
cvmpuars B .srrrrctures Vol. 33. No. 4, pp. 1095-l 106. 1989 
Printed in Great Britain. 

~~~7949/89 53.00 + 0.00 
Q I989 Pergamon Press plc 

DISPLACEMENT AND STRESS PREDICTIONS FROM 
FIELD- AND LINE-CONSISTENT VERSIONS OF THE 

EIGHT-NODE MINDLIN PLATE ELEMENT 

B. P. NAGANARAYANA and G. PRATHAP 

Structural Sciences Division, National Aeronautical Laboratories, Bangalore 560017, India 

(Rec&ed 3 November 1988) 

Abstract-The eight-node isoparametric Mindlin plate bending element based on the serendipity shape 
functions has a long history of investigation behind it, and has seen various devices to improve it-mixed 
methods, enforcing of constraints, tensorial transformations, etc. Only very recently have successful 
versions free of locking in general quadrilateral form and without kinematic modes emerged. In this paper, 
we shall examine two of the most successful displacement method procedures (a field-consistency approach 
and a line-consistency approach) and proceeding from these, design three very accurate versions-one 
based on a variationally correct field-consistency paradigm alone, and two versions derived from the need 
to ensure consistency of tangential shear strains along principal reference lines so that the usual patch 
tests are exactly passed. The latter two have shear strain definitions that leave the element free of all 
problems (locking and kinematic modes) for all boundary suppressions and element distortions whereas 
the former has two kinematic modes. These line~onsistent elements, however, introduce spurious 
quadratic shear stress o~illations as they have not been derived in a va~ationally correct sense. The 
recovery of accurate transverse shear stress resultants must therefore be performed very carefully, and a 
filtering technique is implemented for this. 

INTRODUCTION 

Survey 

Simple Mindlin plate bending elements [1] are very 
popular as they can account for transverse shear 
strain deformation and yet need only C” continuous 
functions for the engineering degrees of freedom: the 

displacements and section rotations. 
The eight-noded element based on the serendipity 

inte~olation functions has been a very tricky one to 
design. The conventional approach of exact inte- 
gration of all strain energies (as derived from the 
Ahmad shell element [2]) resulted in an element that 
locked for most practical boundary suppressions even 
in its rectangular form. Many ad hoc techniques e.g. 
the reduced and selective integration techniques [3-51, 
hybrid and mixed methods [6], etc. failed or suc- 
ceeded only partially. Very recently, the use of special 
interpolation strategies for shear strains [7--91 led to 
elements that did not lock even under distortion and 
without inducing zero-energy or kinematic modes. 

References [7] and [S] use a covariant base ap 
preach. These formulations ensure that the con- 
straints emerge from interpolations in the natural 
co-ordinates for a covariant natural co-ordinate 
based shear strain tensor system. These are then 
transformed to shear strains in the Cartesian co- 
ordinate system using tensorial transformations or 
even with Jacobian transformations such that ‘con- 
sistency’ is preserved. However, the assumed strain 
interpolations are based on sampling at five optimal 
points (Hinton and Huang[8]) and although the 
element is free of locking in its distorted form and 

passes the patch tests exactly, it has low accuracy in 
both displacement prediction and stress recovery, and 
slow convergence. We shall show in this paper that 
the poor accuracy in displacement prediction is due 
to the use of a five-point sampling strategy in setting 
up the assumed shear strain interpolations and that 
the use of least squares accurate satisfaction of shear 
strain consistency along the principal reference lines 
can produce a better element. However, these as- 
sumed strain definitions are still not field-consistent 
over the element domain in a variationally correct 
sense and this leads to spurious transverse shear stress 
oscillations and, hence, apparently very poor trans- 
verse shear stress prediction capability. 

Donea and Lamain [9] set up the consistent inter- 
polation functions for the transverse shear strains in 
the Cartesian system itself by very cleverly identifying 
the polynomial forms in the natural co-ordinates 
required to ensure that these shear strains in the 
Cartesian co-ordinate system satisfy the consistency 
requirements on the principal reference lines. The 
coefficients multiplying the sets of poIynomia1 func- 
tions are determined to approximate, in a mean value 
accurate sense, the transverse shear strain fields 
derived from the displacement fields along such lines. 
This appears to be the most complete description of 
shear flexible quadrilateral plate elements that can be 
found which is line-consistent and free of all zero- 
energy mechanisms. We shall attempt to show that it 
should be possible to produce an element in the 
covariant base approach that will have the eficiency 
of Donea and Lamain’s element by using the line- 
consistency approach with a careful identification of 
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the consistency needs when the serendipity functions 
are used. These elements have a displacement pre- 
diction capability that is markedly superior to 
the Hinton and Huang element. Again, these line- 
consistent elements are not based on assumed strain 
distributions which are variationally equivalent over 
the entire element domain to the Hellinger-Reissner 
(HR) or Hu-Washizu (HW) descriptions and this 
leads to significant quadratic shear stress oscillations, 
and seemingly poor transverse shear stress predic- 
tions. This demands a suitable filtering procedure to 
pick up the correct shear stress resultants. 

F~id-c~n~isiency and the var~~tiana~~y correct way to 
derive assumed strain $eids over an element domain 

The ‘field-consistency’ requirements of constrained 
media problems [lo, 1 l] were the basis for the use of 
various substitute shear strain interpolation strategies 
for the QUAD8 element in a recent study [12]. The 
‘consistent’ substitute shear strain fields (or assumed 
shear strain fields) were obtained from a least squares 
field-redistribution technique from the ‘inconsistent’ 
shear strain-fields from the kinematically admissible 
displacement fields. It was recently established that a 
variational basis exists for this procedure [13, 141. 

Briefly, the argument for this procedure runs 
as follows. The field-consistency paradigm [ 10, 1 t] 
recommends the form of the assumed strain functions 
in terms of the independent space variables such as X, 
y or 5 and 1 as the case may be, so that they are 
‘field-consistent’, i.e. no spurious constraints develop 
in the constraining limits. References [ 131 and [ 141 
show how an orthogonality condition can be derived 
from the Hellinger-Reissner or Hu-Washizu theorem 
which determines the constants for the ‘consistent’ 
assumed strain field from the constants of the strain 
fields derived directly from the dispia~ement fields. 
For variational correctness or equivalence, the ortho- 
gonality condition demands that the assumed strain 
field must be orthogonal to the difference between the 
assumed strain field and the strain field resulting from 
the chosen displacement field. The redistribution 
procedure used to determine an admissible assumed 
shear strain field in the case of isotropic Mindlin plate 
theory is orthogonally correct if a least squares 
smoothing over the element domain is performed to 
arrive at the constants of the assumed strain function. 
However, if the assumed strain functions have been 
generated without reference to this requirement, as is 
the case with the various line-consistent formulations, 
the variational correctness is lost and spurious energy 
or loading terms are introduced [ 151. 

However, it was seen that this simple application of 
the least squares accurate smoothing technique to 
derive what seemed to be orthogonally correct field- 
consistent forms (QUADS-I and QUADS-2 of 
Ref. [ 121) still failed to remove locking, and when it 
succeeded (QUADS3 of Ref. [12]), was at a level 
that also introduced two zero-energy modes. The 

line-consistent elements, on the other hand, were free 
of such zero-energy mechanisms. 

Another aspect that needs consideration is the 
performance of the element when it is distorted into 
arbitrary quadrilateral form. Formulations using the 
covariant base [7,8] have succeeded in retaining con- 
sistency under such distortions. The line-consistent 
elements [8,9] are particularly successful in this. A 
parallel investigation of the four-noded plate element 
pointed to the additional need for consistency of 
tangential shear strains along edge lines [16] and 
showed that it was possible to synthesize the optimal 
shear strain interpolations needed to produce a four- 
node Mindlin plate bending quadrilateral that was 
free of locking even in its most distorted form, i.e. 
when it was collapsed into a triangle. 

We find that the synthesis of field- and line- 
consistency requirements for Lagrangian elements 
(i.e. four-node and nine-node elements, etc.) does 
not lead to any conflicting requirements and gives 
elements free of any difficulties because they are 
variationally equivalent to the Hellinger-Reissner or 
Hu-Washizu theorems [13]. However, when we try to 
extend these arguments to discover the field- and 
line-consistent forms of the inte~olation functions 
for the shear strains in the covariant base that will 
ensure that the eight-noded element will not lock, we 
find that we must compromise on the need to obtain 
the variational equivalence to the HR or HW prin- 
ciple and the element that results, although having 
very accurate displacement predictions also leads to 
noticeable spurious quadratic shear stress oscil- 
lations. It is therefore necessary to examine carefully 
how the shear stress resultants can be accurately 
derived from the displacement fields. 

D~~RI~ION OF ELEMENT 

Let us first consider the setting up of the descrip- 
tion of Mindlin plate bending theory using the 
serendipity eight-noded C” continuous shear flexible 
element. It needs three nodal degrees of freedom: W. 
,YX and BY at eight nodes [see Fig. l(a)]. The curvatures 
and shear strains are: 

X.Y = %,X 

X? = @,,? 

(1) 

“rVZ = 8, - w,). (2) 

Figure l(b) shows the isoparametric system used. 
We shall also define natural co-ordinate rotations 
ec and 8, in the sense that they define natural 
co-ordinate based covariant components of what we 
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Fig. 1. (a) Geometry of eight-node plate element. (b) Global 
and natural isoparametric co-ordinate system. 

call ‘pseudo-shear strains’ ycc and y,,( as follows: 

y;; = 8; - w,, 

Y,, = ev - WTV. (3) 

QUADS-&-the original eIement 

The shape functions for the original serendipity 
quadratic element are given below. For further refer- 

ence, we shall describe them as Level 0 functions, with 
the superscript ’ denoting this. 

The corner node functions are: 

NY = 0.25{(1 - t)q(rj - 1) - (1 - t*)(l - tj)} 

N; = 0.25{(1 + On(r) - 1) - (1 - (*)(I - v)} 

N; = 0.25{(1 + <)q(~ + 1) - (1 - (*)(I + q)} 

N: = 0.25{(1 - {)s(rj + 1) - (1 - t2)(1 + r/)} 

and the mid-side node functions are: 

N: = 0.50{ (1 - (*)(I - 9)) 

N; = 0.50{(1 + t)(l - t/*) 1 

N; = 0.50{ (1 - T2)(1 + v)} 

N; = 0.50{(1 - t)(l - q2) 1. (4) 

In a conventional displacement model (henceforth 
QUAD8-0, following the terminology adopted in 
Ref. [12]) these functions and their derivatives are 

used directly to interpolate the three field variables M’ 
to O,, in deriving the strains above. An exact inte- 
gration of all the shear energy terms will now lead to 
an element that locks severely [5,6, 121. 

Let us now examine how the consistency require- 
ments are met or violated for the covariant shear 
strain component yn for the QUAD8-0 element. We 
have 

+e -u/2.5 ~(~,-w+~(tl +w 

xc 4ww+5 4 -d.(e6-es)/2 

4 -w29 -t2y2.(e,+e2-2e,) 

4 +t1p(i -52y2qe,+e4-2e,) 

x (w - WdP + (1 - r12). (we - &l/2 

x r .(w,+ w,- 2w,). (5) 

In the thin plate limit, the discretized constraints 
corresponding to the Kirchhoff limit can be associ- 
ated with principal basis functions as shown in Table 
1. It is easy to recognise from Table 1 that the last 
three constraints are the spurious constraints that can 
lead to locking (i.e. spurious stiffness that increases 
indefinitely with increase in value of the penalty 
multiplier) or to very slow convergence. Our recent 
studies in [12] showed that this element locked 
severely and that locking was accompanied by severe 
spurious linear and quadratic oscillations in the shear 
stress resultants. We can interpret this in the light of 
our recent investigations into the linear and quadratic 
beam elements [17, 181 which showed that inconsis- 
tencies in the linear term in the shear strain definition 
(for the linear beam element) led to ‘locking’ (i.e. 
spurious over-stiffening that increases indefinitely 
with reduction in beam/plate thickness) and spurious 
linear oscillations in the shear stresses, and inconsis- 
tencies in the quadratic term (for the quadratic beam 
element) led to spurious quadratic shear stress oscil- 
lations and to slow convergence but not to ‘locking’. 
Thus the constraints shown in eqns (6g) and (6h) 
(Table 1) explain the existence of quadratic (i.e. in <*) 
shear stress oscillations that we have observed in the 
‘quadratic’ QUAD8-0 element and the constraint 
appearing in eqn (6) accounts for the shear locking 
and for the linear (i.e. in 5) shear stress oscillations 
seen in [ 121. Our field-consistency argument therefore 
identifies this inconsistency in the linear term in r 
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Table 1 

Function Constraint Nature Eqn No. 

v(rt - 1)/2 
(1 - rl’) 

rl(rl + I)/2 
((1 - a)/2 
5(1 + r1)/2 
5(1 - s2) 

(I - q)/2 (1 - 5’) 
(I + tj)/2 (1 - i”) 

(M’r - M’, )/2 = (0, + 0, )/2 
(M.6 - cI’a)/2 = (e, + 0,)/2 
(M’1- M.4)/2 = (4 + 4)/2 

(W, - 2W, + W,) = -‘1(& - 0, )I2 
(w, - 29 + M.4) = ‘1(8, - Q4)/2 

0 = (0, - /I,)/2 
O=(B,-2%,f&) 
0=(4+28,+f4) 

True 
True 
True 
True 
True 

Spurious 
Spurious 
Spurious 

(6a) 
(6b) 
(6~) 
(6d) 
(be) 
(60 
($3 
(6b) 

introduced when serendipity shape functions are used 
to account for the locking here. 

Also of significant interest is the fact that the 
nine-noded rectangular element based on the bi- 
quadratic Lagrangian functions leads to spurious 
constraints which are similar to those seen in 
eqns (6g) and (6h). Numerical experiments show that 
it does not lock in its exactly integrated form (i.e. its 
QUAD9-0 form) but has quadratic spurious shear 
stress oscillations, confirming the use of the analogy 
from the quadratic beam that inconsistencies at the 
quadratic term do not lead to locking although they 
appear as spurious quadratic shear stress oscillations. 
This leads us to the important clue that the difficulties 
experienced with the QUAD8 element originate from 
the special nature of its serendipity interpolations due 
to the absence of the mid-node, and hence to con- 
straints such as seen in eqn (6f) where a spurious 
linear inconsistency is seen. 

QUADS-1 to QUAD8-3-elements based on a simple 

introduction of consistency requirements 

In [12], we approached the problem of finding an 
efficient QUAD8 from a simple understanding of the 
requirements of field-consistency. We considered the 
use of field-redistributed substitute shape functions, 
in a straightforward identification of consistency of 
terms associated with the polynomial forms, as 
in [19]. Thus, the original polynomial expansion for a 
rotation such as 0; will have terms like 

while the interpolation for w,: will have terms like 

1 5 ? 5rl ‘12. 

One can argue from this that the interpolations for 
the rotations 0; and O,, must be smoothed down to the 
corresponding forms for w,~ and w,, respectively. The 
variationally correct way to determine the functions 
which meet this specific field-consistency requirement 
for isotropic Mindlin plate theory is to smooth the 
original shape functions in a least squares accurate 
fashion to the desired form, i.e. to functions that are 
consistent with the derivative functions [ 131. This 
means that the smoothed functions we must derive 
for 0: are obtained by smoothing the original func- 

tions No to be a least squares form consistent with 
the shape functions NO,,: and similarly for 0,. This 
operation was simple and resulted in substitute inter- 
polation formulae denoted as the Level 1 functions 
in [12]. The element based on these functions was 
designated QUAD8- 1. 

However, this element locked for certain sets 
of boundary conditions. even though consistent 
definitions for the shear stress fields appeared to have 
been assured within the element domain. Linear 
oscillations in the shear stress resultants persisted but 
the quadratic oscillations vanished. The inconsistency 
in the linear 5 term in the shear strain definitions 
remained and was the cause of the poor behaviour of 
this element. 

Lower levels of consistency were examined next. 
First, smoothed shape functions based on the bi- 
linear form (i.e. having 1, 5, q and [r) terms only) for 
the natural co-ordinate rotations were studied in the 
QUADS2 version. This needed the derivative func- 
tions defining w,; and M‘,,, to be smoothed to bi-linear 
form. Numerical experiments showed that this el- 
ement was identical in behaviour to the assumed 
stress mixed element based on the bi-linear shear 
stress fields [6], and also to the QUAD8 based on a 
2 * 2 Gaussian integration of the shear strain energy. 
It locked, showing the same linear shear stress oscil- 
lations seen in QUAD8-1 above. Thus smoothing to 
Level 2 had failed to remove the same inconsistency 
associated with the linear 5 term of the assumed shear 
strain definitions that we had noticed in Level 1 
earlier. 

At the next lower level, a linear form (i.e. having 
1, 5 and 9 only) was chosen for the natural co- 
ordinate rotations and, correspondingly, the deriva- 
tive functions defining u’,~ and w,~ were also smoothed 
to linear form. Numerical experiments below show 
that this element is similar in behaviour to the 
assumed stress mixed element based on the linear 
shear stress fields [6]. It did not lock in quadrilateral 
form for all the boundary conditions considered, i.e. 
its accuracy is insensitive to a very large variation in 
the thickness of the plate and to distortion of the 
element. The element also produces accurate trans- 
verse shear stress resultants at the centroid. Spectral 
analysis revealed that this element has two spurious 
zero-energy modes in addition to the usual three rigid 
body modes. In certain, rarely encountered, situ- 
ations, the zero-energy mechanisms introduced can 
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‘act-up’, but in most practical situations, this is not 
a very debilitating influence. 

QUAD8-4--the element based on line-consistency of 
shear strains associated with principal basis functions 

We saw above that deriving the assumed strain 
fields in an orthogonal or variationally correct fash- 
ion resulted in an efficient element only at a level 
which also introduced two zero-energy modes. Donea 
and Lamain have cleverly shown that one way to 
identify a workable set of consistency requirements is 
to isolate the principal forms of the basis functions 
which appear when the derivatives such as w,, and w,~ 
are derived. They, however, seek to establish consist- 
ency for the Cartesian shear strain components and 
hence obtain smoothed functions for x,, 0, and y,, 0, 
terms for “J,:, etc. It should therefore be possible for 
us to derive an element that achieves consistency in 
the functions for the covariant components of the 
shear strains in the same manner. 

We must look for a substitute assumed function for 
the rotation 0: in the following form: 

e,=q(q-1)/2.A,+q(q+1)/2.A,+(1-q2) 

xA,+5(1-rl)/2.A,+5(1+rl)/2,A,. (7) 

We must determine the constants A, to A, in a 
logical manner. Hinton and Huang [8] perform this 
sampling at a set of five points, the two Gauss points 
(5 = f l/,/3) on the reference lines r~ = f 1 and the 
mid-point (5 = 0) on the line r] = 0. Donea and 
Lamain [9] need to determine very similar smoothed 
polynomial functions for the x,; OX and y,( 0,, functions 
and adopt the alternative strategy of determining 
these as mean value approximations of the original 
functions on the principal reference lines. 

On adopting this latter strategy, the appropriate 
smoothed function for Bc in ycc is: 

0: = V(V - l)/2. (e, + 48, + e,)i6 + ~(fj + 1)/2 

x(~,+4~,+0,)/6+(1 -q2) 

x [(e, + e,)jz - (e, - 28, + e? + 8, - 28, + edi 

+V(U - w2.5 .(e,-e,)/2 

+V(V +1)/2x .(e,-edi 

so that the constraints can be related as in Table 2. 
Equations (8a)-(8e) (Table 2) are all true constraints 
now, and this accounts for the complete freedom 
from locking. 

Transformation from covariant base to Cartesian base 

The definitions of components of the shear strain 
tensor have been made in the covariant base. 

Table 2 

Function 

$(+/I’ 

v(1 + I)/2 
((1 -r1)/2 
E(1 + n)/2 

Constraint Eqn No. 

(wl - t~,)/2 = (0, + 40, + 0,)/6 @a) 
(we - w,)/2 = (6, + 6,)/2 

- (e, - 28, + e2 + 8, 
- 28, + e,y6 @b) 

cw, - +)/2 = (e, + 48, + e,)i6 (8~) 
(111, - 2w, + +v*) = (e, - 8, )/2 (gd) 
(Mj> - zw, + w:d) = (e, - e,)j2 (ge) 

The transformation from the natural co-ordinate 
definitions to the Cartesian co-ordinate definitions 
must preserve the constraints consistently, even in an 
arbitrarily distorted quadrilateral. References [ 121 
and [16] have identified that the simplest way to 
perform this is to interpolate only the natural co- 
ordinate based shear strains within the element using 
the smoothed shape functions derived earlier, but 
make the necessary co-ordinate transformations only 
at the element nodes. This secures, more realistically, 
the consistency of definitions of shear strains on an 
edge from the two elements forming it. 

QUAD 8-5-element based on mixed interpolations 

In Hinton and Huang [8], the assumed shear strains 
are extrapolated from a set of unique points, i.e. yti 
and y,,; need a set of five points each to define func- 
tions complete in the Level 1 sense. Interestingly, this 
element does not lock, like QUAD8-4, and has no 
zero-energy modes. However, this element provides 
more flexible answers than QUAD8-3 and QUAD8-4 
for most applications, converging more slowly from 
above than the QUADS-3 or QUAD8-4 does for 
most applications. We can attribute this to the fact 
that these mixed interpolations for the assumed shear 
strain functions are not orthogonal to the difference 
in the shear strains derived directly from the displace- 
ments and rotations and the shear strain operators 
and the assumed shear strains. Thus the exact equiva- 
lence of the assumed shear strain method to the 
Helhnger-Reissner variational basis is lost [ 131, and 
leads to this poorer performance as compared to the 
QUAD8-3, where the constants for the assumed 
shear strain functions are derived using the a priori 
administration of the orthogonality condition as the 
basis [13]. Its poorer performance relative to the 
QUAD8-4 element must be explained from the fact 
that line consistency in the QUAD8-4 element is 
established by an equivalent least squares or mean 
value averaging of tangential shear strains along 
appropriate reference lines, whereas in QUAD8-5, 
this is done using sampling at five specified points. 
While these are exactly equivalent on lines q = + 1 
and l = + 1 for the respective transverse shear 
strains, they are not so on lines q = 0 and < = 0. 
It is instructive to examine this distinction here. 
The adoption of Hinton and Huang’s procedure to 
sampling at five points will lead to the following 
change in the coefficient associated with the basis 
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function (1 - q2) (i.e. corresponding to the reference 
line rj = 0) as 

8: = u(q - 1)/2. (0, + 405 + e2)/6 + u(q + I)/‘2 

x(8,+48,+8,)/6+(1 -$) 

x [(e, + e,y2 - (e, - 28, + 8, + e3 - 28, + e,)/4] 

+ tl(tl - u/2. t . (0, - 4w 

Comparing this with eqn (8b), we notice that the 
value 6.0 has now been replaced by a value 4.0. This 
difference leads to a noticeable loss of accuracy in the 
QUAD8 element of Hinton and Huang. 

QUAD8-&the Donea and Lamain element 

The logic of the covariant based QUAD8-4 el- 
ement introduced above departs slightly from that for 
Donea and Lamain’s element [9], and in rectangular 
form, both elements will be identical. 

In the covariant based approach [12] the inter- 
polations for the Cartesian system based shear strains 
are made in terms of the nodal displacements and 
Cartesian co-ordinate based rotations, the Jacobean 
terms, also at the nodes and the interpolations from 
the nodal values using the specially determined 
smoothed interpolation forms (N,) and (N,,). We 
postulated that this strategy will preserve the consist- 
ency of the shear strain definitions even in a Cartesian 
base for a general distortion of the quadrilateral. 

Donea and Lamain’s logic is now to write the 
Cartesian based shear strains as 

(9) 

P, = k, 4 + Y,, 4 - wTa 1. (10) 

Donea and Laman now state that ‘the problem of 
obtaining free of locking behaviour in C” plate 
elements amounts to properly designing the above 
two polynomials. 

In order to denote clearly how consistency is to be 
obtained, we make a distinction between what we 
shall call the inconsistent definitions of Py and Pi 
which are obtained by directly substituting the inter- 
polations for ~,~8,, y&,., x,~ 0, and y,,,O, and the 
consistent forms Pj and PA which are now suitably 
smoothed so that they are consistent with w,~ and w,~ 
forms respectively. These are obtained as mean value 
approximations of the original forms Pi and Pi on 
the principal reference lines. 

Generation of st@ness matrices 

All versions of this element are obtained by using 
a uniform numerical integration based on the 3 + 3 
Gaussian rule for all energy terms. The unconstrained 
energy terms, in this case the bending energy terms, 
are derived from the original shape function 
definitions, as also are the consistent load vectors and 
the mass matrices. Only in the computation of the 
shear stiffness matrix, is the need for the use of the 
field-reconstituted shear strain definitions observed. 

ACCURATE SHEAR RECOVERY FROM THE 
NON-ORTHOGONAL LINE-CONSISTENT ELEMENTS 

A recent study of non-orthogonal assumed strain 
procedures for the quadratic and cubic shear de- 
formable beam elements [15] and for the eight-node 
line-consistent plate elements [20] showed that these 
elements gave reasonably accurate displacement sol- 
utions but poor stress predictions. These are due to 
spurious stress oscillations which can be related to the 
presence of artificially created spurious load mech- 
anisms. Such mechanisms can be traced to the non- 
orthogonality of these assumed strain fields and to 
the subsequent loss of an exact variational equiva- 
lence to the corresponding Hellinger-Reissner or 
Hu-Washizu principles. 

It was found in [20] that spurious linear and 
quadratic shear stress oscillations were induced due 
to the non-orthogonal nature of the shear strain 
definitions in the various line-consistent elements (i.e. 
QUAD8-4, QUAD8-5 and QUAD8-6 here). It was 
also demonstrated therein that by a suitable filtering 
procedure involving a least squares smoothing of the 
shear strain fields into a bi-linear form and then 
sampling this smoothed form only at the centroids, 
it was possible to obtain transverse shear stress 
resultants at element centroids which were of accu- 
racy commensurate with the high performance these 
elements had in displacement predictions. This 
filtering procedure will be used to report the trans- 
verse shear stress resultants in this paper for the 
various numerical examples studied. 

NUMERICAL EXPERIMENTS 

We shall direct our numerical studies to bring 
out the similarities and differences between the four 
versions of the eight-noded element that we have 
discussed so far. While QUAD8-3 is based on field- 
consistency requirements alone but is a variationally 
correct or orthogonal formulation, the other three 
take into account, principally, the consistency of the 
tangential shear strain definitions on the edge lines 
and are therefore not variationally correct. That is, 
these are the so-called non-orthogonal formulations. 
The benchmark tests to be used are therefore those 
that can demonstrate how these elements behave 
in general meshes. It is important to demonstrate 
here the accuracy with which the line-consistent 
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Fig. 2. Constant strain patch tests. 

elements pass through the constant strain patch tests, 
in contrast to the results of PO] which show that these 
elements give poor shear stress resultants in conjunc- 
tion with very accurate displacement fields for stan- 
dard test examples such as the uniformly loaded 
cantilever beam or the simply supported plate. This 
was traced to the non-orthogonal nature of such 
formulations. The optimal way of recovering more 
accurate shear stress resultants [20] is now used to 
determine all shear stress resultants. 

Constant strain patch tests 

The most frequently used patch test is a configur- 
ation of five arbitrary quadrilateral elements as 
shown in Fig. 2. The dimensions of the plate are 
L = 10 and 6 = 10, and thicknesses t = 1.0 and 0.001 
are considered. The elastic properties are E = lo6 and 
p = 0.0, the latter value allowing comparisons to be 
made directly with elementary beam theory solutions. 

We shall consider four types of straining configur- 
ations as discussed in the sub-sections below. 

Constant bending strain test. A distributed edge 
couple of constant intensity on the free edge is 
simulated by three concentrated edge couples of 
intensity M/6, 4M/6 and M/6 at the three nodes on 
the free edge as shown in Fig. 2(b). At the fixed edge, 
w and 8, are suppressed to give the clamped edge 
conditions. 

The non-dimensional deflection ~Ebt3/ML2 at the 
free edge according to thin beam theory should be 
6.00. It can be seen from Table 3 that QUAD8-3 can 
pass this test only in a qualified sense whereas all the 
other three elements do so exactly. These three 
elements can also produce exactly correct constant 
bending stress resultants M, = M over all five el- 
ements in the patch. We can attribute this to the 
satisfaction of line-consistency of the tangential 
shear strains on element edge lines for QUAD&4, 
QIJAD8-5 and QUAD%6. 

Constant shear strain test. A uniformly distributed 
edge load is simulated by three concentrated loads as 
shown in Fig. 2(b), Note that the imposed conditions 
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imply that all rotations are zero and that only pure the actual quadratic variation in bending moment 
shear is possible. No field-inconsistency problem can resultant M along x (not shown). These values are 
therefore manifest itself here and, as expected, all four therefore exact on the Barlow lines ; = + l/,/3 in 
versions pass this simple test. this case. 

If a shear factor k = 1.0 is used to estimate the 
shear strain energy, the theoretical non-dimensional 
tip deflection is wEbt/PL = 2.0. We see from Table 4 
that all four element versions succeed in producing 
this value accurately. Again, the shear stress resultant 
&; is correctly recovered in all these cases. 

It is in this form that this test is used in the 
literature and it is clear from the present experiment 
that this test fails to bring out the essential nature 
of the inconsistency problems faced by the various 
versions of the element. In the next sub-section, we 
offer a more useful patch test to highlight this feature. 

Constant shear and linear bending strain test. 
To understand more realistically how field-inconsist- 
encies are induced under shearing, the shear test is 
repeated allowing the rotations 0, to develop. This 
corresponds to a constant shear and linear bending 
strain patch test. 

The deflections at the free edge for the QUAD8-4, 
QUAD8-6 and QUADS-5 models show errors ac- 
cording to set patterns. QUAD8-4 and QUAD8-6, as 
expected, give identical results in this rectangular 
form. The tip deflections on the free edge reveal an 
exactly parabolic departure from the correct value 
(i.e. here taken as 1.50012 to account for shear 
defo~ability), showing that at the Gauss points 
9 = + l/J3 on th’ is edge, they are correct. Drawing 
our analogy from the studies of the non-orthogonally 
formed beam elements, we can attribute this to 
the spurious stress oscillations resulting from the 
spurious load mechanisms activated by the 
uniformly distributed load for these non-orthogonal 
formulations. 

From Table 5, we see that both QUAD8-4 and 
QUAD8-6 give estimates which are very close to the 
theoretical values. However. both QUAD8-3 and 
QUAD8-5 are much less accurate. We can attribute 
the deficiency in QUAD8-3 to the lack of edge- 
consistency and the deficiency in QUAD8-5 to the 
approximation made when the tangential shear 
strains on the q = 0 and r = 0 lines are sampled at the 
single point instead of being represented in a mean- 
value or least squares sense on these lines. 

QUAD8-5 deflections on the free edge also show a 
parabolic variation, but about an incorrect value of 
the tip deflection. This suggests that the errors due to 
excessive flexibility caused by the loss of accuracy 
involved in five-point sampling are compounded by 
the stress oscillations caused by the spurious load 
mechanisms arising from the non-orthogonal nature 
of the assumed shear stress strain fields. 

Constant twisting strain test. The plate is now 
supported at three corner points and is loaded by 
a concentrated shear force at the fourth corner. 
Classical thin plate theory predicts that a pure con- 
stant state of twisting strain is developed in the patch. 
For a thin plate (thickness I = 0.001 in.) for which an 
exact prediction is available, it is seen that QUAD8-4, 
QUAD8-5 and QUAD86 all pass with flying colours 
and only QUAD8-3 shows relatively poorer perform- 
ance (Table 6). 

Figure 3 shows the stress predictions made by the 
QUAD8-4 and QUAD8-6 models. The linear vari- 
ation of M along x that is permitted by a quadratic 
element is captured directly, and is the same as for 
the QUADS-3 model. However. there is now an 
additional spurious quadratic oscillation in the J 
direction due to the spurious load mechanisms. Thus. 
in &his case, we have the fortuituous result that at the 
Barlow points (5 = & ljJ3, q = f l/.,/3) the vaIues 
of the moment resultant M are as per theory. 

Single element cantilever beam 

With reference to Fig. 1, consider a single element 
cantilever beam clamped at nodes 1, 8 and 4. The 
beam is of length L = 10, width b = 10 and thickness 
t = 0.1. Young’s modulus is taken as E = IO6 and 
p = 0.0. Reference [20] has shown that the critical 
loading case which activates spurious loading mech- 
anisms due to non-orthogonality of assumed shear 
strain definitions is that of a uniformly distributed 
load of intensity g. Table 7 shows the non- 
dimensional tip deflection parameters at nodes 2, 6 
and 3 for this load case for the four elements 
QUAD8-3 to QUAD84 QUAD8-3, which is ortho- 
gonally correct, produces the exact tip deflections and 
reproduces exactly the linear variation in shear stress 
rest&ant Q,, along the length of the beam, and gives 
an accurate least squares correct linear fit of 

The effect of the spurious load mechanisms is now 
more noticeably felt in the predictions of the trans- 
verse shear stress resultant QXz. There are severe 
quadratic oscillations about the correct theoretical 
value, and on lines rl = + l/J3, these elements give 
the correct answers (Fig. 3). When the filtering 
technique is used (i.e. using a least squares smoothed 
bi-linear fit of the shear stresses) the correct values are 
obtained. 

Bending of s~rn~l~-supported square slate-a~~~orrn 
mesh 

misplacement predictions. We study the square 
plate with what are called the ‘hard’ simple support 
(SS2) conditions (the tangential rotations on a sup- 
ported edge are also suppressed) under uniformly 
distributed load of intensity g. Symmetry allows a 
quarter of the plate to be modelled. We report in 
Table 8 the displacement w at the centre of the plate 
of rigidity D, side length a and thickness h from a 2 * 2 
grid of all four versions of QUADS. It is seen that 
none of the elements lock. Versions QUAD8-3, 
QUAD8-4 and QUAD8-6 show identical levels of 



Displacement and stress predictions from eight-node Mindlin plate element 1103 

Table 3. Tip deflections (WE&~/ML’) for constant bending strain patch test 

t Node QUAD8-3 QUAD8-4 QUAD85 QUAD8-6 Theory 

I.0 18 5.53 6.00 6.00 6.00 
19 5.46 6.00 6.00 6.00 
20 5.43 6.00 6.00 6.00 

6.00 
0.001 18 5.34 6.00 6.00 6.00 

19 5.23 6.00 6.00 6.00 
20 5.22 6.00 6.00 6.00 

Table 4. Tip deflections (wEbt/PL) for constant strain patch test 

I Node QUAD8-3 QUAD8-4 QUADS-5 QUAD8-6 Theory 

1.0 18 2.00 2.00 2.00 2.00 
19 2.00 2.00 2.00 2.00 
20 2.00 2.00 2.00 2.00 

2.00 
0.001 18 2.00 2.00 2.00 2.00 

19 2.00 2.00 2.00 2.00 
20 2.00 2.00 2.00 2.00 

Table 5. Tip deflections (wEbf’/PL3) for constant shear and linear bending strain patch test 

t Node QUAD8-3 QUAD8-4 QUAD8-5 QUAD8-6 Theory 

1.0 18 3.80 4.08 4.00 4.02 
19 3.76 4.11 4.05 4.02 
20 3.14 4.08 3.98 4.01 

4.00 
0.001 18 3.66 3.99 3.65 3.99 

19 3.59 4.04 3.17 4.00 
20 3.57 3.99 3.68 3.99 

Table 6. Tip deflections (wEr3/PL2) for constant twist patch test 

t Node - QUAD8-3 QUAD8-4 QUAD8-5 QUAD8-6 Theory 

1.0 18 0.00 0.00 0.00 0.00 
19 3.29 3.22 3.21 3.22 
20 6.58 6.42 6.41 6.45 

0.001 18 0.00 0.00 0.00 0.00 0.00 
19 2.98 3.00 3.00 3.00 3.00 
20 5.99 6.00 6.00 6.00 6.00 

Table 7. Non-dimensional tip deflection parameters for single element cantilever beam 

Parameter Node QUAD8-3 QUAD8-4 QUAD8-5 QUAD8-6 Theory 

2 1.50012 1.46688 1.72108 1.46688 
WEf r/&4 6 1.50012 1.51674 1.86107 1.51674 1.5 

3 1.50012 1.46688 1.72108 1.46688 

accuracy. However QUAD8-5 shows relatively resultants obtained by directly using the assumed 
poorer accuracy which can again be attributed to the shear strain interpolations for the stress recovery 
approximations resulting from the use of the single depart considerably from the theoretical values. It is 
sampling point to derive the tangential shear strains seen that there are large quadratic oscillations which 
on the lines q = 0 and e = 0. are superimposed on large linear oscillations. The 

Stress predictions. A closely examined study of the filtering strategy recommended in [20] smooths the 
stress resultants in [lo] has shown that the shear stress original shear strain interpolations into a smoothed 
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---- Theory 

--I OUADS-4 QUAD&6 

* Barlow points 

Fig. 3. Stresses in QUADS4 and QUAD8-6 single element 
cantilever under u.d.1. 

bi-linear fit and the value sampled at the centroids of 
the elements using this smoothed fit gives the true 
shear stress resultants. 

Figure 4 shows the application of this filtering 
strategy to a 4 * 4 uniform mesh of the same problem. 
Figure 4(a) shows the shear stress resultant 6, on 
_)~/a = 0 from a QUADS-3 mesh. The shear stress 
resultants are extrapolated from the centroids of the 
elements to the line y = 0 and these are compared 
with the prediction made by thin plate theory. 
The agreement is very good, showing that the ortho- 
gonally derived field consistent element has no 
difficulties in providing accurate stresses. Figure 4(b) 
shows the stress resultants taken from the nodes of a 
QUAD8-4 mesh before filtering. Spurious linear and 
quadratic shear stress oscillations induced by the 

non-orthogonality of the formulations are now 
present. Figure 4(c) shows that the extrapolation of 
values from the centroids of these elements before 
filtering to the edges of the elements on the line _v = 0 
shows that linear oscillations remain in such a pro- 
cedure. Therefore, to eliminate this, the correct 

filtering technique involves making a smoothed bi- 
linear fit of the shear stresses and extrapolating the 
centroidal values from this filtered field to lines of 
interest. Figure 4(d) shows that the accuracy obtained 
by this filtering technique now matches that obtained 
with the variationally correct QUAD83. 

Square simply-supported (SS2) plute-distorted 
meshes 

It is well known that the earlier forms of the 
QUAD8 element were very sensitive to distortion in 
terms of shape (deviation from rectangle) or shift in 
mid-side nodes away from the actual location of the 
mid-side. We shall now examine the behaviour of the 
four versions considered here under such distortions. 
Figure 5 shows the various grids used. Mesh A shows 
the regular uniformly spaced 2 * 2 grid of the quarter 
part of a plate of sides a = 10 in. In Mesh B, the 
nodes marked by crosses are shifted as follows- 
(9, 13) by 2A in., (6, 8, 10. 12. 14, 16) by A in.. so that 
the element shapes are distorted but the mid-nodes 
remain at the mid-side. Meshes C and D are vari- 
ations of these. In C, an irregular mesh is obtained 
with nodes (6, 8, 14, 16) now as in A, leading to a 
shift of the nodes from the exact mid-side. In D. the 
grid is regular but the nodes (6. 8, 14. 16) are shifted 
as in B. In Mesh E, we shall experiment with a case 
where the edges allow a parabolic curvature. 

Table 7 gives the results obtained when the plate 
thickness is reduced. Meshes B. C and D use distor- 
tions corresponding to A = 0.25 and Mesh E uses 
A = 0.5 in. Both mid-side node shift and distortion 
from rectangular shape do not lead to large errors at 
very low thickness ratios in all the four versions of 
QUAD8 considered here, i.e. no sensitivity to locking 
even at very small thickness ratios. The sequence 
of definitions of shear strains and transformations 
followed in these cases have correctly retained the 
required consistency of the shear strain definitions. 

CONCLUSIONS 

In this paper we have examined the conflict intro- 
duced by the field- and line-consistency requirements 
for an eight-node plate bending element based on the 

Table 8. Central deflection (wD/qa’) + IO2 for 2 * 2 grid of isotropic square simply supported 
(SS2) plate 

f QUAD&3 

0.1000 0.4238 
0.0100 0.4062 
0.0010 0.4060 
0.0001 0.4060 

QUAD8-4 QUAD8-5 

0.4231 0.4384 
0.4062 0.4196 
0.4060 0.4194 
0.4060 0.4194 

QUAD%6 Theory 

0.423 I 0.427 
0.4062 0.406 
0.4060 0.406 
0.4060 0.406 
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Fig. 4. Q,; on y = 0 of a 4 x 4 mesh of a quarter of an SS plate under u.d.1. 
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Fig. 5. Regular and irregular meshes for 2 x 2 grid of a square SS2 plate. 
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Table 9. Central deflection (wD/qa4) * lo2 for regular and distorted 2 * 2 QUAD8-3 meshes of 
isotropic simply supported plate (Fig. 3) 

Mesh hla QUAD8-3 QUAD8-4 QUAD8-5 QUAD8-6 

B 0.1000 0.4293 0.4278 0.4449 0.4264 
0.0100 0.4077 0.407 1 0.4202 0.4059 
0.0010 0.4074 0.4068 0.4199 0.4057 
0.0001 0.4074 0.4068 0.4199 0.4057 

C 0.1000 0.4332 0.4265 0.4499 0.4225 
0.0100 0.4045 0.4045 0.4186 0.4016 
0.0010 0.4036 0.4042 0.4186 0.4016 
0.0001 0.4036 0.4042 0.4178 0.4014 

D 0.1000 0.4210 0.4263 0.4350 0.4299 
0.0100 0.3917 0.4052 0.4128 0.4096 
0.0010 0.3906 0.4050 0.4125 0.4094 
0.0001 0.3906 0.4050 0.4125 0.4094 

B 0.1000 0.3965 0.4267 0.4388 0.4186 
0.0100 0.3664 0.4035 0.4150 0.3986 
0.0010 0.3656 0.4033 0.4148 0.3984 
0.0001 0.3656 0.4033 0.4147 0.3984 

serendipity functions. Thus, a line-consistency formu- 
lation implied in procedures like that used by Hinton 
and Huang [8] or Donea and Lamain [9] or for the 
QUAD&4 element here violates the orthogonality 
condition required for the assumed strain inter- 
polations. The stress oscillations introduced due to 
this can be carefully filtered out and the element thus 
implemented is a useful one. 
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