratic. Lct i = r, + c, t, as t~ 

Equation ( 5 )  will now give? = (h ,  + h , )  + 2b2{,nq 
the optimal points are  th = k 1/.,'3, the pointswheR 
the Legendre polynomial p.(<) = ( 1  - 3t2)  vanishes, 
Therefore, the Barlow points (best-fit) for tb 
example are th = k I/,/3. 

Note that in these two examplcs, I.C. for the linear 
and quadratic elements, the Barlow points from bul 
schemes coincide with the Gauss points (the points 
where the corresponding Legendre polynomials 
ish). In our next example we w,ill find that this willnat 
be so. 

element is capable of representing a linear stmin, 4 

Cubic elemmenl 0, = 3) 

u=quadrdt ic=h,+b, i ;+b:t '+b,5 ' tb ,C'  

L =cubic = uI 

Aliasing: at i, = +1/3, i I ,  u: = u, :  then points 
where c *  = f are given by 5, = 0, + ,/5/3. Thus, the 
Barlow points (aliasing) are 5 ,  = 0, J 5 / 3 ,  for this 
case. Note that the points where thc Legendre poly- 
nomial P 3 ( t )  = ( 3 5  - 55' )  vanishes are  tG =0 ,  a. 

Best-fit: U = cubic. Let E = c, + c, 5 + c2(1 - 3('1, 
as this element is capable of representing a quadratic 
strain. Equation ( 5 )  will now give C = (b ,  + b,) t 
(2b, + 126,/5)5 - b,(l - 3 i2 ) .  Thus. the .Barlor 

I- points (best-fit) for this example a r c  tb = 0. ,, 315. 
the points where the Legendre polynomial P 3 ( 0  = 
(35 - 5t') vanishes. 

Therefore, we have an example where the aliasin! 
paradigm does not give the correct picture about the 
way the finite element process computes strains 
However, the best-fit paradigm shows that, as IonSaS 
the discretized strain is one order lower than the true 
strain, the corresponding Gauss points are the o P  
ma1 points. Table I summarizes the results obtained 
so far. 

The experience of this writer and many of hlj 
colleagues is that the best-fit model is the onc tha' 
corresponds to reality--that i f  one were to actuall! 
solve a probldm where the true strain varies cubicall! 
using a four-noded element which offers a discrctizcfl, 
strain which is of quadratic order, the points ('I 
optimal strain actually coincide with the Gau', 
points. 
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Scenario B 
so far, we have examined simple scenarios where 

the true strain is exactly one polynomial order higher 
the discretized strain with which it  is replaced. than p g), denoting the Legendre polynomial of order 

describes the order by which the true strain exceeds 
?. he discretized strain, the simple rule is that the 
optimal points arc obtaincd as P”(5,) = 0.  These are 

the set of p Gauss points at which the 
legendre polynomial of order p vanishes. Consider 

a case where the true strain i s  two orders higher 
the discretized strain-x.g. a quadratic element 

I= 2) modelling a region where the strain and stress 
bid vary cubically. Thus, we have 

I 

r=(h ,+h , )+(2h ,+  12h4/5)( -h,(I -35*)  

-4b,/5(3c - 55’). 

c = cg + c , t  

Equation ( 5 )  allows us to determine the coefficients c, 
in terms of b.; it turns out that 

< = (h,  + h,) + (26, + 12h,/5):; ! 
a representation made very easy by the fact that the 
Legendre polynomials are orthogonal and that there- 
fore i can be obtained from t by simple inspection. 
It is not, however, a simple matter to determine 
whether the optimal points coincide with other well 
known points like the Gauss points. In this example, 
we have to seek the zeros of 

h,(l -3:’)+46,/5(35 -5t3) 

Since b, and b, are arbitrary, depending on the 
problem. it is not possible to seek universally valid 
points where this would vanish, unlike in the case of 
Scenario A earlier. Therefore, in such cases, it is not 
worthwhile to seek points of optimal accuracy. It is 
sufficient to acknowledge that the finite element pro- 
cedure yields strains i, which are the most reasonable 
one can obtain in the circumstances. 

Scenario C 

So far, we have confined attention to problems 
where u is related to t through a simple constant 
rigidity term. Consider an exercise where (the one 
dimensional bar again) the rigidity varies because the 
cross-sectional area varies or because the modulus of 
elasticity varies o r  both, i.e. u = D(5)r .  The orthogo- 
nality condition that governs this case is given by eqn 
(6) .  Thus, i t  may not be possible to determine univer- 
sally valid Barlow points a priori if D ( t )  varies 
considerably. 

CONCLUSIONS 

In  this paper, we have critically evaluated two 
competing paradigms for the basis of the optimal 
points in finite element stress predictions. It would 
seem that the best-fit or best-approximation model is 
the one that has a more rational basis. 
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