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Abtrart-This paper review the developments from recent studies on the derivation of  consistent strain 
fields i n  modelling constrained media elasticity and on deriving consistent stress resultants and thermal 

fields. The review will consider the Hu-Washizu principle as the variational basis for the existence 
the so-called Barlow points where stresses (or strains) havc the highest accuracy. 

INTRODUIXION 

A,, interesting development that has emerged from some 
fmnt  rtudies on the derivation of consistent strain fields in 
mde[iq of constrained media elasticity (to eliminate 
locking) [I]  and on deriving Consistent stress resultants 121 
and thermal stress fields [ 3 ]  was that the mininlum total 
pt&.l energy principle was inadequate to  describe the 
&iililies of the displacement based finite element formu- 
lation. We had to turn to  a general variational theorem 
ailed the Hu-Washizu principle [4] which is based on three 
independent fields, and to  the Hellinger-Reissner two-field 
nineinleI51 which can be derived as a restricted case of the .~.  
iormer, to explain many significant features of the displace- 
ment-based procedure as used in these studies [I-31. Their 
urpldness arises from the fact that they now allow simul- 

,- 

Mneous approximations on displacements, strains and 
$tresses. This provides the basis for the power and versatility 
of these mixed rules in several key applications in finite 
clement modelling. The Gauss-Legendre integration rule 
and the Legendre polynomials are seen to occupy a central 
p i t i o n  in such an interpretation. It is seen not only as a 
means of optimal numerical integration of element arrays, 
but also as a means of establishing points of accurate 
$irain-stress recovery 

In thir paper these developments will be reviewed, as 
nlated to the use of the Hu-Washizu principle as the 
wialional basis for the existence of the so-called Barlow 
points. i.e. points where stresses (or strains) have the highest 
4,CCuracy. These are of a very fundamental nature and their 
Wificance is not well understood o r  appreciated by the 
bite element community. 

THE MINIMUM TOTAL POTENTIAL THEOREM 

The displacement-based finite element method has until 
quite recently, looked only to  the minimum total potential 
“er8):Pnnciple (a single field principle in that the displace- 
mcnt held is the only unknown) to’find a variational basis. 

U.eVer. lhis has been found inadequate to explain many 
resting features of the method as well as to  resolve many 
%es. These are issues such as the displacement 

Producing strains which are ‘best-approximations’ 
he actual continuum strains. the inability of  the conven- 
.aI  aPFroach to avoid locking[I], the presence of stress 
‘lIatlQns in problems involving varying stiffness [21 and in 

stress Camputation 131, etc. The more general multi- 
principles such as  the Hu-Washizu principle [4] 

‘he Hellinger-Reissner principle [5]  (where strains 
or stress< ,_ -1.- ~ * . . 

I ’  

k e n  described as  the basis of the formulation of the hybrid 
and mixed elements. I n  this paper we introduce one more 
aspect that supports the viewpoint that the complete theor- 
etical basis for the displacement-based elements must rest on 
thc Hu-Washizu theorem. This then allows many of  thc 
features and challenges faced by the method to be explained 
or resolved [I-31. 

ACCURACY OF NUMERICAL INTEGRATION 

To start with, we shall introduce a short statement about 
the use of numerical integration in a displacement-type finite 

and arrays In the finite element method requires the inte- 
gration of functions which are considered smooth and 
integrable over the element domain. Often, these functions 
are not easily integrable in an exact analytical way and it has 
been the practice to  use a numerical integration (quadrature) 
formula to accomplish this. An important advantage of the 
numerical integration route is that general programs can be 
written for various classes of problems using universally 
applicable shape function routines. 

Many rules of  quadrature are available, e.g. the 
Newton-Cotes rules, of which the trapezoidal, and 
Simpson’s rules are the most well known, the 
Gauss-Legendre rules, etc. All these are based on  replacing 
the exact integral with a computation using sampling points 
at which the integrand is’computed and multiplying these 
with appropriate weighting terms to  determine the integral. 

It is known that the Gauss-Legendre quadrature formula 
is the most efficient rule from the point of view of compu- 
tational cost for a given accuracy for one-dimensional 
problems 161. This actually follows from the fact that the 
theory to determine the optimal sampling points and 
weights leads to  finding. the zeros of  the corresponding 
Legendre polynomials. These points are used as sampling 
points for the Gauss-Legendre rule. Later, we shall see that 
the same fact has other useful implications for the use of the 
Gaussian rule for finite element applications. In multi-di- 
mensional problems, the Gaussian rule is not always the 
most efficient, but despite this these rules are almost always 
favoured. 

. dement formulation. , ___ The construction of element.matrices__--.~-. ~~ ~ 

THE ‘BEST-APPROXIMATION’ RULE AND OF’TIMAL 
POINTS FOR STRAIN RECOVERY 

The displacement-type finite element procedure in .uncon- 
sfr2;nd mnA:^..---L.---’- - 
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Thus, we see very clearly that the strains computed by 
finite element procedure are a variationally co th 

Ih 
sense, a least-squares correct) 'best approximation ol 
true state of strain. 

P% Our task is now to point out from this why GaU 

Y Qup sampling gives strains of a higher accuracy than at an 
point within an element domain. This fact was first o$ 

n *  
by Barlow [8] and these optimal points are oRe 
Barlow points. Note that Barlow. and subsequcot 

VQJ 
searchers, describe these as points of optimal stressm 
However, the proof so far described here reveals thatk 
points are firstly points of optimal strain ravery.  sl, 
are computed in a secondary way from the Strains andti 
necessary lo establish that points of  optimal stress m* 
with points of optimal strain. This is done quite s i ~ ,  
introducing the constitutive relationship 0 =Diandj=i  
in eqn (4) to give 

"gt b , 

P 

strain-fields, yields strain predictions which are variationally 
accurate smoothed a proximations of the true strain fields 
within each eleme domain. We can show that this 
emerges from the f sic variational or weighted residual 
nature of the displacement-type discretization process. To 
see how we progress from the continuum domain lo the 
discretized domain, we will find presently that it is best 
to develop the theory from the generalized Hu-Washizu 
mixed theorem [4] rather than the minimum potential theo- 
rem as is done in most textbooks on the finite element 

Let the continuum linear elastic problem have an exact 
solution described by the displacement field u. strain field L 
and stress field (I (we project that the strain field 6 is derived 
from the displacement field through the strain-displacement 
gradient operators of the theory of elasticity and that the 
stress field is derived from the strain field through the 
constitutive laws). Let us now replace the continuum do- 
main by a discretization domain and describe the computed 
state to be defined by the quantities 2. i and 6. where again, 
we take that the strain fields and stress fields are computed 
from the strain4isplacement and constitutive relationships. 
It is clear that <is an approximation of the true strain field 
c. What the Hu-Washizu theorem does, following the 
interpretation given by de Veubeke[7], is lo introduce a 
'dislocation potential' to augment the usual total potential. 
This dislocation potential is based on a third independent 
stress field 5 which can be considered to be the Lagrange 
multiplier removing the lack of compatibility appearing 
between the true strain field L and the discretized strain field 
6. Note that b is now an approximation of 6 .  The three-field 
Hu-Washizu theorem can be stated as 

6n =0, (1)  

.method. 

Technical Note 

strain field 1. In the displacement-type formulation 
be stated as 

adr({ - c )  d V = 0 J 

6Cr(6-o)dV=O. I 
I t  is worthwhile noting here that Moan [9] did n 
terms of strains or stresses but argued that the 
derivatives in the energy functional are 'best-appr 
in a least-squares sense: I t  was also argued that thi 
mation of the principle derivatives takes place al 
pendently within each element. Since strains ar 
orincioal derivatives. we can argue that it is mor 

J 

and P is the potential energy of the prescribed loads. 
In the simpler minimum total potential principle, which 

is the basis for the derivation of the displacement-type finite 
element formulation in most textbooks, only one field (i.e. 
the displacement field u) ,  is subject to variation. However, 
in this more general three-field approach, all three fields are 
subject lo variation and leads to three sets of equations 
which can be grouped and classified as follows: 

Variation on Nature Equation 

U equilibrium V.5 + terms from P = 0 
(3a) 

I (3b) 

air(? - 6) dY = 0. 

orthogonality 66 '(C-~)dY=0 

(compatibility) 

orthogonality 

(equilibrium) 

d 

I (3C) 

c' 

Equation (3a) is easy to rationaliztthe variation on the 
displacement field u requires that the independent stress field 
b must satisfy the equilibrium equations (V signifies the 
operators that describe the equilibrium condition). We can 
interpret eqn (3c) as a variational condition to restore the 
equilibrium imbalance between 6 and 6. i n  the displace- 
ment-type formulation, we choose 5 = 5.  This satisfies the 
orthogonality condition seen in eqn (3c) identically. This 
leaves us with the orthogonality condition in eqn (3h). We 
Î- --w I--..- thnt +hie t r k  tn =ctnro thr rnmnntihilitv 

iul to;ecognize that the finite element method 

Herrmann [lo] interpreted the 
a stress error minimization 

or ( 5 ) .  

approximate solution from a 

11;; form 

66 '(6 - (I) d V = 0 F 
I 
l a  J 

We can now compare eqn (6) with eqns (4) and (5).  
appear that the mixed principles derive the 'best 
mation' theorem in a more physically meaningful 

The beam elerncnt (afler Barlow 181) 

We shall now re-interpret the beam element era 
by Barlow [El to show how optimal strain (and he 
points can be derived from eqns (4) or ( 5 )  
orthogonal property of the Legendre polynomials 
a simple beam element based on cubic polyno 

It is easy to show from this that the discretize 
is a linear function 

i = G,~.* = a. + a , t .  

Following Barlow. let us assume that this element 
used to model a beam region in which the strain dls 
is actually quadratic (i.e. corresponding to a 
placement field for w ) .  We therefore have a contln*um 
which can be written as 

c =w,,,=(6,+6,/3)+b,[ -6,/3(1 -3c'). 

Note that the true bending strain field has been e 
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Iynomial form. There is a very useful idea behind 
m e n  the continuum strain field i and the Step. 

::sozed 
field Care introduced into eqn (4). it is seen 

finite element procedure determines the coefficients 
that' coefficients b, lo satisfy this orthogonality 
0, f r o ~ ~ ~ i s  can be done by directly equating the terms 
mudl ,@bents of the respstive Legendre polynomials. of the 
mu 

o, = b, + bJ3 and 0 ,  = b , .  (9) 

lhis is p&le because of the orthogonal nature of the 
d n  polynomials, so that the cwficient associated with 

the quadratic polynomial in the true Strain field does not 'do 
wort' on the coefficients of the discretized strain field, The 

mnt  corollary from this is that in this specific example '$ at which the second-order Legendre function van- Ses (in this case, < = * l/J3) are points at which the 
dircreM strain field matches the true strain field. Thus, in 
swh a ox, although the diwretlzed strain field has only a 
.,inm. accuracy over the element domain, there are two 

at which it yields Strains and stresses of a 'quadratic' 
aauraCY. 

p ~ ~ t e  that the argument so far is exactly valid (i.e. the 
points are also the p i n t s  of exact strain recovery) 

A" if i i s  exactlv one order lower than L. In a Eeneral case. 

been 

strained media elasticity [I]. stress resultant computation, 
where the modulus matrix varies over the element do- 

, main [2], a d thermal stress recovery in problems where the 
temperatu 

One im f rtant feature we have observed so far is that an 
interpolation field for the stresses (or stress resultants as the 
case may be) which is of higher order than the strain fields 
on which i t  must 'do work in the energy or vinual work 
principle is actually self-defeating because the higher order 
terms cannot be 'send. This is precisely the basis for de 
Veubeke's famous limirarion principle [7]. that 'it is useless 
lo look for a better solution by injecting additional degrees 
of freedom in the stresses'. We see clearly from our present 
studies that one cannot get stresses which are ofhigher order 
than are reflected in the strain expressions. 
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field varies over the element domain [3]. 
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