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1. Introduction

Finite Element Analysis (FEA) is a remarkable technological and commercial success
originating out of collective acts of human ingenuity, skill and craft. A hundred thousand
or more engineers, technicians, teachers and students routinely use finite element analysis
packages (of which there are nearly 1500 codes ranging from small dedicated in-house pro-
grammes to large general purpose mega-line codes) in design, analysis, teaching or study
environments. There are billions of dollars worth of installed software and hardware dedi-
cated to finite element analysis all over the world and perhaps billions of dollars are spent
on analysis costs using this software every year. The primary archival literature has grown
rapidly and at the last count there were more than 50,000 papers on the subject (excluding
papers on fluid mechanics), and nearly 3800 papers on it are published annually (Mackerle
1995). There are about 400 textbooks and primers, about 400 conference proceedings and
perhaps thousands of handbooks, course notes and documentation manuals.

The Finite Element Method (FEM) offers an excellent example of how a body of knowl-
edge first emerges out of the ingenious art and craft of practising engineers, then takes
shape as modes and lines of rational enquiry are set up, and then is finally shown to have
a scientific basis. FEM is now formally over thirty-five years old (the terminology ‘finite
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element’ having being coined in 1960). As it is understood both by its own practitioners
and by all laymen who are, evén if only remotely, aware of its scope and potential, FEM is
an approximate method of solving problems that arise in science and engineering. In fact,
it originated and grew as such, by intuition and inspired guess, by hard work and trial and
error. Its origins can be traced to aeronautical and civil engineering practice, mainly from
the point of view of structural engineering. Today, it can be used, with clever variations,
to solve a wide variety of problems in science and engineering. | '

However, my experience with students and teachers and technicians and engineers over
two decades of interaction is that many if not most are oblivious to the basic principles
that drive the method. All of them can understand the “first-order’ tradition of FEM —
what goes into the packages: what comes out; how to interpret results and so on. But few
could put a finger on why the method does what it does; this ‘second-order’ tradition, to
borrow a phrase from the exquisitely crafted philosophy of Sir Karl Popper (Magee 1988),
of critically discussing the myths and the metaphysics of the method is available to a very
few. '

To understand why this is 80, let us briefly review the stages through which the discipline
grew. The earliest and largely technological stages are what we can call the ‘hands-on’
and ‘handle-turning’ stages of the enterprise — the design, use and re-design of algorithms
and software on a trial and error basis (hands-on experience) and the drudgery-filled com-
putation (handle-turning) phase of validation and finally production run analysis. But Art
gave way to Science very slowly and very reluctantly. This sadly neglected and unsung
third stage to the whole exercise, the ‘hand-waving’ stage as one may call it, is where
the myths and superstitions of the method are created and then resolved as Science. All
science is myth-making just as religion is, said Karl Popper. But scientific myths are differ-
ent because one adopts a critical, argumentative attitude to these myths so that the myths
“change, [changing] in the direction of giving a better and better account of the world”
(Karl Popper). In this paper, we shall explore one such ‘hand-waving’ aspect of FEM, to
le;;m; how the method works, from the point of view of steady progression of myth to better
myth,

There are very good reasons why the emergence of the Science of FEM was in fitful
and uncertain steps. It may serve us well to realize that the finite element method has
progressed as far as it did precisely because there was more ‘art’ and ‘engineering’ and
§Me n;:athernatical rigour and less ‘science’ in the early years of its development. The

his Zen and the arr of motorcycle maintenance: “Pioneers [are] invariably, by their nature,
mess makers. They go forging ahead, seeing only their noble, distant goal, and never notice
any of the crud and debris they leave behind. Someone else gets to clean that up.”” Now that
the noble, distant goal has been fully realized, it’s the right time to clean up. This would
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stress correspondence (SC) paradigm that is being proposed here. The complete burden
of proof, as it is carried by rational argument, is presented here to demonstrate that one
paradigm has more explanatory power than the other.

2. Paradigms, some approximate solutions, and derivation from a basic principle

2.1 Introduction

A continuum problem in structural or solid mechanics can either be described by a set
of partial differential equations and boundary conditions or as a functional IT based on
the energy principle whose extremum describes the equilibrium state of the problem. A
continuum has infinitely many material points and therefore has infinitely many degrees
of freedom. Thus, a solution is complete only if analytical functions can be found for
the displacement and stress fields which describe these states exactly everywhere in the
domain of the problem. It is not difficult to imagine that such solutions can be found only °
for a few problems.

We also know that the Rayleigh-Ritz (RR) and finite element (FEM) approaches of-
fer ways in which approximate solutions can be achieved without the need to solve the
differential equations or boundary conditions exactly. This is managed by performing the
discretization operation directly on the functional. Thus, a real problem with an infinitely
large number of degrees of freedom is replaced with a computational model having a finite
number of degrees of freedom. In the RR procedure, the solution is approximated by using
a finite number of admissible functions f; and a finite number of degrees of freedom «;
so that the approximate displacement field is represented by a linear combination of these
functions using the unknown constants. In the FEM process, this is done in a piecewise
manner — over each sub-region (element) of the structure, the displacement field is approx-
imated by using shape functions N; within each sub-region and nodal degrees of freedom
u; at nodes strategically located so that they connect the elements together without gener-
ating gaps or overlaps. The functional now becomes a function of the degrees of freedom
(a; or u; as the case may be). The equilibrium configuration is obtained by applying the
criterion that IT must be stationary with respect to the degrees of freedom.

Itis assumed that this solution process of seeking the stationary or extremum point of the
discretized functional will determine the unknown constants such that these will combine
together with the admissible or shape functions to represent some aspect of the problem to
some ‘best’ advantage. Which aspect this actually is has been a matter of some intellectual
speculation. Three competing paradigms present themselves.

It is possible to believe that by ‘best’ we mean that the functions tend to satisfy the differ-
ential equations of equilibrium and the stress boundary conditions more and more closely
as more terms are added to the RR series or more elements are added to the structural
mesh. The second school of thought believes that it is displacements which are approxi-
mated to greater accuracy with improved idealization. The displacement correspondence
paradigm belongs to this school. It follows from this that stresses which are computed as
derivatives of the approximate displacement fields will be less accurate. Here, however,
we will seek to establish the currency of a third paradigm — that the RR or FEM process
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actually seeks to determine to best advantage, the state of stress or strain in the structure.
In this stress correspondence paradigm, the displacement fields are computed from these -
‘best-fit’ stresses as a consequence.

Before we enter into a detailed examination of the merits or faults of each of these
paradigms, we shall briefly introduce a short statement on what is meant by the use of
the term ‘paradigm’ in the present context. We shall follow this by examining a series of
simple approximations to the cantilever bar problem but with more and more complex
loading schemes to see how the overall picture emerges.

22 Whatisa ‘paradigm’?

Before we proceed further it may be worthwhile to state what we mean by a paradigm
here. This is a word that is uncommon to the vocabulary of a trained engineer. The dic-
tionary meaning of paradigm is pattern or model or example. This does not convey much
in the present context. Here, we use the word in the greatly enlarged sense in which the
- philosopher T S Kuhn (1962) introduced it in his classic study on scientific progress. In this
Sense, a paradigm is a “framework of suppositions as to what constitutes problems, theo-
ries and solutions”. It can be a collection of metaphysical assumptions, heuristic models,

b

strains and stresses. Our task will therefore be to establish which paradigm has greater
explanatory power and range of application. Before we take up this task, let us work out
a few simple problems. This is the usual epistemological sequence in which learning and
experience reinforce our acceptance of one paradigm over the other.

2.3 Bar under uniformly distributed axial load

Consider a cantilever bar subjected to a uniformly distributed axial load of intensity gq per
unit length (figure 1). Starting with the differential equation of equilibrium, it is easy to
show that the analytical solution to the problem is .
u(x) = (qo/ EA)(Lx ~ x%/2), (1a)
o (¥) = (q0/A)(L — x). | (1b)

Consider a one-term RR solution based on %, = «;x, where the subscript r denotes the
use of the RR approach. It can be shown that the approximate solution obtained is

Uur(x) =(qo/EA)(Lx/2), (22)

or(x) =(q0/A)(L/2). (2b)
An FEM solution based on a two-noded linear element produces

uf(x)=1(qo/EA)(Lx/2), " : (3a)

o5 (x) =(q0/A)(L/2). (3b)
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We see that the RR and FEM solutions are identical. This is to be expected because the
FEM solution is effectively an RR solution. We may also note the curious coincidence
where all three solutions predict the same displacement at the tip. However, from figure 1
we can see that the %, and %y are approximate solutions to u. It is also clear from figure 1
that &, = & = o at the mid-point of the beam. It is possible to speculate that 5 and 7 ¢
bear some unique relationship to the true variation o .

Consider next what will happen if two equal length linear (i.e., two-noded) bar elements
are used to model the bar. The solution described in figure 2 will be obtained. First, we must
note that the distributed axial load is consistently lumped at the nodes. Thus the physical
load system that the FEM equations are solving is not that described in figures 1 or 2 as o
Instead, we must think of a substitute stairstep distribution oy, produced by the consistent
load lumping process which is sensed by the FEM stiffness matrix. Now, a solution of the
set of algebraic equations will result in ¢ and %y as the FEM solution.

We see once again that the nodal predictions are exact. This is only a coincidence for
this particular type of problem and nothing more can be read into this fact. More striking is

0(x)
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u(x) /// Figure 2. Bar under uniformly dis-
ya tributed axial load - two two-node el-
ement solution.
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the observation that the stresses computed by the finite element system now approximate
the original true stress in a stairstep fashion.

It also seems reasonable to conclude that within each element, the true state of stress is
captured by the finite element stress in a ‘best-fit’ sense. In other words, we can generalize
from figures 1 and 2, that the finite element stress magnitudes are being computed according
to some precise rule. Also, there is the promise that by carefully understanding what this
rule is, it will be possible to derive some unequivocal guidelines as to where the stresses
are accurate. In this example, where an element capable of yielding constant stresses is
used to model a problem where the true stresses vary linearly, the centroid of the element
yields exact predictions. As we take up further examples later, this will become more firmly
established.

A cursory comparison of figures 1 and 2 also indicates that, in a general sense, the

approximate displacements are more accurate than the approximate stresses. It seems

compelling now to argue that this is so because the approximate displacements emerge as

‘discretized’ integrals of the stresses or strains and, for that reason, appear more accurate
than the stresses.

24 Bar under linearly varying distributed axial load

We now take up a slightly more difficult problem. The cantilever bar has a load distributed

in a linearly varying fashion (figure 3). The exact stress distribution in this case will be
quadratic in nature: ‘

o (x) = (q0L*/8A)(4/3 - 2 — (1 — 38%)/3). (4)

Some interesting features about this equation can be noted down. A dimensionless coor-
dinate, § = 2x/L — 1 has been chosen so that it will also serve as a natural coordinate
system taking on values —1 and 1 at the ends of the single three-node bar element shown
as modelling the entire bar in figure 3. We have also very curiously expanded the quadratic
variation using the terms 1, £, (1 — 3£2). These can be identified with the Legendre poly-
nomials and its relevance to the treatment here will become more obvious as we proceed
further. :

We shall postpone the first obvious approximation, that of using a one-term series
ur = ax till later. For now, we shall consider a two-term series Ur = aix + opx?. This
is chosen so that the essential boundary condition at x = 0 is satisfied. No attempt is
made to satisfy the force boundary condition at x = L. By carrying out the necessary

algebra associated with the RR process the solution obtained will yield an approximate
stress pattern given by -

or(x) = (qoL?/8A)(4/3 — 2¢). (5)

This is plotted in figure 3 as the dashed line. A comparison of (4) and (5) reveals an
interesting fact — only the first two Legendre polynomial terms are retained. Taking into
account the fact that the Legendre polynomials are orthogonal, what this means is that in

this problem, we have obtained Oy in a manner that seems to satisfy the following integral
condition: '
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Figure 3. Bar under linearly varying
axial load — two-term RR and one three-
node element solution.

That is, the RR procedure has determined a &, that is a ‘best-fit” of the true state of stress
o in the sense described by the orthogonality condition in (6). This is a result anticipated
from our emerging results to the various exercises we have conducted so far. We have not
been able to derive it from any general principle that this must be so for stronger reasons
than shown here till now.

Let us now proceed to an FEM solution. It is logical to start here with the three-node
element that uses the quadratic shape functions, N1 = §(§ — 1)/2, N = (1 — ’g‘z) and
N3 = §(§ + 1)/2. We first compute the consistent loads to be placed at the nodes due to
the distributed load using P; = [ N;gdx. This results in the following scheme of loads
at the three nodes identified in figure 3: Py = qoL?/6, P, = qoL?*/3 and P; = 0.
The resulting load configuration can be represented in the form of a stress system shown
as oy, represented by the chain-dotted lines in figure 3. Thus, any FEM discretization
automatically replaces a smoothly varying stress system by a step-wise system as shown
by oy in figures 2 and 3. It is this step-wise system that the finite element solution &’f
responds to. If the finite element computations are actually performed using the stiffness
matrix for the three-node element and the consistent load vector, it turns out, as the reader
can assure himself, that the computed FEM stress pattern will be

Tr(x) = (qoL?/8A)(4/3 — 2£). ‘ (7

This is exactly the same as the o, computed by the RR process in (5). At first sight, this
does not seem to be entirely unexpected. Both the RR and the FEM processes here have
started out with quadratic admissible functions for the displacement fields. This implies
that both have the capability to represent linear stress fields exactly or more complicated
stress fields by an approximate linear field that is in some sense a best approximation. On
second thought, however, there is some more subtlety to be taken care of. In the RR process,
the computed 7, was responding to a quadratically varying system o (see figure 3). We
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could easily establish through (6) that 7, responded to ¢ in a ‘best-fit’ manner. However,
in the FEM process, the load system that is being used is the 0y system which varies in
the stairstep fashion. The question confronting us now is, in what manner did & ¢ respond
to oy —1is it also consistent with the ‘best-fit’ paradigm?

Let us now assume an unknown field & — o + c1§ which is a ‘best-fit’ of the stairstep
field given by o = 249L2/3in 0 < x < L/2and oy =0in L/2 < x < L. We shall
determine the constants co and ¢y so that the ‘best-fit’ variation shown below is satisfied:

0 : I ‘
f 86 (5 ~ 2q0L2/3)dé +—/.5 56 (G — 0)d¢ = 0. ®)
-1 '
It can be worked out that this leads to _
T (x) = (q0L%/8A)(4/3 — 28), | ©)

which is identical to the result obtained in (7) by carrying out the finite element process.
In other words, the FEM process follows exactly the ‘best-fit’ description of computing
stress fields. Another important lesson to be learnt from this exercise is that the consistent
lumping process preserves the ‘best-fit’ nature of the stress representation and subsequent
prediction. Thus, 57 is a ‘best-fit’ of both o and oy!

It again seems reasonable to argue that the nodal displacements computed directly from
the stiffness equations from which the stress field 7 has been processed can actually be
thought of as being ‘integrated’ from the ‘best-fit’ stress approximation. Note that the ap-
proximate solutions &, or 0y intersect the exact solution o at two points. A comparison of
(4) with (5) and (7) indicate that these are the points where the quadratic Legendre polyno-
mial, (1 —3£2), vanishes, i.e., at § = +1/4/3. Such points are well known in the literature
of the finite element method as optimal stress points or Barlow points. Our presentation
shows clearly why such points exist, and why in this problem, where a quadratic stress
state is sought to be approximated by a linear stress state, these points are at £ = +1 /A/3.

We shall now return to the linear Ritz admissible function, z, = ajx, to see if it
operates in the best-fit sense. This would be identical to using a single two-node bar
element to. perform the same function. Such a field is capable of representing only a

stress point, whether one exists, and whether it can be easily identified to coincide Wwith a
Gauss integration point.

Again, the algebra is very simple and is omitted here. One can show that the one-term
approximate solution would lead to the following computed stress:

or (x) = (qoL?/8A)(4/3). (10) -

What becomes obvious by comparing this with the true stress o' (x) in (4) and the computed
stress from the two-term solution, &, (x) in (5) is that the one-term solution corresponds to
the constant part only of the Legendre polynomial expansion! Thus, given the orthogonal
nature of the Legendre polynomials, we can conclude that we have obtained the ‘best-fit’
state of stress even here. Also, it is clear that the optimal stress point is not easy to identify

to coincide with any of the points corresponding to the various Gauss integration rules.
The optimal point here is given by £ = 1 — (4/3)1/2,
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Table 1. The conceptual frameworks for the displacement correspondence (DC) and stress

correspondence (SC) paradigms.

Displacement correspondence paradigm

Stress correspondence paradigm

Displacements at nodes are matched

Stresses computed as derivatives from
displacements

Differentiation produces functions which
are less accurate than original functions

.. displacements are accurate; stresses
are less accurate.

.. if there are points where stresses are
very accurate, this is a consequence

Stresses at optimal points are matched

Displacements “integrated” from
stresses

Integration produces functions which
are more accurate than original
functions

.. stresses are accurate; displacements
are more accurate (on average).

.. if there are points where stresses are
very accurate, this is because stresses

of the mean value theorem are approximated in a “best-fit” sense

of true stresses.

2.5 The DC, SC and aliasing paradigms

The preceding examples have been so selectively chosen that we seem to have made
out a very strong water-tight case for the SC paradigm. Let us however examine the
claims and merits if any of the competing DC paradigm for this problem. The argu-
ment that FEM procedures look to satisfy the differential equations and boundary con-
ditions does not seem compelling enough to warrant further discussion. However, the
belief that finite elements seek to determine nodal displacements accurately was the basis
for the original derivation of optimal points (Barlow 1976) — the term substitute function
is used instead of alias, and is also the basis for what is called the ‘aliasing’ paradigm
(MacNeal 1994). We recognize that this is precisely what we mean by the DC paradigm
here.

It is helpful to use the aliasing metaphor to explain what happens in finite element
analysis (FEA). The term aliasing is borrowed from sample data theory where it is used |
to describe the misinterpretation of a time signal by a sampling device. An original sine
wave is represented in the output of a sampling device by an altered sine wave of lower
frequency — this is called the alias of the true signal. This concept can be extended to finite
element discretization — the sample data points are now the values of the displacements
at the nodes (as MacNeal argued) or stresses at optimal points (as argued here) and the
alias is the function which interpolates the displacements within the element from the nodal
displacements or stresses in the element from the stresses at the optimal points respectively.
The FEA can be imagined to be a sampler or processor which translates the true input to
an approximate or computed output. ‘

Table 1 summarizes the competing conceptual frameworks presented by the displace-
ment and stress correspondence paradigms. Both paradigms seem heuristically verv



534 Gangan Prathap

Table 2. Barlow and Gauss points for one-dimensional case.

Barlow points
Node Gauss
D locations u u € € points SC DC
1 +1 £ & £ 1 0 0 0
2 0+l £ 2 £ & 113 +1/+/3 £1/+/3
3 E1/3, 1 g 3 £ g2 0,x3/5Y2 0, £3/52 o, +/5/3
1,¢,...,¢% indicate polynomial orders from constant to quartic '

appealing. Which would one prefer? The DC paradigm is the universally accepted be-
lief. What is required now to establish that the SC paradigm is superior?

Let us now use the DC concept to derive the location of the optimal points, as Barlow
did in 1976, or as MacNeal did more recently in 1994. We assume here that the finite
element method seeks discretized displacement fields which are substitutes or aliases of
the true displacement fields by sensing the nodal displacements directly. We can compare
this with the SC interpretation where the FEM is seen to seek discretized strain/stress
fields which are the substitutes/aliases of the true strain/stress fields in a ‘best-fit’ or ‘best
approximation’ sense. It is instructive now to see how the alternative paradigm, the DC

approach leads to subtle differences in interpreting the relationship between the Barlow
points and the Gauss points.

2.5a A one-dimensional problem: We again take up the simplest problem, a bar under
axial loading. We shall assume that the bar is replaced by a single element of varying
polynomial order for its basis function (i.e., having varying no. of equally spaced nodes).
Thus, from table 2, we see that P =1, 2, 3 correspond to basis functions of linear, quadratic
and cubic order, implying that the corresponding elements have 2,34 nodes respectively.
These elements are therefore capable of representing a constant, linear and quadratic state
of strain/stress, where strain is taken to be the first derivative of the displacement field.
We shall adopt the following notation: The true displacement, strain and stress fields will
be designated by u, € and o. The discretized displacement, strain and stress fields will be
designated by #, € and . The DC displacement, strain and stress fields will be designated
by u?, €4 and o?. Nodal displacements will be represented by u;.

We shall examine a simple scenario where the true displacement field u is exactly one
polynomial order higher than what the finite element is capable of representing — the
Barlow points can be determined exactly in terms of the Gauss points only for this case.

We shall now take for granted that the best-fit rule operates accordin g to the orthogonality
condition expressed in (6) and that it can be used interchangeably for stresses and strains.
We shall designate the optimal points determined by the DC algorithm as &4, the Barlow
points (DC), and the points determined by the SC algorithm as &s, the Barlow points (SC).

Note that §; are the points established by Barlow (1976) and MacNeal (1994), while &
will correspond to the points given in Prathap (1993). The natural coordinate system £ is

used here for convenience.
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Table 3. The Legendre polynomi-

als P,:.

Order of

polynomial Polynomial

i P;

0 1

1 §

2 (1 —3&2%)

3 (3¢ — 567

4 (3 — 30£2 + 358%)

Thus, for the present case, the use of the SC paradigm leads to
f 5eT (2 — €)dV = 0. (11)

This case corresponds to one in which a straightforward application of Legendre poly-
nomials can be made. In this case, one can determine the points where € = ¢ as those
corresponding to points which are the zeros of the Legendre polynomials. See table 3 for
a list of unnormalised Legendre polynomials. We shall show below that in (11), the points
of minimum error are the sampling points of the Gauss -Legendre integration rule if € is
exactly one polynomial order lower than €.

We shall consider FEM solutions using a linear (two-node), a quadratic (three-node) and
a cubic (four-node) element. The true displacement field is taken to be one order higher
than the discretized field in each case.

Linear element (p = 1)

u = quadratic = by + b1 & + bzéz,
p=1
€ =linear = u,r = by + 2by§ = Z € P;(§).
i=0
Note that we have written € in terms of the Legendre polynomials for future convenience.
Note also that we have simplified the algebra by assuming that strains can be written as
derivatives in the natural co-ordinate system. It is now necessary to work out how the
algebra differs for the DC and SC approaches. '

DC: At§ = =£1, uf = u;; then points where €? = ¢ are given by §; = 0. Thus, the
Barlow point (DC) is £&; = 0, for this case.

SC. @ = linear, is undetermined at first. Let € = ¢y, as the element is capable of
representing only a constant strain. Equation (11) will now give € = ¢g = b;. Thus, the
optimal point is & = 0, the point where the Legendre polynomial P;(§) = & vamshes
Therefore, the Barlow point (SC) for this example is & = 0.
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Quadratic element (p = 2)

u=cubic = by + b1£ + byE? + b3&>,
€ = quadratic = u,¢
p=2
= (b1 +b3) +2b2f — b3(1 —38%) = > € Pi(§).
i=0

DC: At§& =0, +1, uf = u;; then pdints where €4 = ¢ are given by &; = il/ﬁ.
Thus, the Barlow points (DC) are €5 = +1/+/3, for this case.

SC: @ = quadratic. Let€ = cq + ¢ £, as this element is capable of representing a linear
strain. Equation (5) will now give € = (b; + b3) + 2b,£. Thus, the optimal points are
& = £1//3, the points where the Legendre polynomial Py(£) = (1 — 3£2) vanishes.
Therefore, the Barlow points (SC) for this example are & = +1/4/3.

Note that in these two examples, i.e., for the linear and quadratic elements, the Barlow
points from both schemes coincide with the Gauss points (the points where the corre-
sponding Legendre polynomials vanish). This also explains why for a very long time, the

DC paradigm remained the prevailing wisdom. In our next example we will find that this
1S not so anymore.

Cubic element (p = 3)

u =quartic = bg + b1£ + bok? + b3&> + bye?,
€ =cubiC = u,¢

= (b1 +b3) + (2b2 + 12b4/5)€ — b3(1 — 35%) — 4ba/5(3 — 58%)
p=3

= &Pi(§).
i=0

DC: Atg = *1/3, £1, u? = u;; then points where ¢? = ¢ are given by &; = 0,
+4+/5/3. Thus, the Barlow points (DC) are &5 = 0, £+/5/3, for this case. Note that the
points where the Legendre polynomial P(£) = (3& — 5£3) vanishes are Ec =0, (3/51/2

SC: u = cubic.Let€ = co+c1£+c2(1—3E2), as this element is capable of representing a
quadratic strain. Equation (5) will now give € = (b;+b3) +(2by+12b4/5)E —b3(1 —3£2).

Thus, the Barlow points (SC) for this example are & = 0, (3/5)!/%; the points where the

Legendre polynomial P3(§) = (3 — 5&3) vanishes.

Therefore, we have an example where the DC paradigm does not give the correct picture
about the way the finite element process computes strains. However, the SC paradigm shows
that as long as the discretized strain is one order lower than the true strain, the corresponding

Gauss points are the optimal points. Table 2 summarizes the results obtained so far.
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Our experience is that the SC model is the one that corresponds to reality — that if one
were to actually solve a problem where the true strain varies cubically using a 4-noded
element which offers a discretized strain which is of quadratic order, the points of optimal
strain actually coincide with the Gauss points, and not as predicted by the DC paradigm
(see § 3.1 below). '

2.6 Axiomatization :The ‘best-fit’ nature of the SC paradigm from a variational theorem

Our investigation here will be complete in all respects if the best-fit nature of stress cor-
respondence can be deduced logically and quantitatively from a basic principle. This is
the process known as axiomatization — the motivation is now to compress the paradigm or
derive it out of a single or minimal set of axioms or fundamental principles. In fact, some
recent work (Prathap 1993) shows that by taking an enlarged view of the variational basis
for the displacement type FEM approach we will be actually led to the conclusion that
strains or stresses are always sought in the best-fit manner. With the help of hindsight we
know that a similar axiomatization from a basic principle does not seem to be possible for
the DC paradigm.

The ‘best-fit’ manner in which finite elements compute strains can be shown to fol-
low from an interpretation using the Hu—Washizu theorem. To see how we progress from
the continuum domain to the discretized domain, we will find it most convenient to de-
velop the theory from the generalized Hu—-Washizu theorem (Hu 1955) rather than the
minimum potential theorem. These theorems belong to a family of most basic state-
ments (the least action principles) that can be made about the laws of nature, of mat-
ter, motion and energy. The minimum potential theorem corresponds to the conventional
energy theorem. However, for applications to problems in structural and solid mechan-
ics, Hu (1955) proposed a generalized theorem which had somewhat more flexibility.
Its usefulness came to be recognized when one had to grapple with some of the prob-
lems raised by finite element modelling. One such puzzle is the rationale for the ‘best-fit’

- paradigm.

Let the continuum linear elastic problem have an exact solution described by the dis-
placement field u, strain field € and stress field o (we project that the strain field € is
derived from the displacement field through the strain-displacement gradient operators of
the theory of elasticity and that the stress field is derived from the strain field through the
constitutive laws). Let us now replace the continuum domain by a discretized domain and
describe the computed state to be defined by the quantities u, € and &, where again we
take that the strain fields and stress fields are computed from the strain-displacement and
constitutive relationships. It is clear that € is an approximation of the true strain field €.
What the Hu—Washizu theorem does is to introduce a ‘dislocation potential’ to augment
the usual total potential. This dislocation potential is based on a third independent stress
field &, which can be considered to be the Lagrange multiplier removing the lack of com-
patibility appearing between the true strain field € and the discretized strain field €. Note
that & is now an approximation of &. The three-field Hu~Washizu theorem can be stated
as

8 =0, \ . | (12)
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where
7= f{a-Tz/z +5 (e —8))dV + P, (13)

and P is the potential energy of the prescribed loads. _

In the simpler minimum total potential principle, which is the basis for the derivation of
the displacement type finite element formulation in most text-books, only one field (i.e.,
the displacement field u), is subject to variation. However, in this more general three-field
approach, all three fields are subject to variation and this leads to three sets of equations
which can be grouped and classified as follows.

Variation Nature Equation
on |
u Equilibrium V& + terms from P = 0, (14a)
5 Orthogonality [85 € -e)dV =0, (14b)
(Compatibility)
g Orthogonality [8eT @ —5)dV =0. (14c)
(Equilibrium)

Equation (14a) shows that the variation on the displacement field u requires that the inde-
pendent stress field & must satisfy the equilibrium equations (V signifies the operators that
describe the equilibrium condition). Equation (14c) is a variational condition to restore the
- equilibrium imbalance between & and 7. In the displacement type formulation, we choose
G = G. This satisfies the orthogonality condition seen in (14¢) identically, and leaves us
with the orthogonality condition in (14b). We can now argue that this tries to restore the
compatibility imbalance between the exact strain field ¢ and the discretized strain field .
In the displacement type formulation this can be stated as

f 567 (€~ e)dv = 0. (15)

Thus we see very clearly that the strains computed by the finite element procedure are
a variationally correct (in a sense, a least squares correct) ‘best approximation’ of the
true state of strain. There is therefore a uniquely defined correspondence between the
approximate stress and the true stress in such finite element computations.

i

3. Numerical experiments

So far, our knowledge has been based on theoretical derivations from fundamental prin-
ciples and paradigms which originated from intelligent or intuitive conjecture or guess.
The deductions we made quantitatively in § 2 from the stress correspondence paradigm
belonged to this category. Bertrand Russell had pointed out that knowledge based only on
universal principles is sterile; it is the world of Platonic ideas. Science needs proof, in the
form of empiricism — only then does it become complete. In our present discipline, which
is finite element modelling of problems in structural engineering, these experiments would
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Table 4. Case a — Where are the optimal stress points? (—1 < § < —1).

Expected/predicted
Observed/
Element computed SC DC
2-node 0 0 0
3-node +1/4/3 +1/4/3 +1//3
4-node 0, £4/3/5 0, £+/3/5 0, ++/5/3

not be actual physical ones but would be numerical, computational or digital in nature. We
must therefore adopt the following course of action to ensure that our understanding of
the stress correspondence paradigm is scientifically complete and coherent: Starting with
a guess (that the stress correspondence paradigm gives the correct description of the fi-
nite element analysis procedure), we predict quantitatively the various consequences of the
guess (for example, where the optimal stress points should be), and then design and conduct

numerical experiments that would verify (falsify) that the real, observed situation (as ob-

tained from a routine “first order’ tradition of finite element computation) agree (disagree)
with these predicted or expected values (from the ‘second order’ traditional exercise).

In § 2.5a we had elaborated on a simple bar element model under various loading con-
ditions and we had made predictions for the location of the optimal points according to the
DC and SC paradigms. This will now be experimentally verified as case a below. Three
other examples we choose are: Case b - the rate of convergence of a beam element; Casec
— the transverse shear stress for the fundamental thickness shear mode of a hinged-hinged
beam; and case d — the shear force resultant in an axisymmetric circular plate. Case b is
based on Timoshenko theory, and cases ¢ and d use elements based on a higher order shear
deformation theory.

3.1 Case a~ Location of optimal stress points

In § 2.5a we worked out analytically what the location of the optimal points according
to the DC and SC paradigms are. We shall now perform numerical experiments using
2-node, 3-node and 4-node bar elements and in each case apply distributed axial loads
whose intensity will vary to produce linear, quadratic and cubic variations of axial strain
along the length. Table 4 compares the results observed/computed from experiment with
those deduced analytically from the competing paradigms and listed under the column
expected/predicted. Note that for the two simpler elements, the DC paradigm proved to
be deceptively accurate; it is only in the cubic element that it is seen that only the SC
paradigm makes the correct prediction.

3.2 Case b— Rate of convergence for a tip-loaded cantilever idealized with linear Tim-
oshenko beam elements

Figure 4 shows a cantilever beam under tip load. The dimensions are chosen such that the
tip deflection under the load will be w = 4.0. The example chosen represents a thin beam
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Figure 4. Cantilever beam under tip
E=1cf load. :

so that the influence of shear deformation and shear strain energy is negligible. The finite
element idealization is performed using equal length two-node C° beam elements based
on independent linear interpolations of the transverse displacement w and normal rotation
6. This element permits constant bending and shear strain accuracy within each element —
the simplest representation possible under the circumstances and therefore an advantage
in seeing how it works in this problem. - : ‘ ‘

The second column of table 5 shows the tip deflections obtained from the finite element
digital computation. This was the actual epistemological sequence in which the under-
standing was obtained — these results were known to this writer in 1980, much before
any explanatory paradigm was offered. What was noticed was that if w"is the true (i.e.
analytical) solution to the exact problem and Wy the deflection observed from the finite
element experiment; then the quantity {(w — Wo)}/w, turned out to be exactly 1/4N2,
where N is the number of elements used. The predictions based on the SC paradigm were
made much later, around 1988.

The challenge now is to see if this relationship describing the rate of convergence can
be established by arguing that it emerges from the fact that FEA operates according to the
SC paradigm and that within this paradigm, strains are sought in the ‘best-fit’ manner. We
pay attention to the bending moment variation observed from the finite elemerit model and

moments are distributed in a piecewise constant manner as shown by the broken lines.
In each case, the elements pick up the bending moment at the centroid correctly i.e., in a
‘best-fit’ manner. We shall now attempt to relate this to the accuracy (and convergence) of
results. : ‘ : ST -
Consider the case where the beam is modelled by equal length beam elements, so that
any beam region of length L is replaced by an element of length 21. Let the moment and

Table5. Tipdeflectionsofathin can-
tilever beam, L /t = 100. ~

Observed/ Expected/
No. of computed  predicted

elements Wo C We
1 3.0000 3.0000
2 3.7500 3.7500

4 3.9375 3.9375

i
a
*\
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Theory { element

4 element

Figure 5. Bending moment diagrams
0 oo forl-,2-and 4-element idealizations of
X a cantilever beam under tip load.

shear force at the centroid be M and V. Thus the true bending moment over the element
region for our problem can be taken to vary as M + Vx (this follows from the simple fact
that equilibrium requires the rate of change of bending moment to be equal to the shear
force). The discretized bending moment sensed by our linear element would therefore be
M — it cannot do any better. We shall now compute the actual bending energy in the element

- region (i.e., from a continuum analysis) and that given by the finite element model. We

can show that |
Energy in continuum model = (I/ EI)(M? + V2i2/3), ~ (16a)
Energy in discretized model = (I/EI)(M?). | ~ (16b)

Thus, as a result of the discretization process involved in replacing each continuum segment

‘ - of length 2/ by a linear Timoshenko beam element which can give only a constant value

M for the bending moment, there is a reduction (error) in energy in each element equal to
(IJEI) V212/3). It is simple now to show from this that for the cantilever beam of length
L with a tip load P, the total reduction in strain energy of the discretized model for the
beam is U/4N? where U = P2L3 /6E1 is the energy of the beam under tip load.

We can now show that this error in strain energy translates into an error in the deflection
under load P. From (16a)and (16b) and Castigliano’s second theorem, it-can be deduced
that the tip deflection, w, of the continuum, and that expected (or predicted) from the SC
paradigm, W,, will differ as w — W,/w = 1/4N2. The third column in table 5 shows this
expected or predicted rate of convergence. This follows from the fact that if any linear |
variation is approximated in a piecewise manner by constant values as seen in figure 5,
this is the manner in which the square of the error in the stresses/strains (or, equwalently,
the difference in work or energy) will converge with idealization.

The agreement between observed and expected results is exact. Thus from the SC
paradigm and using a simple example, we can deduce quantitatively that the rate of con-
vergence observed in the numerical experiment could be exactly predicted. This reinforces
again our conviction that the SC paradigm is the correct description of the finite element
process. '
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. d Figure 6. Hinged-hinged beam un-
f dergoing fundamental thickness shear
' L ————  Vibration.

3.3 Case c —the transverse shear stress distribution Jor the fundamental thickness shear
mode of a hinged-hinged beam

Figure 6 shows a hinged-hinged beam of depth d, length [ and rectangular cross-section
and for simplicity an assumed shear modulus G = 1. It is possible for the beam to vibrate
in what is called a fundamental.thickness-shear mode — without transverse deflection (i.e.,
w = 0), the displacement being entirely parallel to the neutral axis. The mode-shape
describing the cross-sectional distortion through the depth is

u = sin(mwz/d), a7

where z is measured from the neutral axis of the beam. This implies that the shear
strain/stress distribution varies as

Txz = (7/d) cos(z/d), (18)

through the thickness. Note that this distribution satisfies the traction-free conditions spec-
ified at the top and bottom surfaces. The nature of motion is such that it produces a pure
shear stress state that varies only through the thickness and not along the length.

We shall now model this problem using finite elements based on what is called a higher-
order shear deformation theory. The displacement field chosen for such a problem is

quasi-two-dimensional (stresses are now functions of the x- and Z-axes), as can be seen
below: ’

U=ug+ z6 +zzu3+z39*, | (19a)

w=wo + 2y + 22w} (19b)

If a three-noded beam element is the basis for the finite element formulation, then the
degrees of freedom are interpolated in the x-direction using quadratic shape functions.
Also, the variations in the z-direction are as depicted in (19). The discretization process
is now two-dimensional - in addition to the approximation along the beam axis (x-axis)
represented by interpolations of variables defined at nodes spaced along the length using
conventional shape functions, there is also an approximation in the thickness direction
(z-axis) represented as a Taylor series expansion in terms of variables available at the node
at that location. This allows us to examine the nature of the computed stress variation in
the thickness direction when elements permitting this are used to see if the best-fit stress
correspondence paradigm covers this problem as well. '
Computations for hinged-hinged beams of various slenderness ratios (d /I ranging from
0.1 to 3) showed that the lowest thickness-shear frequency was picked up accurately. The
Cross-sectional distortion pattern obtained from the FEM model for the thickness-shear
mode showed that the vibration had no transverse or symmetric axial deflection (wo, ¥,

WS ez
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RN
00! —_ - Figure 7. Axisymmetric circular
Y plate under uniformly distributed trans-
-0 - verse load.

wg, U, Uy < 10~1%) and only a predominantly antisymmetric axial deflection pattern
characterized by *d?/6 = —1.399 for all the values of 4/ considered and at all sections
along the length of the hinged-hinged beam.

We shall now try to rationalize the observation that the mode-shape obtained from the
finite element computations was characterized by the value 0*d?/0 = —1.399 for all
d /1 considered. We can simplify the analysis by noting that for this mode, the following
description suffices:

7 =26 + 7°6%, . (20a)
Tyg =0 + 37°6%. (20b)

We shall derive predictions using both the DC and SC paradigms; in the former we shall
argue that 7 replaces u in a best-fit manner and that in the latter, T, replaces 7y; in a
similar manner. The variation § is carried out over the generalized degrees of freedom 6
and 6* leading to two simultaneous equations in each case and finally to a value of 6*d?/6
for each case.

(DC) / Sul @ —u)dz=0 gives 6*d*/6 = —1.448,
(SC) / S7T,(Taz — Tr)dz =0 gives 6%d2/6 = —1.402.

Only the SC prediction agrees very closely with the computed value of —1.399. The DC
paradigm is therefore not successful in predicting this factor.

3.4 Case d —the shear force resultant in an axisymmetric circular plate

Figure 7 shows a simply-supported circular plate loaded by a uniformly distributed trans-
verse loading of intensity ¢ = 1.0. It is modelled using axisymmetric plate elements
based on the same higher-order theory that was used in case ¢ above (see § 3.3). Again,
three-node elements are used — these elements are capable of computing the shear stress
resultant exactly to a linear variation along the length of the element. Interestingly, for this
problem, the shear stress resultant Q = gr/2 varies linearly along the radius of the plate.
Thus, according to the SC paradigm, the finite element model should be able to pick up
the shear stress resultant exactly.

Table 6 shows the results from a four-element model of the circular plate. We see from,
the fourth and fifth columns that the observed values (from the FE computation) and the
expected values (from the SC paradigm predictions) agree to seven decimal figures. On
the other hand, the observed and expected transverse deflections agree only to two decimal
places! This is of course a specially chosen example to highlight the SC paradigm. In
most general computation, the computed displacements are, on the average, of greater
reliability than computed stresses. However, the SC paradigm allows us to take advantage
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Table6. Case d—Transverse diéplacement w and shear force resultant Q fora simply—supported
axisymmetric circular plate under uniformly distributed load from a 4-element model using 3-node
higher-order axisymmetric plate elements.

w Q
ro Observed Expected Observed Expected
0.00 0.1902 0.1875 -0 0 3
025 - 0.1658 0.1648. 0.1250000 0.1250000
0.50 0.1064 0.1055 0.2500000 0.2500000
075 0.0357 10.0359 0.3750000 0.3750000
1.00 0 0 0.5000000 0.5000000

of the fact that stresses at Optir:zi points are of comparable or greater accuracy than the
- displacements. '

4. What does the finite element niethod do?

The persistence of the DC paradigm for a very long time can be attributed to the fact
that it is a very natural or obvious or common-sensical interpretation of what seems to
be happening in a finite element computation. After all, at the end of the computation,
it is the global degrees of freedom that are usually the nodal displacements, which are
presented first and the strains/stresses are seemingly processed from these displacements.
It was therefore widely believed that the finite element method sought approximations to
the displacement fields and that the strains/stresses were computed by differentiating these
fields. Thus, elements were believed to be “capable of representing the nodal displacements
in the field to a good degree of accuracy". Each finite element samples the displacements
atthe nodes, and internally, within the element, the displacement field is interpolated using
the basis functions. The strain fields are computed from these using a process that involves
differentiation. It is argued further that, as a result, displacements are more accurately
computed than the strain and stress fields, This follows from the generally accepted axiom
that derivatives of functions are less accurate than the original functions. It is also argued
that strains/stresses are usually most inaccurate at the nodes and that they are of greater

accuracy near the element centres — this, it is thought, is a consequence of the mean value
theorem for derivatives. : ' ‘
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equation actually reflecting this integration process and the continuity of fields across
element boundaries, and the suppression of the field values at domain edges reflecting the
imposition of boundary conditions. It must therefore be argued that displacements are on an
average, more accurate than strains because integrals of smooth functions appear generally
more accurate than the original data. We have thus turned the whole argument on its head.

5. Conclusions

In this paper, we postulated a few models to explain how displacement type FEM works. We
worked out a series of simple problems of increasing complexity to establish whether our
conjecture that strains and stresses appear in a ‘best-fit’ sense could be verified (falsxﬁed
in the Popperian sense) by carefully designed numerical experiments.

An important part of this exercise depended on our careful choice and use of various
stress terms. Thus terms like o and oy were actual or true physical states that were sought
to be modelled. The stress terms &, and Gy were the quantities that emerged in what we
can call the “first-order’tradition analysis in the language of Sir Karl Popper — where the
RR or FEM operations are mechanically carried out using functional approximation and
finite element stiffness equations respectively. We noticed certain features which seemed
to relate these computed stresses to the true system they were modelling in a predictable or
repeatable manner. We then proposed a mechanism to explain how this could have taken
place. Our bold conjecture, after examining these numerical experiments, was to propose
that it is effectively seeking a best-fit state.

To confirm that this conjecture is scientifically coherent and complete, we had to enter
into a ‘second-order’ tradition exercise. We assumed that this is indeed the mechanism
that is operating behind the scenes and derived quantities that will result from the best-fit
paradigm when this was applied to the true state of stress. These predlcted quantities turned
out to be exactly the same as the quantities computed by the RR and FEM procedures.
In this manner, we could satisfy ourselves that the ‘best-fit’ and stress correspondence
paradigms had successfully survived a falsification test.

Another important step we took was to prove that the ‘best fit’ nature of the stress corre-
spondence paradigm was neither gratuitous nor fortuitous. In fact, we could also establish
that this could be derived from more basic principles — in this regard, the generalized
theorem of Hu, which is a variation of the least action principle, was found valuable to
determine that the best-fit paradigm had a rational basis.

One important conclusion we can derive from the best-fit nature of the stress correspon-
dence paradigm is that an interpolation field for the stresses & (or stress resultants as the
case may be) which is of higher order than the strain fields € on which it must ‘do work’
in the energy or virtual work principle is actually self-defeating because the higher order
terms cannot be ‘sensed’. This is precisely the basis for de Veubeke’s famous limitation
principle, that ‘it is useless to look for a better solution by injecting additional degrees of
freedom in the stresses.” We can see that one cannot get stresses which are of higher order
than are reflected in the strain expressions.

The scientist-philosopher Lewis Wolpert, argued in his influential The unnatural nature
of science that ‘
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“... the world is not constructed on a common-sensical basis. ...‘natural’ thinking
— ordinary, day-to-day common sense — will never give an understanding about
the nature of science. Scientific ideas are, with rare exceptions, counter-intuitive ...
common sense is prone to error when applied to problems requiring rigorous and
quantitative thinking: lay theories are highly unreliable.”

It is very easy to see that the DC paradigm had direct commonsensical appeal. The SC

paradigm is counter-intuitive and requires rigorous quantitative analysis to establish its
validity. *
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