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Abstract—A four-node quadrilateral plate element can be used as a facet shell element only if provision
is made to allow for non-coplanarity of the four nodes. The element stiffnesses are generated for a ‘mean
plane’ equidistant from the four nodes, and are corrected by introducing equilibrated forces and moments
as the element is ‘moved’ to the original nodes. In this paper we introduce a rational procedure for
determining the ‘kick-off forces’ and show that the procedure used in NASTRAN violates a virtual work
condition and leads to difficulties in certain warped configurations.

1. INTRODUCTION

Because of their inefficient and inaccurate behaviour,
triangular elements have been replaced by quadrilat-
eral elements for most practical applications. In
particular. the QUAD4 (four-noded linear quadrilat-
eral shear flexible element) has gained pre-eminence
in most plate and shell applications, because of its
simplicity and reasonably high accuracy. The funda-
mental difficulties related to the field- and edge-
consistencies have been successfully described and
overcome [1].

Generally, the shell contours may be such that
plane elements cannot be fitted in, i.e. the four nodes
of the element will not be coplanar. In such situa-
tions. the facet (mean-plane) approximation of the
shell structure may lead to highly inaccurate results,
because of the incompatibility between the adjacent
elements with non-unique connecting nodes during
stiffness assembly. Hence. the element stiffness ma-
trices should be transformed onto the actual element
nodes before global assembly. Such transformation
of the in-plane stiffnesses gives rise to moment inequi-
librium about the local x- and y-axes. Because, in a
general mesh, the adjacent elements may not always
access moments (e.g. bar elements), it is necessary to
counteract these inequilibrating moments by addi-
tional stiffness in the normal deflection d.o.f.

This has been achieved, to some extent, by satisfy-
ing the equilibrium conditions only on each edge and
then superimposing the normal force components on
the corresponding nodes [2, 3]. It should be noted
that such a procedure is incomplete. This solution,
using an edge-by-edge approach, was resorted to as
there were only three equilibrium equations from
which four unknown normal forces had to be deter-
mined.

In this work, the principle of virtual work has been
used to construct the other equation required to solve
the four unknowns over the element domain, rather

than over the element boundary. As the additional
‘normal’ forces are ‘fictitious’, they should not disturb
the energy of the system, i.e. the total ‘virtual work’
done by these forces, during the process of the
transformation, should be zero.

In fact, the edge-by-edge satisfaction of equi-
librium, adapted by the CSA *NASTRAN e¢lement,
violates this condition for some configurations and
fails to give correct answers in such cases.

2. ELEMENT FORMULATION

The mean plane is constructed using the mid-points
of the four edges (Fig. 1). The vector product of DB
and AC gives the local normal (z-direction). The local
x-direction is fixed along DB and the local y-direc-
tion is fixed orthogonal to the other two directions.

If x; and X; are the position vectors of the point ‘i’
in the local and global coordinates respectively, we
have

b, =(X;—Xp)
b, = (X5 — Xp)* (X, — X,,)
bz = b3*bl.

Normalizing the vectors b, to a;, we have the direction
cosine matrix [a], such that

X; = [a]*x, (1

If {d*} and {D*} are the element nodal displacement
vectors in local and global Cartesian coordinate
systems, and [7'1] is the corresponding transforma-
tion matrix, we can write

{d*} =[T1]«{D*} @

1107



1108

Z,w

| X,Y, Z -Global cartesian coordinates
U,V, W-Global cartesian displacements
(-)X,(—)y,(-)Z -Global cartesian rotation

2 x,y,2 -Local cartesian coordinates
u,v,w -Local cartesian displacements

8,:6,:8; Local cartesian displacements

Z,W
Y,V

X,U

1-2-3-4 Actual element
P-Q-R-S Mean plane element
A, B,C, D Mid points

Fig. 1. The four-node warped plane shell element.

and
[Ke]global = [TI]T*[Ke]local*[TI]' (3)

2.1. Force correction based on equilibrium on edges
[2,3]

Let PQRS be the mean plane corresponding to the
actual element 1234 (Fig. 1). Then nodes 1, 2, 3 and
4 will be ‘H’ units (say) above and below the mean
plane alternatively. The forces in the x- and y-direc-
tions are resolved to the edge-parallel forces at each
node ‘i’ as

f;.H»I - l
ALz sin(, — 0,_,)
cos 6,

—sin 6, S
’ 4
I:—sinG,H COSO,H]{fw}’ @

where the suffices vary in cyclic manner. The angles
and forces are shown in Fig. 2 with their directions.
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Fig. 2. Resolution of ‘in-plane’ forces into ‘edge’ forces
[2, 3]

Considering the equilibrium on the edge PQ (Fig. 3),
we obtain

Sza={N2 +f21)*(H/2LPQ)- &)

Superimposing the results from all the edges, we
obtain

{f}=IT2"{f}. (6)
where

{f}={fw1f;-1f:l Mu M"l

——

{f,} = {fmf,rpf:p Mxn MVP cre }

are the nodal force vectors for the actual element and
the mean plane (m.p.) respectively. The same trans-
formation can also be used for the displacements,
such that

[Ke]local = [Tz]T*[Ke]m.p. * [T2] (7)
fZA

flz—T——

H
¢t g‘-m E—
12 P A P ’
\2 H o
TfZA

Fig. 3. Edge 1-2 under equilibrium during ‘force’ correction.
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Fig. 4. Force correction based on equilibrium over the
element domain and ‘zero virtual work principle’.

2.2, Force correction based on equilibrium and virtual
work principles

As is evident from Fig. 4, the moment equilibrium
in the mean plane gives rise to

Z (‘fw’i +f;ij) *rl = 0!

1=1.4

(8a)

where r, are the position vectors of the mean plane
nodes P to S, with respect to the local origin. Moment
equilibrium for the real element leads to

Z (fend +fynj + /[, K)*On=0.

n=14

(8b)

On simplification, (8a) and (8b) give rise to the three
moment equilibrium equations

=21: A‘f;‘lx: = ‘21: df'ciyw (ga)
Z X Z xil; (98)
i=1,4 i=14
Z .f.;lyi = z f;‘: Z,- (90)

i=1,4 =14

and the force equilibrium in the three directions gives

Z;,af.n=0 (10a)
Y f,=0 (10b)
JESN

Y fi=0 (10¢)

We have now three equations, (9b), (9¢) and (10c), to
solve for f, (i=1,4) and hence the solution is
‘indeterminate’. The fourth equation that is required
can now be formed using the energy principles, i.e.
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the total virtual work done by the transformation of
the ‘normal’ forces from the mean plane to the actual
nodes should be zero, so as not to alter the total
energy of the system, or

(Im

By solving for the normal forces f.,{i = 1,4) at the
element nodes, using (9b), (9¢), (10c) and (11), the
‘variationally correct’ [T2] can be formed for the
transformation of the ‘forces’ and consequently
‘stiffnesses’ from the mean plane of the element to the
real element nodes as in eqns (6) and (7).

2.3. Moment correction

Shifting of the moments about the mean plane x-
and p- axes, M, and M, onto the real nodes doges not
disturb the equilibrium, but results in an unrealistic
moment vector for the warped element. The moment
about the normal to the actual surface should be zero,
at each node. This can be achieved by adding a small
moment component M, about the normal to the
mean plane, at each node ‘i°, such that

{Mxr‘i*— Mytj+ sz k)’ll’ = Ov

(12)

{i+1)

Fig. 5. Moment correction.
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where n, is the normal vector to the actual surface at
node /. These additional moment components, M,,
are then balanced by adding a system of self-equili-
brating forces of equal magnitude R at each node in
the x- and y-directions as shown in Fig. 5, such that

Z (fxii +.fj\'lj)*rl + Z M;, k =0.

t=1.4 1= 14

(13)

Using (12) and (13) for the moment correction and
the ‘variationally correct’ force correction derived
earlier (Sec. 2.2), the final transformation matrix [T2]
can be formed such that

[Ke]global = [TZ}T[T”T[Ke]m.p [TU [Tz] (]4)
Note that if [72] is derived from Secs 2.1 and 2.3
instead, we obtain the CSA*NASTRAN element.

3. VIOLATION OF THE VIRTUAL WORK PRINCIPLE
BY CSA«NASTRAN

If we consider only equilibrium conditions as the
criteria, as in NASTRAN, and solve the ‘indetermi-
nate’ system of equations on the element boundary,
the total virtual work done by transforming the forces
from the mean-plane nodes to the actual nodes may
be non-zero for certain load cases. For example,
consider the load case 1 of Fig. 6. The edges 1-2 and
4-3 are under the loads of equal magnitude f as
shown in the figure. According to the NASTRAN

Case-| I

Cose -2 q
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Case-3

Case-4 g

Cose -7

f =q, +q2+q3
W =-2h(q,+q,}

Fig. 6. Single element tests—failure of NASTRAN element
for load cases 1, 4, 6 and 7 (example 4.1).
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procedure [2, 3], the moment equilibrium of these two 4. NUMERICAL EXAMPLES
edges requires inclusion of the forces of magnitude g The numerical examples are chosen so as to con-
normal to the mean plane as shown, such that centrate attention on the behaviour of the QUAD4
when it is ‘warped’. The following versions of
qg=2xfxh/L, (15) QUADA4 are used for the comparative study:
Q4-0 Mean-plane stiffness is given a force

correction based on the equilibrium
conditions and the zero virtual work
condition.
Q4-1 Q4-0 + moment correction.
NASTRAN QUAD4 in CSA*NASTRAN-V87B
) _ (force correction based on equi-
W= ,:Z]:_ . (PuSu + Puy" S+ P 'S:) librium on the element boundary plus
moment correction).

where L is the side length of the ‘square’ mean plane
and 4 is the warping height. Hence, for the load case
1, the total work done by the transformation of the
forces onto the real nodes from the mean plane is

= ) (ps'S.) 4.1. Single element tests
e A single element, with square and horizontal mean
=4x(q-h). (16) plane, is tested for the following load cases:
(1) In-plane stretching (Table 1),

where p and s stand for the force and displacement (2) In-plane couple (about the z-axis) (Table 2),
vectors. Similarly, it can be proved that the total (3) In-plane shear bending (Table 3),
virtual work done by the ‘force transformation’ is (4) In-plane pinching loads (Table 4),
non-zero for load cases 4, 6 and 7, if the edge-wise (5) Out-of-plane shear bending (Table 5),
equilibrium satisfaction is done as in NASTRAN, (6) Out-of-plane couple (about the x-axis) (Table
thus violating the fourth condition that is derived 6), and
from the principle of virtual work. (7) Constant twisting moment test (Table 7),

Table 1. In-plane stretching [Fig. 6(1)]: example 4.1

Element h=0.0 h=0.1 h=1.0

(A) U-Displacements at nodes 3 and 4 (r =0.1)

Q4-0 0.9758713 — 0§ 0.9906581 — 05 0.9998485 — 05
Q4-1 0.9758713 - 05 0.9906581 — 05 0.9998485 — 05
NASTRAN 0.9758713 — 05 0.6880395 — 04 0.5914285 — 02
(B) W-Displacements at nodes 3 and 4 (¢ =0.1)

Q4-0 0.0 —0.9192455 — 04 —0.1490583 — 04
Q4-1 0.0 —0.9192455 - 04 —0.1490583 — 04
NASTRAN 0.0 —0.2952205 — 02 —0.2902125 - 01

Table 2. In-plane couple loading [Fig. 6(2)]: example 4.1

Element h=0.0 h=0.1 h=1.0
(A) U-Displacements at nodes 3 and 4 ( =0.1)

Q4-0 0273 -04 0.1437369 — 03 0.1167099 — 01
Q4-1 0.273 - 04 0.1436333 - 03 0.1086815 — 01
NASTRAN 0273 -04 0.1436354 — 03 0.1086834 — 01
(B) W-Displacements at nodes 3 and 4 (¢ =0.1) ’
Q4-0 0.0 0.5821844 — 02 0.5821844 — 01
Qd4-—1 0.0 0.5817159 — 02 0.5420904 — 01
NASTRAN 0.0 0.5817263 — 02 0.5421001 — 01

Table 3. In-plane shear bending [Fig. 6(3)): example 4.1

Element h =00 h=01 h=10
(A) V-Displacements at nodes 3 and 4 (1 =0.1)

Q4-0 0.533 - 04 0.1697369 — 03 0.1169699 — 01
Q4-1 0.533 - 04 0.1696240 — 03 0.1089323 - 01
NASTRAN 0.533—-04 0.1696261 — 03 0.1089342 — 01
(B) W-Displacements at nodes 3 and 4 (¢ =0.1)

Q4-0 0.0 0.5821844 — 02 0.5821844 — 01
Q4-1 0.0 0.5816925 — 02 0.5420675 — 01

NASTRAN 0.0 0.5817029 — 02 0.5420772 — 01




12

B. P. NAGANARAYANA and G. PRATHAP

Table 4. In-plane pinching loads [Fig. 6(4)]: example 4.1

Element h =00 h=0.1 h=10

(A) V-Displacements at nodes 3 and 4 (+ =0.1)

Q4-0 0.731903 — 05 0.8962012 — 05 0.9983169 - 05
Q41 0.731903 — 05 0.8962012 — 05 0.9983169 — 05
NASTRAN 0.731903 — 05 0.6635979 — 04 0.1611397 — 02
(B) W-Displacements at nodes 3 and 4 (t =0.1)

Q4-0 0.0 —0.3064152 — 03 —0.4968610 — 04
Q4-1 0.0 —0.3064152 — 03 —0.4968610 — 04
NASTRAN 0.0 —0.2952092 — 02 —0.2952093 — 01

Table 5. Out-of-plane shear bending [Fig. 6(5)): example 4.1

Element h =00 h=0.1 h=10
(A) W-Displacements at nodes 3 and 4 (1 =0.1)

Q4 -0 0.2910922 +- 00 0.2910922 + 00 0.2910922 + 00
Q41 0.2910922 + 00 0.2908825 + 00 0.2710692 + 00
NASTRAN 0.2910974 + 00 0.2908877 + 00 0.2710741 + 00
(B) U-Displacements at nodes 3 and 4 (¢ =0.1)

Q4 -0 0.0 0.5821844 - 02 0.5821844 — 01
Q4 -1 0.0 0.5816925 — 02 0.5420675 — 01
NASTRAN 0.0 0.5817029 — 02 0.5420772 — 01

Table 6. Out-of-plane couple [Fig. 6(6)): example 4.1

Element h=0.0 h=0.1 h=10

(A) W-Displacements at nodes 3 and 4 (+ =0.1)

Q4-0 0.1476005 + 00 0.5714643 — 01 0.9258700 — 03
Q4 -1 0.1476005 + 00 0.5714643 — 01 0.9266457 — 03
NASTRAN 0.1476071 + 00 0.1476071 + 00 0.147607 + 00

(B) V-Displacements at nodes 3 and 4 (¢ =0.1)

Q4-0 0.0 —0.3064152 - 03 —0.4968610 — 04
Q41 0.0 —0.3064152 — 03 —0.4968610 — 04
NASTRAN 0.0 —0.2952092 — 02 —0.2952093 — 01

Table 7. Constant twisting moment [Fig. 6(7)}: example 4.1 ‘

Element h=00 h=0.1 h=10

(A) W-Displacement at node 4 (r =0.1)

Q4-0 0.7144286 + 00 0.1211114 + 00 0.1455363 — 02
Q4 -1 0.7144286 + 00 0.1211114 + 00 0.1455363 — 02
NASTRAN 0.7144571 + 00 0.7598978 — 01 0.8493293 — 03
(B) U/V-Displacement at node 4 (¢ =0.1)

Q4-0 0.0 —0.3460325 — 03 —0.4158179 — 04
Q4-—1 0.0 —0.3460325 — 03 —0.4158179 — 04
NASTRAN 0.0 —0.1063857 — 02 —0.1189061 — 04

for varying degrees of warping. The dimensions are
L =10, b = 10 and warping heights # = 0.0, 0.1, 1.0;
the elastic properties are Young’s mod-
ulus = 1.0E + 06 and Poisson’s ratio = 0.3.

From Sec. 3. and Fig. 6, it is very clear that the
NASTRAN clement violates the zero virtual work
condition in load cases 1, 4, 6 and 7. Hence the
NASTRAN version of QUADA4 is expected to fail in
these load cases. Tables 1, 4, 6 and 7 confirm this. In
fact, the error increases exponentially with the warp-
ing height h (Fig. 7).

Careful observation of the results show that, in the
cases where CSA*xNASTRAN fails, the moment
correction has no influence on the results. Hence it
can be concluded that the ‘zero virtual work condition’
is an essential condition in addition to the equilibrium

conditions, and gives corrections to the stiffnesses
related to the local normal displacements.

The same tests were repeated with a ‘distorted’
mean plane. The results were qualitatively the same
as above and the parasitic shear locking was com-
pletely removed when ‘field-consistent’ global deriva-
tives were used in defining the in-plane shear strain
field. The results are not tabulated.

4.2. Spherical cap

A doubly curved shallow shell of spherical contour
of radius 96 units and a square base of edge length
32 units with diaphragm boundary conditions under
a point load of 100 units normal to the shell surface
at the centroid of the cap (Fig. 8) is considered. The
analysis is done by modelling the third quarter of the
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Plate of dimensions: 10x 10xO.I
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Fig. 7. Single element test—pinching loads at the tip.
Pinching displacements for different warping heights
(example 4.1, load case 4).

cap with a 6«6 finite element mesh. The material used
has Young’s modulus = 0.1E + 08 and Poisson’s ra-
tio =0.3. Table 8 compares the maximum normal
displacement at the centroid, obtained from Q4-1,
with the CSA*NASTRAN element for different
thicknesses. As the warping in this case is negligible,
both element versions give correct answers.
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4.3. Hemispherical shell

Here, a hemisphere of radius 10 units, truncated at
18° from the axis of the shell, is subjected to four unit
point loads normal to its base rim alternating in sign
at intervals of 90° (Fig. 9). The material has Young’s
modulus = 0.6825E + 08 and Poisson’s ratio =0.3.
Because of symmetry in geometry as well as loading,
a quadrant is considered for analysis with an 88
element mesh. Both membrane and bending strains
contribute significantly to the radial displacements at
the load points. A comparison of the results (the
deflection under the pinching load) is presented in
Table 9 for varying thickness 7. As the warping of
elements in this case is negligible, both Q4-1 and
NASTRAN pass this test.

4.4. Twisted beam

Here we consider a practical problem which throws
light on the warping effects, as the structure consid-
ered is highly warped over its length. A twisted
rectangular strip of material of Young's modulus of
0.29E + 08 and Poisson’s ratio of 0.22 with geometric
dimensions of length = 12.0, width = 1.1, twist (root-
to-tip) =90° and thickness =0.32, 0.16, 0.08, is
clamped at one end and is subjected to a unit in-plane
load (F.=1.0) at the other end (Fig. 10). A 12x2
finite element mesh is used.

Table 10(a) presents the comparative results (the
displacements at the free tip in the load direction)
from Q4-0, Q4-1 and NASTRAN. The element with-
out warping corrections ‘locks’ severely in this case.
But, as in load case (3) of test example 4.1, there is
no violation of the zero virtual work condition.
Hence NASTRAN passes this test. Table 10(a) pre-
sents the tip displacements under the load for varying
thickness, showing very close behaviour of Q4-1 and
NASTRAN.

R=96

E 107, v=0.3, t=0.1

f
usw=g, =0

Fig. 8. Spherical cap (example 4.2).
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Table 8. Spherical cap (Fig. 8): example 4.2; ‘normal’ deflection under the central load

Element t =0.1

t =0.01 t =0.001

Q4—1
NASTRAN

0.3257 - 01
0.3256 — 01

0.1214 401
0.1209 + 01

0.1665 + 02
0.1662 + 02

u=6,=86, =0

v=8,=8,-0

t=1

E=06825+08

v=0.3

8x 8 Mesh (per quadrant)

Fig. 9. Pinched hemisphere (example 4.3).

Table 10(b) shows the free tip displacements in the
load direction when the load is tensile along the axial
direction (F, =1.0). As expected, because the zero
virtual work condition is violated, CSA * NASTRAN
fails this test; the behaviour is similar to load case (1)
of numerical experiments 4.1. The results are graph-
ically represented in Fig. 10. It can be seen that the
‘thickness’ has a relatively negligible influence on
results when compared with ‘warping height’. The
failure will be more distinct and critical with higher
degrees of warping (i.e. coarser mesh). It can be noted
that the moment correction has a negligible influence
on the results, as in its counterpart load case in the
single element tests.

5. CONCLUSIONS

We have developed here a four-noded shear flexible
plane shell element which can take care of both the
‘distortion’ and ‘warping’ requirements that arise
because of the complexity of the shell structure. We
have demonstrated how the virtual work principle
plays a very important role in addition to equilibrium
conditions in determining the ‘force corrections’ from
the mean plane to the real position. It has been
proved that the NASTRAN element violates the
condition of zero total virtual work done by the

‘normal forces’, which are added to balance the
moments produced during the transformation of the
in-plane forces from the mean plane to the non-copla-
nar nodes of the element, in several ‘single element’
tests. Several numerical experiments (Sec. 4.1) have
confirmed the failure of the NASTRAN QUAD4 in
the corresponding test cases. The correction to the
element stiffnesses related the in-plane displacements
and the mean plane ‘normal’ rotation, so that the
moment about the normal to the actual surface at
each node, as well as the moment about the normal
to the element mean plane over the element domain
after transforming the forces and moments from the
mean plane to the actual nodes, will vanish. It is also
observed., in all the test cases where NASTRAN fails,
that the moment correction has no influence on the
element behaviour. Hence we conclude that the prin-
ciple of virtual work poses an essential condition to
be satisfied apart from the equilibrium conditions, if
the warping correction has to be rational.

i
X,U

Fixed end
Twist bearn. Length=12: Width=}.1 Depth=0.32
Twist = 90°({root to tip): Mesh =12x2.
Loading unit forces at tip E=29x10, v=022

164

167 -
o(NASTR’AN)
=
ot
c X
E (Q4-1)
-6 . o
© 5o 3 S32
Thickness (t)

|<57L

Fig. 10. Twisted beam under tip loads. Displacements under
the stretching load for varying thickness (example 4.4).

Table 9. Pinched hemisphere (Fig. 9): example 4.3; displacements under pinching loads

Element t=0.1 t=0.01 t =0.001
Q4—1 0.8548 — 04 0.7560 —- 01 0.7545 + 02
NASTRAN 0.8558 — 04 0.7560 — 01 0.7546 + 02
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Table 10. Twisted beam (Fig. 9): example 4.4

Element t=032 t=0.16 t =0.08
(a) Tip W-deflection under in-plane shear load (F. =1.0) ~
Q4-0 0.5923 + 00 0.2807 + 01 0.1215+ 02
Q41 0.5268 — 02 0.4143 — 01 0.3290 + 00
NASTRAN 0.5277 — 02 0.4153 — 01 0.3307 + 00
(b) Tip displacements under the stretching load (F, = 1.0)
V-Displacements
Q4-0 0.1167 - 05 0.2373 — 05 0.4976 — 05
Q4—1 0.1167 — 05 0.2373 - 05 0.4978 — 05
NASTRAN 0.1205—05 0.2594 — 05 0.6464 — 05
U-Displacements
Q4-0 0.3714 — 06 0.2824 — 05 0.1812 — 04
Q4—1 0.3788 — 06 0.2863 — 05 0.1825 — 04
NASTRAN 0.1231-05 0.7497 — 05 0.5013 - 04
W-Displacements
Q4-0 0.1334 — 07 0.5222 - 07 0.2855 - 06
Q4-1 0.1350 — 07 0.5288 — 07 0.2879 — 06
NASTRAN 0.6117 — 08 0.1595 —~ 07 0.4031 — 07
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