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Abstract—This paper review the developments from

May 1992)

recent studies on the derivation of consistent strain

fields in modelling constrained media elasticity and on deriving consistent stress resultants and thermal
stress fields. The review will consider the Hu-Washizu principle as the variational basis for the existence
of the so-called Barlow points where stresses (or strains) huve the highest accuracy.

INTRODUCTION

An interesting development that has emerged from some
recent studies on the derivation of consistent strain fields in
modeling Of constrained media elasticity (to eliminate
lockingy [1] and on deriving consistent stress resultants|2]
and thermal stress fields[3] was that the minimum total
potential energy principle was inadequate to describe the
capabilities Of the displacement based finite element formu-
lation. We had to turn to a general variational theorem
walled the Hu-Washizu principle [4] which is based on three
independent fields, and to the Hellinger-Reissner two-field
principle (5} which can be derived as a restricted case of the
former, to explain many significant features of the displace-

ment-B&sed “Pprocediré as used in these studies [I-31. Their
usefulness arises from the fact that they now allow simul-
aneous  approximations on  displacements, strains and
siresses. This provides the basis for the power and versatility
of these mixed rules in several key applications in finite
clement modelling. The Gauss-Legendre integration rule
and the Legendre polynomials are seen to occupy a central
pesition in such an interpretation. It is seen not only as a
means of optimal numerical integration of element arrays,
but also as a means of establishing points of accurate
slraip-stress recovery

In this paper these developments will be reviewed, as
rlatzd to the use of the Hu-Washizu principle as the
wriational basis for the existence of the so-called Barlow
pints, .2, points where stresses (or strains) have the highest
tcuracy. These are of a very fundamental nature and their
5l8p|ﬁcance is not well understood or appreciated by the
finite element community.

THE MINIMUM TOTAL POTENTIAL THEOREM

. The displacement-based finite element method has until
Suie recently, looked only to the minimum total potential
ergy principle (a single field principle in that the displace-
Ment beld s the only unknown) to'fing a variational basis.
_Howev;r. this has been found inadequate to explain many
miiesting features of the method as well as to resolve many
hilenges, These are issues such as the displacement
;"hf’f Producing strains which are ‘best-approximations’
"the actual continuum strains. the inability of the conven-
i'-m prroach to avoid locking [1), the presence of stress
A ‘““}‘ms in problems involving varying stiffness {2] and in
mma’ stress computation (3], etc. The more general multi-
" mexed principles such as the Hu-Washizu principle [4]

* the Hellinger-Reissner principle [5] (where  strains
A OF §1resees ara ale- - ' 4

been described as the basis of the formulation of the hybrid
and mixed elements. In this paper we introduce one more
aspect that supports the viewpoint that the complete theor-
etical basis for the displacement-based elements must rest on
the Hu-Washizu theorem. This then allows many of the
features and challenges faced by the method to be explained
or resolved [I-31.

ACCURACY OF NUMERICAL INTEGRATION

To start with, we shall introduce a short statement about
the use of numerical integration ina displacement-type finite

.dement formulation. The construction of element_matrices_. ..

and arrays m the finite element method requires the inte-
gration of functions which are considered smooth and
integrable over the element domain. Often, these functions
are not easily integrable inan exact analytical way and it has
been the practice to use a numerical integration (quadrature)
formula to accomplish this. An important advantage of the
numerical integration route is that general programs can be
written for various classes of problems using universally
applicable shape function routines.

Many rules of quadrature are available, e.g. the
Newton-Cotes rules, of which the trapezoidal, and
Simpson’s rules are the most well known, the

Gauss-Legendre rules, etc. All these are based on replacing
the exact integral with a computation using sampling points
at which the integrand is’computed and multiplying these
with appropriate weighting terms to determine the integral.

It is known that the Gauss—Legendre quadrature formula
is the most efficient rule from the point of view of compu-
tational cost for a given accuracy for one-dimensional
problems [6}. This actually follows from the fact that the
theory to determine the optimal sampling points and
weights leads to finding. the zeros of the corresponding
Legendre polynomials. These points are used as sampling
points for the Gauss—Legendre rule. Later, we shall see that
the same fact has other useful implications for the use of the
Gaussian rule for finite element applications. In multi-di-
mensiona] problems, the Gaussian rule is not always the
most efficient,but despite this these rules are almost always
favoured.

THE ‘BEST-APPROXIMATION’ RULE AND GPTIMAL
POINTS FOR STRAIN RECOVERY

The displacement-type finite element procedure in uncon-
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strain-fields, yields strain predictions which are variationally
accurate smoothed approximations of the true strain fields
within each dcmei domain. We can show that this
emerges from the #asic variational or weighted residual
nature of the displacement-type discretization process. To
see how we progress from the continuum domain lo the
discretized domain, we will find presently that it is best
to develop the theory from the generalized Hu—Washizu
mixed theorem [4] rather than the minimum potential theo-
rem as is done in most textbooks on the finite element
.method.

Let the continuum linear elastic problem have an exact
solution described by the displacement field «, strain field «
and stress field o (We project that the strain field ¢ is derived
from the displacement field through the strain-displacement
gradient operators of the theory of elasticity and that the
stress field is derived from the strain field through the
constitutive laws). Let us now replace the continuum do-
main by a discretization domain and describe the computed
state to be defined by the quantities &, ¢ and &, where again,
we take that the strain fields and stress fields are computed
from the strain—displacement and constitutive relationships.
It is clear that £ is an approximation of the true strain field
c. What the Hu-Washizu theorem does, following the
interpretation given by de Veubeke{?], is lo introduce a
‘dislocation potential' to augment the usual total potential.
This dislocation potential is based on a third independent
stress field & which can be considered to be the Lagrange
multiplier removing the lack of compatibility appearing
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strain field¢. In the displacement-type formulatigy, l!us’:
be stated as -

Jcﬁ&r(e' —c¢)dVF =0

[ R r

Thus, we see very clearly that the strains computeg
finite element procedure are a variationally COpregt
sense, a least-squares correct) 'best approximation: oftn
true state of strain. &

Our task is now to point out from this why Gaussm
sampling gives strains of a higher accuracy than at any o,
point within an element domain. This fact was first
by Barlow [8] and these optimal points are ofieg
Barlow points. Note that Barlow. and sub
searchers, describe these as points of optimal stress rec
However, the proof so far described here reveals that thgy
points are firstly points of optimal strain recovery,
are computed in a secondary way from the Str.';linsm,d-ﬂ‘-l
necessary lo establish that points of optimal stress cojps
with points of optimal strain. This is done quite simply
introducing the constitutive relationship o = D¢ and §=
in egn (4) to give

-

J-ée'r(é—a)dV=0. d

It is worthwhile noting here that Moan [9} did not 138
terms of strains or stresses but argued that the pring

between the true strain field ¢ and the discretized strain field ~ derivativesin the energy functional are 'best-approxim
¢. Note that # is now an approximation of &. The three-field  in a least-squares sense: It was also argued that this appm
Hu—Washizu theorem can be stated as mation of the principle derivatives takes place almost )
pendently within each element. Since strains ar: bas:d g
dn =0, (1) prncipal derivatives. we can argue that it is morz meas

ful to recognize that the finiteelement method performsl #

where smoothing or ‘best-approximation’ operation on thesiig

- directly-This.has.been.seen.in the proof so far (rom equf ;

_r- - - or (5} I

= J{arffz +87e —&)+ P}V (2) I-(Ie?'rmann {10] interpreted the finite clement procedmyl ™

a stress error minimization procedure. In this, t b m‘

P s e ol negy of e prsren s+ R S T S ] 5
In the simpler minimum total potential principle, which a by field & This will lead (o an expressa

is the basis for the derivation of the displacement-type finite ~ approximate stress lielc o. This will fea p -
element formulation in most textbooks, only one field (i.e.  the form |

the displacement field w), is subject to variation. However,
in this more general three-field approach, all three fieldsare J.&i ¢ —()dV =0 a
subject lo variation and leads to three ssts of equations e

which can be grouped and classified as follows:

Variation on Nature Equation
i equilibrium  ¥& *terms from P =0
(3a)
d orthogonality |5&T(£' —¢)dV =0
(compatibility) (3b)
é orthogonality |&ET(& —-6)d¥ =0.
(equilibrium) (3¢)

Equation (3a) is easy to rationalize—the variation on the
displacement field « requires that the independent stress field
& must satisfy the equilibrium equations (¥ signifies the
operators that describe the equilibrium condition). We can
interpret eqn (3¢) as a variational condition to restore the
equilibrium imbalance between ¢ and 6. in the displace-
ment-type formulation, we choose 7 = §. This satisfies the
orthogonality condition seen in eqn (3¢} identically. This
leaves us with the orthogonality condition in eqn (3b). We

nan naw arsna that thic triee ta eactare the camnatibility

We can now compare eqn (6) with eqns (4) and (5). 1t *4 e
appear that the mixed principles derive the ‘best 3PPy int
mation' theorem in a more physically meaningful ¥} }

i

The beam element (after Barlow [8)) tha

We shall now re-interpret the beam element erampk ;“l:

by Barlow [8] to show how optimal strain (and he“* :w

points can be derived from eqns (4) or (5) us™ o1
orthogonal property of the Legendre polynomials ¢

a simple beam element based on cubic polynom‘m_ X
It is easy to show from this that the discretized stra® okt
is a linear function

E=%_.=a +a.€.

Following Barlow. let us assume that this element h?‘“
used to model a beam region in which the strain dis™™
is actually quadratic (i.e. corresponding to a 94" %
placement field for w). We therefore have a continuu®
which can be written as

c=w . =B+ b,/3) + b — by /3(1 -3

Note that the true bending strain field has beeq ﬁm&
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omial form. There is a very useful idea behind
usus! FOMthn the continuum strain field ¢ and the
bis :l:f,: strain field € are introduced into eqn (4). it is seen
1 thizgfhite element procedure determines the coefficients
the m the goefficients b, to satisfy this orthogonality
* -rr?tion. This can be done by directly equating the terms
eifie coefficients of the respective Legendre polynomials.
0

Thus
g=b 1Tb/ and a =0, )

This is possible because of the orthogonal nature of the

endre polynomials, S0 that the coefficient associated with
he quadratic polynomial in the true Strain field does not 'do
work’ on the coefficients of the discretized strain field, The
sportant corollary from this is that in this specific example

ints at which the secogd-order Legendre function van-
ches (in this case, (= 1) are points at which the
discretized strain field matches the true strain field. Thus, in
quch a case, although the discretized strain field has only a
(inear” &ccuracy over the element domain, there are two
points at which it yields Strains and stresses of a 'quadratic’

accuracy- . o
Note that the argument so far is exactly valid (i.e. the
optimal points are also the pints of exact strain recovery)
only if £ is exactly one order lower than ¢. In a general case.
the true conlinuum strain field ¢ may be several orders
kigher than the discretized strain field £. In this case, the
Gauss points corresponding to the finite element formu-
lation (i.e. in a linear strain element, the points correspoind-
ing 1o a two-pointrule, ete.} are points where the strainsare
ncovered to one order higher than that represented by its
discretization strain field. In many cases, as in the beam
element [8], we can say that at these points the strains are
ampled at the same accuracy as the displacements at the
nodes.
—_ e find that the development of this argument from the

Hu-Washizu theorem and the orthogonality condition de- ~—~ ~Published—=

rved hence fi.e. eaps (4) or (5)] to be more satisfying than
those given by Barlow [8], Moan [9], Herrmann {10], or in
the many textbooks that deal with this topic so far, e.g.
Lieakiewicz and Taylor [11].

CONCLUDING REMARKS

In this paper we have introduced another example which
demonstrates that a wmplete degree of confidence in the
theoretical soundness of the displacement-type finite el-
ament formulationwuld be found only in the Hu-Washizu
interpretation of the procedure.

Moan [9] had noted the importance of being able to know
points of minimum error in the strainsand stresses. The fact
that the sampling points of the Gauss-Legendre quadrature
nle are also the points at which strains and stresses are
oplimally sampled, and/or are consistently sampled in the
ase of constrained media elasticity [I], recommends the use
of this rule in all finite element applications.

We have also seen in earlier work applications where the
Hu-Washizy interpretation is essential to provide a com-
Peiely rational basis—these are modelling of the con-
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strained media elasticity [1]. stress resultant computation,
where the modulus matrix varies over the element do-

temperatWff field varies over the element domain [3].

One imPPrtant feature we have observed so far is that an
interpolation field for the stresses (or stress resultants as the
case may be) which is of higher order than the strain fields
on which it must 'do work in the energy or virtual work
principle is actually self-defeating because the higher order
terms cannot be "send. This is precisely the basis for de
Veubeke's famous limitation principle [7), that 'it is useless
lo look for a better solution by injecting additional degrees
of freedom in the stresses'. We see clearly from our present
studies that one cannot get stresses which are of higher order
than are reflected in the strain expressions.

.main [2], zlf thermal stress recovery in problems where the
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