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FEPACS: A computational tool for linear structural analysis
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Abstract. FEPACS (Finite Element Package for linear static, dynamic and
instability Analysis of Composite Structures under hygro-thermo-mechanical
loads) incorporates a complete library of consistent and correct 1-, 2- and 3- «
dimensional linear and quadratic general purpose finite elements. In this paper,
we shall discuss the finite element technology that has gone into the package
as well as its present modelling and solution capabilities. We shall also discuss
briefly recent developments toward enhancing the package: Robust compos-
ite elements based on a CO-continuous higher order transverse deformation
plate/beam theory, and nonlinear element technology and solution strategies.
Finally, we shall also briefly touch upon several satellite application modules
that are in different stages of planning/development to aid FEPACS: damage as-
sessment/prediction, expert-like advisors for solid modelling and finite element
modelling/analysis, pre-/post-processing for FEPACS applications, structural
optimisation and related finite element algorithms, and finally, a frontal solution
module for FEPACS to enhance its feasibility for vectorisation/parallelisation.

Keywords. Analysis of composite structures; hygro-thermo-mechanical
loads; linear structural analysis, finite element package.

1. Prelude

Today, due to very high demands on functional excellence and technological perfection,
availability of advanced material and design technology, the advent of advanced mathemat-
ical and computational tools and computer technology, and finally due to stringent safety
and economical constraints, precise and accurate prediction of structural behaviour and
strength under complex and adverse environment is called for, particularly with reference
to aerospace and automobile applications. The finite element method (FEM) appears to
be the only computational tool that can be used successfully for high precision structural
analysis meeting current demands as well as expectations in the near future.

Due to its versatility and simplicity in applications, finite element analysis (FEA) has
attracted researchers from many different engineering fields, e.g. aerospace, civil, mechan-
ical, automobile, electrical and so on, particularly with reference to structural applications,
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Currently, 35004000 papers are being published every year on the finite element method.
Because of the enormoys research and developmental attention it has received, finite ele-
ment analysis has now 8TOWn 10 an acceptably matured status from the points of view of |
both technology as well as science. |
It is due to the scientific and technological maturity which finite element analysis has
attained today that one could take up the tasks of reliab]e design/analysis in many complex
real-life structural applications like: static/stability/dynamic analysis of structures under
real-life environment, geometric/material nonlinear structural behaviour, fatigue and frac-
ture/damage mechanics, hygro-thermal applications, design/analysis of advanced mate-
rial/structural constitution, fluid-structyra] interaction (e.g. sloshing, aeroelasticity, flutter
etc.), acoustic-structural interaction, structural optimisation, adaptive structures and de- |

erle (1995), there are now nearly 1500 established in-house finite element packages out of
which more than 300 are general purpose in nature. A few of the successful commercial
finite element packages are MSC/NASTRAN, ABAQUS, NISA, ANSYS and ALGOR.
Efforts to develop useful general-purpose finite element packages are going on in India

element modelling simple, efficient and general, particularly with reference to large-scale
general structures, However, such CO-continuous elements can suffer from very severe
problems like locking and stress oscillations under certain operating conditions. To over-

many ad-hoc methodologies (e.g. reduced integration) which often lack sound scientific
foundation and offer only partial success. Accordingly, the functional adequacy of the

element technology used in such packages is not completely fool-proof and may fail in
one or the other circumstance, ' :
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evolved for formulating robust finite elements that are free of all the errors under any cir-
cumstances. A library of general purpose linear and quadratic finite elements are developed
for 1-, 2- and 3-dimensional structural modelling/analysis. FEPACS uses such a scientif-
ically proven element technology and incorporates a complete library of state-of-the-art
robust elements. We review this work here.

2. Introduction

Understandably, displacement type finite elements have been the standard for developing
the element library of any general purpose package since such formulations are simple
to code and economical to use. In addition, the displacement type elements can be made
robust (simple, but efficient) even in their distorted configurations. Also, in a general
purpose finite element software, CO-continuous element formulations are sought since such
formulations can satisfy the required continuity conditions exactly and allow one to use only
the engineering degrees of freedom to model a problem. In the case of flexural elements
(e.g. beams, plates and shells), they permit modelling of transverse. deformation (e.g.
transverse shear) which becomes important in case of laminated and/or thick structures.
The first CO-continuous finite element (flexural) formulation was developed in the late
60°s — the 8-noded quadratic degenerated shell element (Ahmed et al 1970).

However, soon after they were discovered, the CO-continuous flexural elements were
found to be crippled with dramatic failures such as shear locking and stress oscillations
even when the conventional continuity and completeness requirements were satisfied (Do-
herty et al 1969; Pawsey & Clough 1971; Zienkiewicz et al 1971). Later, similar situations
were recognised — membrane locking in curved elements (Stolarski & Belytchko 1981),
parasitic shear (Cook 1975), incompressibility locking (Fried 1974), nonlinear locking
(Naganarayana & Prathap 1996) etc. Many ad-hoc techniques are offered in the litera-
ture to alleviate these different types of locking — reduced/selective integration (Pawsey &
Clough 1971; Zienkiewicz et al 1971), assumed strain methods (MacNeal 1982; Prathap
1993), addition of incompatible (bubble) modes (Wilson ez al 1973), quasi-conforming
techniques (Tang et al 1984), mixed/hybrid formulations (Pian 1971), to name a few
_ with varied success. Often these methods lacked a scientific explanation either for
their success or for their failure. Though some attempts were made to explain lock-
ing — singularity of shear stiffness (Zienkiewicz 1977), constraint counting and rank of
the shear stiffness (Cook et al 1981; Hughes 1987) — they generally tried to locate the
symptoms of the problem rather than the cause (Prathap 1986). They lacked a scien-
tific basis and could not explain the locking phenomena in a unified sense. Finally, they
never offered any methodology for eliminating the locking errors, or, in other words,
they could not prove why certain ad-hoc techniques could eliminate locking under certain
circumstances.

In the early 80’s (Prathap & Bhashyam 1982), a scientifically valid paradigm was intro-
duced to explain the existence of locking in a Timoshenko beam element and the success of
the reduced integration technique. Over the next fifteen years, this paradigm matured as a
scientific principle — field consistency — in the finite element method offering explanations
for the existence of locking, delayed convergence and stress oscillations in the so-called
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class of constrained media elasticity (Prathap 1986) and a library of field-consistent linear
elements — elements with linear field interpolations — was developed (Ramesh Babu 1985;
Ramesh Babu ez al 1985).

Later, the field-consistency paradigm was implemented in several quadratic finite ele-
ments. New consistency paradigms were offered to explain the difficulties that arose here
and to provide methods to eliminate these errors — consistent mapping (Prathap & Na-
ganarayana 1992), edge consistency (Prathap & Somashekar 1988), stress/initial-strain

field consistency (Prathap & Naganarayana 1990a), warping correction (Naganarayana &
Prathap 1989a), and variational correctess (Prathap 1988). These principles are critically
examined and implemented in several general purpose quadratic displacement type 1-, 2-
and 3-dimensional elements (N aganarayana 1991). A complete library of robust, consis-
tent and correct linear and quadratic linear elements is now available (Prathap et al 1994a).
An extensive treatment of the different paradigms, apart from the classical continuity and
completeness requirements, was given recently by Prathap (1993, 1994).

This Iibrary of robust linear and quadratic 1-, 2- and 3-dimensional elements, was pro-
posed to be implemented in a general purpose finite element platform using the solution
capabilities and data management of SAP-IV (SAP - structural analys is program) which
was available in source in public domain (Prathap et al 1989) for modelling and analysing
advanced anisotropic and laminated composite structures effectively. Initially, the basic
laminated composite beam and shell elements were implemented in the SAP-IV infrastruc-
ture on a UNIVAC system The complete element library was subsequently implemented in
the UNIX operating system on PC386/486 platforms and on workstations. The first version
of the package — FEPACS: Finite Element Package for Analysis of Composite Structures
—was released in 1991 for linear static and dynamic structural analysis on a PC386/486
platform in a UNIX environment (Prathap & Naganarayana 1991). Later, the eigenvalue
solution capability was enhanced to accommodate the consistent mass description and
then extended for analysis of structural instability (Naganarayana et al 1993). The current
version, FEPACS-2.0 (Prathap et al 1994b), has more than 15,000 (executable) lines of
in-house developed code out of about 20,000 lines. A diagrammatic description of the
package is given in figure 1. , .

Currently, several satellite modules tailored around FEPACS-2.0 are initiated at the
National Aerospace Laboratories, Bangalore — expert advised finite element modelling and
adaptive mesh refinement, pre- and post-processors, damage/failure mechanics, nonlinear
structural mechanics and automated post-buckling solution capability, robust higher order
shear flexible finite elements, hygro-thermal effects on structural behaviour, structural
optimisation, and frontal solution modules for linear structural analysis. :

In this paper, the state-of-the-art finite element technology and the finite element libr
in FEPACS-2.0, and the satellite structural modelling/analysis modules that have been
currently developed/planned for FEPACS applications are briefly described.

3. Finite element technology — the C-concepts

In this section, we shall discuss the state-of-art finite element technology of FEPACS and
its scientific foundations. ~
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In the finite element method, we discretise the continuum/structure into a number of finite
sized divisions called elements; capture the basic equations of solid/structural mechanics.
The equations include strain-displacement relations such that compatibility conditions
are satisfied over the element domain, the stress-strain (constitutive) relations — and the
element loads to form total potential energy (complementary energy in case of stress type
formulations) of each element; assemble the element total potential energy such that the
compatibility conditions are satisfied across the element boundaries and the boundary
conditions on the structural boundary are satisfied, apply minimum total potential energy
principle (minimum complementary energy principle in case of stress type formulations)
to obtain global equilibrium equations as a set of simultaneous algebraic equations (one
associated with each unspecified degree of freedom in the finite element model in terms
structural stiffness, nodal degrees of freedom and nodal forces) which can be solved using
any established numerical method. Out of several approaches that are proposed in the

literature, the displacement type approach is used now for most general purpose structural
applications. '

Itis
which are approximations of the actual solution and the strains and stresses are then derived

energy in energy-based methods. Hence, it is argued that, in the finite element analysis,
a best-fit solution is always sought for the strain and stress fields within an element and

continuous.

The Completeness condition requires that the field interpolations chosen should be such
that rigid body motion should not produce straing and constant strain states of the element
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Table 1. Types of errors, their sources in finite element analysis and associated paradigms.

Source Symptoms Paradigm/concepts
Errors of first kind
Finite element Discretisation errors Continuity and
discretisation ‘ completeness
Errors of second kind
Constrained Locking, Constrained-field
media elasticity delayed convergence, consistency
stress oscillations
Element distortion Locking, Edge consistency and
(nonuniform mapping) delayed convergence, consistent mapping
stress oscillations
Varying material/ Stress Unconstrained-field
sectional modulii oscillations consistency
Initial-strain/ Stress Unconstrained-field
initial-stress oscillations consistency
representation
Reconstitution of Poorer convergence, Variational
strain/stress spurious load mech- Correctness
fields anisms and stress
oscillations
Modelling warped Erroneous stresses Warping correction
surface with plane and displacements (minimum virtual
elements work principle)

should be represented and that no intermediate polynomial terms should be dropped while
interpolating the displacement fields.
It was conventional wisdom that the finite element formulations that satisfy the above

continuity and completeness conditions shall co

nverge in a variationally correctrate. How-

ever, subsequently it was found that the finite elements suffer from many problems such as
locking, delayed convergence, and stress oscillations when applied a large class of prob-
lems — constrained media elasticity where at least one or more components of the strain
tensor are constrained at a physical limit and many other classes of problems (table 1).
These problems make element formulations virtually unacceptable for general structural
applications. Several ad hoc techniques such as reduced integration, mixed/hybrid meth-
ods, addition of incompatibility modes etc. were normally associated with stress sampling
at the so-called optimal/Barlow points. All these techniques offered only selective/partial
success from general purpose point of view and lacked a scientifically sound explanation
either for their success or for their failure (if any). Basically, the solutions offered to the
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basic questions — How confident are we with finite element analysis? and How reliable are
the finite element solutions? — were not completely satisfying. v

In the early 80’s, this class of problems was approached with a new scientific under-
standing (Prathap & Bhashyam 1982) and over the past one and half decades a complete
consistent and correct scientific basis is established for formulating any general purpose
robust finite element for structural applications (e.g. Ramesh Babu (1985), Prathap (1986,
1993,1994), Naganarayana (1991), Prathap et al (1994a)). In this process, several classes
of structural problems which suffer from errors like locking, delayed convergence and
stress oscillations in the general purpose finite element formulations were identified; ap-
propriate consistency principles were evolved to explain the existence of such errors, their
root causes and possible method of eliminating the same in a variationally correct manner
(table 1). Several techniques such as reduced integration, least square field-reconstitution,
Legendre polynomial expansion can now be reinterpreted with the new scientific rigour for
applications in finite element formulations. Here, we shall briefly recapitulate the different
aspects of the new understanding — consistency and correctness paradigms.

Constrained-field consistency: The displacement fields involved in computing the con-
Strained strain energy components should be interpolated such that all the physical con-
straints on the corresponding strain energy component are fully represented without
leading to any spurious constraints in the penalty limits. In other words, the terms in
a constrained strain field that have partial contribution from the constituent displacement
fields, leading to the spurious constraints in the penalty limits for the corresponding strain
energy components, should be eliminated from the formulation for assuring the expected

rate of convergence from a finite element model of the structural problems belonging to
the class of constrained media elasticity.

Consistent Mapping: In any parametric formulation, mapping of the strain and stress
Jfields from the natural system (the system in which the element configuration is always
undistorted and the displacement fields are interpolated) to the working system (the system 4
in which the problem is defined and the solution is sought for) should retain all the true
discretised constraints without introducing any additional spurious ones.

Edge-consistency: The tangential strain components which are continuous across the el-
ement boundary in the undistorted natural coordinate system should remain continuous
even after the necessary transformations; and the tangential strain components should be
built from their corresponding tangential displacement components only. ;

Unconstrained-field consistency:  The terms in the strain and/or stress fields that do not
participate in the strain energy computations (and hence in the displacement recovery)
should not be retained while recovering the corresponding strains and/or stresses in a
displacement type formulation. : '

All the above consistency paradigms suggest some form of field-reconstitution (ei-
ther strain or stress fields) to eliminate the associated errors such as locking and stress
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oscillations. There are many ad hoc schemes (e.g. reduced integration) to perform the
same. The field-reconstitution, however, should be performed in accordance with the fol-
lowing variational basis. '

Variational correctness: The reconstituted field should be orthogonal to the error field
being introduced in the reconstituted field with reference to the original field.

The above paradigms — Correspondence, Continuity, Completeness, Consistency and
Correctness, collectively called the C-concepts —form a complete scientific basis for robust
finite element formulations (figure 2).

4. Finite element library

The Structural Analysis Program (SAP) is one of the earliest general purpose finite element
programs used for structural analysis (Wilson 1570). This was later improved and released
as SAP-IV for linear static and dynamic analysis of 3-dimensional structures (Bathe et al
1974). As'it has been released with its source code in the public domain, it has served
as the spring board for many other finite element packages with various improvements.
It is well known that SAP-TV has reasonably efficient solution capabilities and data han-
dling procedures. However, its main weakness is its obsolete finite element technology
and the limited element library (only linear elements that can model only isotropic struc-
tures). The idea of developing a general purpose finite element package with the strength
of the state-of-the-art finite element technology available in the National Aerospace Lab-
oratories with an emphasis on application to the Jaminated composite structures under
hygro-thermo-mechanical loads was conceived in the late 80’s. FEPACS: Finite Element
Package for Analysis of laminated Composite Structures under hygro-thermo-mechanical
loads (Prathap et al 1989) was initiated with this in mind. Initially, the package was built
around the data handling and program organisation of SAP-IV. Over the years, the ele-
ment library was replaced with a complete library of the consistent and correct 1-, 2- and
3-dimensional, linear and quadratic displacement type finite elements. In this section, we
shall briefly describe the salient features of each element in the FEPACS library (figure 3)
for linear analysis of composite structures. .

4.1 The boundary element

SPRING — A 2-noded spring/boundary element: This is a simple spring element de-
fined by two nodes (one being a specified structural node and the other to fix the spring
direction) in space. The spring stiffness can be prescribed along any six engineering de-
grees of freedom so that any general translational and/or torsional springs can be mod-
elled with this element. Apart from the spring stiffness, it takes specified displacement
along the element axis and specified rotation about the element axis. It can also be ef-
fectively used as a general boundary element allowing initial displacements (boundary
conditions) on the structural node to be imposed. By using a proper combination of dis-
placement and stiffness conditions, it can be used to emulate the multi-point constraints
in a structural model, to model elastic foundations, etc. Finally, if the plate/shell element
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Figure 3. FEPACS-2.1: The element library.
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formulation cannot support the rotation about the local normal, the boundary element

can be used to suppress this degree of freedom locally at the specified node in a general
structure.

4.2  The truss/bar eZement

TRUSS — A 2-noded truss/bar element: A spatial (3-dimensional) truss element is incor-
porated in FEPACS. This element is based on 1-dimensional elasticity assumptions — that
the structure can take loads and deform only in its axial direction — in the element.coor-
dinate system. This element does not involve any inconsistency problems in its original
form and hence the conventional formulation suffices the general purpose requirement.
This element can support both mechanical and thermal loads.

4.3 The beam elements

The 3-dimensional elasticity relations are reduced to one-dimensional relations for abeam
by using the one-dimensional nature of its geometry — 2-dimensions are very small when
compared to the third — using different levels of approximation (theories) such as the
elementary theory (Euler—Bernoulli); first-order shear deformable theory (Timoshenko);
and several higher order transverse deformable theories (e.g. Lo—Christensen—Wu). In this
section we shall briefly describe a family of beam elements based on the elementary and
first order shear deformable theories. ‘

All the beam elements can be used to model any general laminated composite and
anisotropic beam of any geometry in 3-dimensional space. The 3-dimensional orthotropic
and anisotropic constitutive relations are statically condensed to its equivalent one-
dimensional form. The elements can model any 3-dimensional straight/curved beam/frame
structures. The elements can be loaded along all the six engineering degrees of freedom.
They can also be effectively used as the stiffener elements with the plate, shell, and solid
elements. The eccentricity of the stiffener can either be modelled by defining the beam
nodes as slave nodes or by processing the stiffener offset explicitly. Finally, the elements

can also model uniform, tapered, and stepped beams of any cross-section and curvature
and are always free of all errors of locking and stress oscillations.

EBEAM?2 — A 2-noded Euler-Bernoulli beam element: This element is based on the
classical theory of beam flexure (Euler-Bernoulli): the plane normal to the neutral axis
remains plane and normal to the neutral axis even after deformation. Thus, the element
involves only four independent fields — axial extension, axial twist, transverse deflections
along two orthogonal directions in the cross-sectional plane. The transverse deflections
require C-continuity to be satisfied while the other degrees of freedom should satisfy
Co-continuity. The one-dimensional cubic Hermitian polynomials are used for interpo-
lating the transverse deflection fields and the linear Lagrangian polynomials are used for
interpolating the other degrees of freedom and the element geometry. This element is for-
mulated in the Cartesian coordinate system to be used as a straight #hin beam element. A
variation has been provided in the curvilinear systems as well so that it can also be used
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as a curved thin beam element. This element, in its original form, suffers from membrane
locking when used as a curved beam. However, the constrained membrane strain field is
made field-consistent using the method of Legendre polynomial expansion making the
element free of locking and stress oscillations. ‘

TBEAM?Z — A 2-noded Timoshenko beam element: A 2-noded beam element based on the
first-order transverse shear flexible theory of beam flexure that is compatible with the shell
elements of FEPACS (Timoshenko): the plane normal to the neutral axis remains plane
but need not be normal to the neutral axis after deformation. Thus, the element involves all
the six engineering degrees of freedom — axial extension, axial twist, transverse deflections
along two orthogonal directions in the cross-sectional plane and sectional rotations about
the two transverse directions. All the degrees of freedom need to satisfy only C O_continuity.
The linear Lagrangian polynomials are used for interpolating all the degrees of freedom
and the element geometry. This element is formulated in the Cartesian coordinate system
to be used as a straight thick/thin beam element. This element, in its original form, suffers
from shear locking as the beam becomes thin. However, the constrained transverse shear
strain fields are made field-consistent using the method of Legendre polynomial expansion
making the element free of locking and stress oscillations.

TBEAM3 — A 3-noded curved Timoshenko beam element: A 3-noded Cartesian curved
beam element based on the Timoshenko theory of beam flexure that is compatible with
the quadratic shell elements of FEPACS is included in the FEPACS library. The element
involves all the six engineering degrees of freedom and all the degrees of freedom need
to satisfy only CO-continuity. The quadratic Lagrangian polynomials are used for interpo-
lating all the degrees of freedom and the element geometry. This element is formulated
in the Cartesian coordinate system to be used as a straight/curved thick/thin beam ele-
ment. This element, in its original form, suffers from shear locking, membrane locking,
delayed convergence and complex stress oscillations when the beam becomes thin and/or
used to model curved beams under the conditions of inextensible flexure (Naganarayana &
Prathap 1990; Prathap & Naganarayana 1990). To capture the constrained-field inconsis-
tencies correctly, the element is modelled using four coordinate systems: Global Cartesian
to model the structure and for displacement recovery; Element plane Cartesian for interpo-
lating the degrees of freedom in terms of their respective nodal values; running Cartesian
for capturing the strain and stress variation; and the natural curvilinear system for defining
the field interpolations. The constrained strain fields (membrane and transverse shear) are
made field-consistent using the method of Legendre polynomial expansion in the element
plane Cartesian system making the element free of locking and stress oscillations in its
general form. The strain fields are mapped from one system (0 another in a consistent
manner so that the element behaves accurately even when the mid-node does not lie at the
mid-point. The stress resultant fields are reconstituted such that they do not have any term
that does not participate in the displacement recovery SO that the element is free of stress
oscillations even when its sectional modulii vary, €.g. tapered beams.
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4.4 Elements for 2-dimensional elasticity

A class of linear triangular and quadrilateral elements based on the 2-dimensional elas-
ticity equations is included in FEPACS. All the elements are formulated in an isopara-
metric sense. The conventional isoparametric formulations suffer from locking (parasitic
shear) and stress oscillations (Prathap 1985). Though a straightforward application of the

consistency principles can alleviate these errors from the elements, a new error, Poisson’s

ratio stiffening, is introduced due to lack of terms that can represent flexural deformations
of the elements. The linear interpolation functions have been augmented by the quadratic
incompatible (the so-called bubble) functions (Wilson et al 1973) and then the consis-
tency paradigm is applied to alleviate the problems of locking (parasitic shear), Poisson’s
stiffening effect, and the associated stress oscillations (Prathap 1993) from the elements.
All the elements can take both mechanical and hygro-thermal loads. They can be used to
model any temperature-dependent orthotropic medium.

TRIPS3, QUAPS4— Flane-stress/plane-strain elements: These elements are based on the
constitutive relationships that are derived from the theories of plane stress and plane strain
respectively. They are always defined in the yz-plane, the x-axis representing the thickness
or axial direction. Accordingly, they can be éffectively used to model any orthotropic plane-
stress or plane-strain problems under thermo-mechanical loads.

TRIAX3, QUAX4 — Axisymmetric solid elements: These elements are formulated based
on the axisymmetric solid mechanics. The elements are defined in the r6- or yz-plane,
the x-axis representing the axis of revolution. These elements can be used to model any
orthotropic axisymmetric structures under axisymmetric thermo-mechanical loads.

TRIM3, QUAM4 —~ Membrane elements: The plane-stress elements mentioned above are
now defined in 3-dimensional Cartesian space so that we can model the 3-dimensional
orthotropic membrane problems under thermo-mechanical loads effectively. The element
is first designed in a local Cartesian plane capturing its plane-stress behaviour and the

element matrices are then mapped onto the 3-dimensional Cartesian space using the regular
transformations. ‘

4.5 Plate/shell elements

FEPACS element library contains robust linear and quadratic plate/shell elements based on
the first order shear deformable theory (Reissner-Mindlin) to enable one to model any kind
of laminated composite plate or shell structures subjected to thermo-mechanical loads.

SHELA — A 4-noded plane shell element: SHEILA is a 4-noded quadrilateral plane-shell
element that can be used to model thick and thin plates/shells with equal accuracy. The
element is formulated in a local mean plane defined by the mid-points of the four edges
and transformed into the global Cartesian system. The original elements suffer from shear
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locking and the associated stress oscillations. To alleviate these problems the transverse
shear strain fields are made consistent. The transverse shear component in the plane fan-
gential to the element mid-surface is also explicitly matched from element to element —
" edge-consistent formulation — such that the element performs well even when collapsed
to a triangle. The effécts of element warping (i.e. when the element nodes do not lie in a
single plane) is captured by applying a warping correction on the element matrices based
on the virtual work principle (Naganarayana & Prathap 1989a).

SSHLS/DSHLS - 8-noded degenerated shell elements: SSHL8 is a 8-noded element us-
ing the quadratic serendipity functions for interpolating the field-variables as well as its
geometry in element plane Cartesian system. The element deformation is captured in a
running local Cartesian system. The 3-dimensional elasticity equations are degenerated
to 2-dimensional equations using the. assumptions of the Reissner—Mindlin theory. The
element is formulated in two different versions: the single-surface and the double-surface
formulations. The thickness dimension of the 3-dimensional elasticity is modelled us-
ing two sets of geometric nodes on the bottom and top surfaces of the element in the
double-surface formulation. This element is more efficient for modelling problems in-
volving adjacent elements that do not share common normals at the joining nodes. On the
other hand, in the single-surface formulation, the thickness dimension in the 3-dimensional
elasticity equations is modelled using the normal to the element midsurface at the element
nodes. Such formulations need only one set of mid-surface nodes and are convenient to use
in general. The single-surface formulation is particularly efficient in modelling problems
involving adjacent elements that share a common normal to their mid-surfaces.

These elements, in their conventional form, suffer from transverse shear locking, mem-
brane locking, parasitic shear and associated stress oscillations. A special technique called
line consistency (Naganarayana & Prathap 1989b) is used to make the transverse shear
strains completely consistent without introducing any spurious zero energy modes. Selec-
tively reduced integration strategy and the assumed strain method are used to eliminate
membrane locking (by making the membrane strain energy consistent) from the elements
DSHLS and SSHLS respectively. Therefore, SSHL8 can be used to model the laminated
composite structures more efficiently when compared to DSHLS. The parasitic shear is
also eliminated from the formulations by making the in-plane shear strain component
field-consistent. These elements are very accurate even when they are distorted to some
extent.

SSHLY/DSHL9-9-noded degenerated shell elements:  Single-surface and double-surface
elements are also formulated using the biquadratic Lagrangian shape functions resulting in
the corresponding 9-noded formulations — SSHL9 and DSHL9. Again the 3-dimensional
elasticity is similarly degenerated to a 2-dimensional formulation. The geometric descrip-
tions of the two versions are also similar to that of their serendipity counterparts.

These elements, in their conventional form, suffer from transverse shear locking (de-
layed convergence), membrane locking, parasitic shear and the associated stress oscilla-
tions. The transverse shear strain components are made field-consistent using the method
of Legendre polynomial expansion without introducing any spurious zero energy modes.
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Selectively reduced integration strategy and the assumed strain method are used to elimi-
nate the membrane locking (by making the membrane strain energy consistent) from the
elements DSHL9 and SSHLY respectively (not published). Again, SSHL9 is more efficient
in modelling the laminated composite structures when compared to DSHL9. The parasitic
shear is also eliminated from the formulations by making the in-plane shear strain com-

ponent field-consistent. These elements are very accurate even when they are distorted to
some extent.

4.6 Elements for 3-dimensional elasticity

A family of linear and quadratic hexahedral elements are developed based on an isopara-
metric formulation. The elements are based on 3-dimensional elasticity. They can take

orthotropic and anisotropic material properties. These elements can be used to model any
structure subjected to hygro-thermo-mechanical loads.

HEXA8 — A 8-noded hexahedral element: HEXAS is an 8-noded brick element using
the trilinear Lagrangian interpolation functions for element geometry as well as field-
description. In its original form, it suffers from shear locking when used to model thin
structures and near-incompressibility locking when used to model nearly incompressible
‘structures and the associated disturbances in the stress recovery. It is made free of these
errors by augmenting the displacement fields with the incompatible (bubble) functions and

making the resultant constrained transverse shear and volumetric strains field-consistent
(Chandra & Prathap 1989).

HEXA20: A 20-noded hexahedral element: HEXA20 uses the 3-dimensional quadratic
serendipity shape functions for interpolating the element geometry as well as the field vari-
ables. In its conventional form it suffers from both shear locking and near-incompressibility
locking. These errors are alleviated using the consistency concepts in line with those used
for the 8-noded plate elements in Prathap et al (1988). The resulting formulation is free of

locking and stress oscillations, but suffer from spurious zero energy modes when used to
model loosely constrained problems.

HEXAZ27: A 27-noded hexahedral element: HEXA27 is also an isoparametric formula-
tion based on the triquadratic Lagrangian shape functions. In its original form, it suffers
from locking and/or delayed convergence and stress oscillations. The line-consistency con-
cepts are extended to 3-dimensional plane-consistency and the method of Legendre poly-
nomial expansion is used to eliminate locking problems from this element (Naganarayana
& Prathap 1991) without introducing any spurious zero energy mechanisms.

S. The higher order transverse deformable elements

The demand for accuracy in the transverse stress predictions — in thick and laminated
structures ~ is increasing owing to. the advanced structural applications, particularly in
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the aerospace and automobile industry. Such demands are being made frequently with
the advent of high-precision design strategies, high computational capabilities and safety
awareness. A full-fledged 3-dimensional solution for obtaining the transverse stress distri-
bution is very expensive from a computational point of view. Recently, several higher-order
transverse deformable plate/shell theories and the corresponding finite element formula-
tions have been used for predicting more accurate transverse Stress distributions over the
plate thickness when compared to their elementary and first-order counterparts.

Higher order flexural deformation in plates has been modelled in many different fashions

" leading to existence of several higher order shear deformable theories (Lo et al 1977,

Reddy 1984; Liao et al 1992). Out of the several theories, the Lo—Christensen—Wu theory
is found to be the best candidate from the general finite element package point of view
since it requires purely CY-continuous field description.

5.1 Theoretical basis

The 3-dimensional displacement field is expanded in terms of the thickness coordinate
explicitly such that the in-plane displacements are interpolated to a cubic level while the
transverse displacement is interpolated to a quadratic level as:

Ulx, y,2) = u(x, y) +26(x, y) + 220" (x, ) + 2°6* (x, »),
Vix, y, 2) = v(x, y) + 26 (%, ) + 2205 (x, ) + 22 (x, ¥),
W, y,2) =w(x, y) +2¢ (x, ) + Z2w*(x, y), (1)

thus reducing the 3-dimensional elasticity to a 2-dimensional problem. By substituting the
above displacement field description into the regular 3-dimensional strain-displacement
relations, we get a cubic description for the in-plane strain components, a parabolic descrip-
tion for the transverse shear strain components, and a linear description for the transverse
normal strain component across the plate thickness.

5.2 Finite element technology

Again, from a general purpose applications point of view, finite element formulation should
be free of all errors irrespective of their shape and thickness. In the limits of thin plates,
the transverse shear and normal strain energy components are constrained to vanish in
the higher order shear deformable element formulations. The specific consistency require-
ments for such elements and the variationally correct method of achieving the same have
been recently evolved (Mohan et al 1994) so that the higher order shear deformable ele-
ments can model the above mentioned physical constraints correctly. It should be noted
here that the transverse shear strains are made consistent in the thickness coordinate by
suitably choosing the field description. The consistency requirements in the in-plane co-
ordinates are explicitly achieved using the method of Legendre polynomial expansion.
The elements are then made edge-consistent by matching the tangential transverse shear
strain/stress components across the element boundaries in any arbitrary patch of elements
and by mapping the constrained strain fields from the natural covariant space to the global
Cartesian space in a consistent fashion (Naganarayana ez al 1995). The elements based on
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such formulations perform very accurately, both in terms of displacements and stresses,
even in their most distorted forms. A library of error-free beam (stiffener) (2-noded element
BEAM?2 and 3-noded element BEAM3) and plate elements (4-noded element QUAD4 and
9-noded element QUADY) are developed based on consistency and correctness principles.
Uniform full integration schemes are used in the element formulations. All the elements
behave accurately in linear static, dynamic and instability applications. All elements can
take laminated materials constitution with each lamina taking 3-dimensional orthotropic
properties. - |
The complete library of laminated beam/plate elements that are currently available are
being extended to tackle curvilinear laminated curved-beam/shell problems. This element
library comprises the special module that is being planned to enhance FEPACS with
extended interlaminar stress analysis capability as well as enhancing its current capability
to tackle structures that are very thick and/or highly flexible in transverse deformation
more accurately. With this complete module of higher order transverse deformable curved-
beam/shell elements, one can model any general stiffened laminated composite structures.

6. Linear analysis capabilities

The power of a general purpose finite element package is reflected by its capability to tackle
a wide range of problems in its field of application. The solution capabilities, apart from
the element technology that is used, mainly represent its versatility. Today, for structural
applications, it is essential to have complete linear (static, dynamic and stability) solution
capabilities in a general purpose finite element package.

Currently, FEPACS has the core solution capability of the original SAP software (linear
static and dynamic (lumped mass) solution) which was recently enhanced to tackle dis-
tributed mass and linear stability as well. The solution can be performed in a single block
(in-core solution) as well as in multiple blocks (out-of-core solution). Thus the solution
capability can be utilised very efficiently for small as well as large problems as the require-
ment arises. Thus, the package can tackle any number of degrees of freedom provided the
computer platform used can support the scratch file and dynamic memory requirements.
The element matrices are assembled into their global counterparts in a banded form to
optimise the memory requirement.

In this section, we shall briefly touch upon the salient features of the solution capabilities

of FEPACS and the recent developments that are underway to improve/replace the present
module..

6.1 Linear static analysis

A typical static structural analysis involves solving a set of simultaneous equations repré—
senting the structural equilibrium:

[Klu = f, 2

where [K] is the structural stiffness, f is the vector of applied nodal forces, and u is
the vector of the unknown nodal degrees of freedom. A Gauss elimination algorithm is
used to decompose the positive definite symmetrical system of equations. The algorithm
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is optimised to a certain extent: no operations on the zero elements, load vectors are reduced
at the same time as the stiffness matrix is decomposed.

Once the equilibrium equations are solved for the nodal displacements, the element
stresses are computed from the element nodal displacements extracted from the displace-
ment solution using the same strain-displacement and constitutive relations that were used
in computing the element stiffness. Stresses are recovered accurately all over the element
domain since the element technology used is based on the consistency and correctness
principles. Stresses can, normally, be recovered at either element nodes or at the popular
Barlow points for each element. The stress/strain fields are reconstituted in accordance
with the unconstrained-field consistency paradigm such that the results are variationally
correct even when the sectional properties of the structure varies over an element.

6.2 Linear natural frequency analysis

Free vibration analysis is one of the basic requirements in structural design in many fields
of applications — aerospace, offshore, seismic, automobile etc. Typically, the problem is
to solve a set of homogeneous equations,

K¢ = 0* (M1, 3)

where [M] is the structural mass matrix; and  and ¢ are the natural frequency and mode
shape respectively. The above eigenvalue problem is solved for the lowest natural fre-
quencies using two distinct solution procedures: determinant search method and subspace
iteration technique (Bathe & Wilson 1973). The determinant search solution is carried out
when the element matrices can be contained in the high-speed or active memory in one
block. On the other hand, for systems of large order and bandwidth the subspace iteration
method is used such that the equilibrium equations are tackled in multiple blocks. Both
solution techniques solve the generalised eigenvalue problem directly without a transfor-
mation to the standard form (Bathe & Wilson 1973). Originally, only lumped mass was
considered. Recently, the option of distributed mass was also included (Naganarayana et al
1993) into FEPACS so that one can obtain a better model for the free structural vibrations,
since the element library is basically based on a shear deformable theory and hence can
depict secondary frequency spectra accurately (Bhashyam & Prathap 1981).

6.3 Linear dynamic analysis

For the response history analysis of structures subjected to dynamic loads we seek solution
to the dynamic equilibrium equations,

[M1d%u/dt? + [Cldu/dt + [Ku = f, “4)

where M, C, K are the mass, damping and stiffness matrices of the structure, and f
and u are the transient nodal force and displacement vectors. The damping matrix is
computed as a linear combination of the mass and stiffness matrices such that the modal
orthogonality is satisfied. Asa variation, the dynamic equilibrium equations can also handle
structures subjected to uniform ground acceleration by replacing the right hand side by
—[M1d%u ¢/ dr? where ug is the ground displacement and u is the structural displacement
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with reference to the ground. The dynamic structural response analysis problem, can be
carried out in two ways using FEPACS: natural frequency analysis followed by response
history analysis using the mode superposition method, and response history analysis by
direct integration (Clough 1962).

In another variation of dynamic analysis, with a particular reference to seismic problems,
the Cartesian components of the ground acceleration can be used to carry out the response
spectrum analysis using the concept of spectral displacement (Clough 1962). FEPACS
computes the maximum responses for each mode where the spectra (displacements or
accelerations) in the three directions are assumed to be proportional to each other.

6.4 Linear stability analysis

The linear buckling analysis of a structural system is carried out as an eigenvalue solution,

[K]¢ = A[Gle, (5)
where G is the structural geometric stiffness; A represents the critical load factor; and ¢ is
the corresponding buckling mode. It is assumed that the pre-buckling structural behaviour
is linear in nature and that the internal force distribution is linearly proportional to the
applied reference force. Then, the applied reference load multiplied by the critical load
factor A, represents the buckling load configuration.

Sometimes, the internal force distribution is known a priori for a given load config-
uration. In such cases, the elastic and geometric stiffness matrices are computed for the
system and the eigenvalue solution is carried out directly (single phase strategy) to find
the buckling loads and modes. However, very often, the internal force distribution has to
be computed explicitly for a problem with certain specified topology, boundary conditions
and material constitution. In such cases a multi-phase strategy is adapted wherein a pre-
liminary static analysis is carried out to find the internal force distribution induced in the
structure by the reference loads which is then used to find the structural geometric stiffness.
The elastic stiffness computed in the first phase and the geometric stiffness computed in
the second phase are then fed ', r the final phase of eigenvalue solution to obtain the criti-
cal buckling loads and the associated modeshapes. Thus, FEPACS can be used to analyse

simple well-defined as well as general structural instability problems very efficiently and
accurately (Naganarayana et al 1993). o

6.5 Frontal solution module

The method of solving the equilibrium equations is a major factor influencing the com- '
putational time and memory requirement in general finite element structural analysis.

This becomes very important, particularly in case of nonlinear and/or dynamic finite el-

ement analyses, where several equilibrium iterations have to be performed for several

load/time/displacement increments. From the point of computational efficiency, time and

memory, frontal solution techniques are becoming more and more popular recently since

these techniques can possibly give an edge over the conventional active-column solution

strategy as the one existing in the current version of FEPACS.

In frontal solution technique (Irons 1970), the complete assembly of the global matrix
is never carried out explicitly. The process of assembly of elements and elimination of
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variables are carried out simultaneously. Typically, the degrees of freedom associated
with a structural node are statically condensed out of the solution system as SOOn their
interaction with the nodes on the boundary surrounding the node is well established in
the simultaneous process of continuing assembly of element matrices and the equilibrium
solution. Thus the distinctive feature of frontal method is storing only the active equations
in the core memory. This feature leads to low core memory requirement. Apart from this,
the frontal method has several other advantages as well. Back-substitution for different
load vectors requires very little core memory. This feature is particularly attractive in the
context of nonlinear analysis or eigen solution where many resolution with different right-
hand-side vectors are required. It is much easier to add static condensation and, therefore,
the substructuring capabilities into the solution capabilities. Since the assembly and the
solution processes are reasonably parallel in nature, frontal solution is more convenient
for parallelising and/or vectorisation.

A complete solution module for linear static, instability and dynamic structural analysis
is being planned in a stand-alone mode. This module could be tailored to be absorbed in
FEPACS subsequently. It is also planned to use the frontal solution capabilities for the
forthcoming nonlinear finite element modules, that are being developed, independently. It
is currently aimed at including some special modelling facilities to handle multiple load
cases, fixed or rigid boundary conditions, prescribed displacement boundary conditions,
multipoint constraints, skew boundary conditions, lumped and/or consistent mass matrix,
concentrated mass at arbitrary nodes, static condensation and substructuring, and various
types of elements that are in the current FEPACS version.

In the first phase of the work, the basic frontal algorithm has been developed for static
solution and all the modelling features mentioned above have been incorporated. In the
next phase, it is planned to include a general eigenvalue solution capability such that linear
buckling and free-vibration analysis can be performed. In the third phase, forced response
computation capabilities would be included to complete the solution capabilities in-par
with the current regular solution features of FEPACS.

7. Composites applications

Laminated composite structures are gaining importance in many applications, particularly
in the fields of aerospace, automobile and naval engineering. Their growing popularity
can be traced to many desirable properties they possess, such as, very high weight-to-
strength and weight-to-toughness ratios, excellent fatigue resistance, tailorable directional
thermo-mechanical properties, reduced part count over their metallic equivalents etc. They
have been routinely used to produce many structural components as well. Today, there-
fore, the thrust of general purpose computational structural mechanics is to enable one
to model general laminated composite structures subjected to hygro—thermo—mechanical
loads. v

In FEPACS, bending elements are allowed to have a general laminated construction such
that each lamina can take isotropic, orthotropic or anisotropic material properties with dis-
tinct thicknesses. The formulation for modelling laminated structures with 3-dimensionally
orthotropic laminae is presented below. The model can take any number of layers with
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any arbitrary fibre orientation and thickness. The mechanical strains experienced by the
structure are given by,

€m = ( (€+ZR)—(€0 +Z'£0) >’ (6)

tY .
where €, k and v are the fotal membrane, bending and transverse shear strains, and €
and K are the initial (thermal) membrane and bending strains proportional to midsurface

temperature T and temperature gradient AT respectively. The constitutive relation for the
anisotropic medium is given by, :

where Q is the constitutive matrix containing 21 independent constants. N ormally, lami-

nated structures are composed of laminae with 3-D orthotropic properties. Depending on

the type of lamina materials, Q can be appropriately computed. If P is the potential of the
applied loads, the total potential energy for the system is given by

: .
Pyrpr = §/€£’Q€mdv - P. (8)
v

S'ubstituting (6) and (7) in (8), and applying the minimum tota] potential energy principle,
we get the structural equilibrium equations as,

f (b€’ (Ae + Bk — FT — GAT)
A
+8xT (Be + Dk — GT — HAT) + 6vTE~)dA = sp, 9

where, if Q and Q represent the constitutive matrices correlating the inplane and transverse
deformation respectively,

L
ABED)=Y" [ 21Q0 2 Pdz
=17u

L
®GBm =3 [ 4y1Qaliz
=12

L

E=Z/ 2141Qudz (10
=174 )

and « is the vector of thermal expansion coefficients.

In case of anisotropic construction, the structural constitutive relations, matrices A, B,
D, E, F, G and H, have to be explicitly supplied to FEPACS. This 2-dimensional model
is used in formulating the plate/shell elements — SHEL4, SSHLS8, DSHLS, SSHI9 and
DSHLS. For the one-dimensional elements — EBEAM?2, TBEAM? and TBEAMS3 — these
2-dimensional relations are statically condensed to get the equivalent one-dimensional
constitutive relation.

The higher order shear deformable laminated composite beam/plate elements (§ 5) are
also formulated in a similar way. These elements can be effectively used for refined linear
interlaminar stress analysis and for linear dynamic and instability analysis of laminated
plates and beams under hygro-thermal and mechanical loads (Mohan ez al 1994).

i PR
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8. Hygro-thermal loads

Recently, it was observed that displacement type elements suffer from extraneous stress
oscillations when used to model hygro-thermal loads (Prathap & Naganarayana 1994). It
was shown that it was due to violation of the unconstrained-field consistency paradigm.
Solutions are offered to eliminate these errors in first order shear deformable and 1-, 2-
and 3-D elasticity formulations by reconstituting the initial strain fields to achieve consis-
tency with reference to the corresponding total strain fields. The orthogonality conditions
required are derived by taking an equivalence of the single-field minimum total energy
principle with the general three-field Hu-Washizu principle. ,

The consistent, correct and complete analysis capability is implemented in FEPACS for
hygro-thermal stress analysis of general Jaminated composite structures. FEPACS consid-
ers a temperature description that is compatible with the displacement field description.
For example, both mid-surface temperature and temperature gradient across the element
thickness are considered in case of bending elements and the coupled membrane-flexural
structural behaviour is captured. This becomes particularly important in applications to
laminated composite structure where the in-plane and flexural deformations can be im-
plicitly coupled. : »

The consistency paradigms — related to the initial strain problems — are recently ex-
tended to the higher order shear deformable element formulations. It is noticed that the
inconsistent hygro-thermal strain field description can also affect the constrained-field
consistency requirements apart from the above mentioned unconstrained-field consistency
requirements of an element. The consistency paradigms are judiciously applied leading
to optimal element formulations. All the elements in the library of higher order shear
deformable elements are now reconstituted to tackle the hygro-thermal problems in lam-
inated composite structures in a consistent and correct manner. Apart from consistent
hygro-thermo-mechanical stress analysis, it is now possible to compute the combined in-
fluence of the moisture content, the temperature distribution and the mechanical loads on
structural vibration and buckling as well. This capability is being consolidated with the
module of the higher order shear deformable element library.

9. Nonlinear finite element analysis

Today, nonlinear structural analysis is becoming more and more important, acknowledging
the increasing demand for high precision applications, use of advanced materials, and for -
safe design procedures, particularly in aerospace and automobile applications, apart from
conventional fields such as metal forming and many other manufacturing techniques. A
structure can experience mainly two types of nonlinearities — geometric (where kinematic
relations are nonlinear) and material (where constitutive relations are nonlinear) — apart
from other phenomena like contact, friction etc. Very often nonlinear structural behaviour
is coupled with (macro-) structural instabilities (e.g. buckling) and/or material or micro-
structural instabilities (e.g. necking, shear band formation etc.). As a first step toward
having a complete nonlinear capability in FEPACS, work has been in progress in developing
fully automated geometrically nonlinear analysis capability for structures with possible
structural instabilities. '
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bifurcation points (Naganarayana 1995). Such Strategies are currently being implemented
in a modular fashion for general finite element applications.

10. Pre- and Post-processing

Keeping in mind the vast usage of the finite element method for real-state problems, it has
become nearly impossible to depend on manual data Preparation and result interpretation.
A pre-/post-processor has, therefore, become an integral part of finite element analysis. Ef-f

point of view with a Graphical User Interface (GUI).

Recently, FEPACS was interfaced with a commercially available pre-/post-processing
software released by MSC — MSC-XL - which intrinsically supports the MSC/NASTRAN
data structure (Geetha & Naganarayana 1995). The sort and search algorithms of NAS-

erated using the linear elements of NASTRAN.
Currently, another commercial pre- and Post-processing software released by EMRC —

DISPLAY-ITI - which supports the finite element package, NISA, is being interfaced with
FEPACS. The data handling structure of NISA is reproduced to interpret the NISA data

system. The X-developmental tools and Motif are being used for the menu/window op-
erations and the graphics. The skeletal infrastructure is developed for incorporating the
slots for desirable Capabilities of a pre- and post-processor to be filled in due course of
time — NALGRAF. As an initial step, a post-processing module is implemented in the

4
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infrastructure for presentation graphics. Currently, a general purpose geometric modelling
module with manual support as well as with an expert advisor support is being developed
for incorporation in the infrastructure.

11. Structural damage assessment/prediction

Damage is one of the most important criteria for safe design, particularly in aerospace
and automobile applications. And, composites are becoming the preferred candidates for
many structural applications due to their obvious superiority over their metal counterparts,
particularly from the specific strength point of view. Their applications are still limited
since their behaviour is not understood properly from a damage mechanics point of view.
Accordingly, failure mechanics in composite structures has been one of the thrust areas of
research in the literature for the past 2 to 3 decades.

Recently, work has been initiated to develop a damage module for FEPACS. As a first
step, failure mechanisms in delaminated structures have been critically examined taking the
geometric nonlinearity of the structure and delamination propagation into consideration.
A simple method is evolved to model the delaminated stiffened composite structures, to
predict delamination growth in terms of pointwise energy release rate distribution along the
delamination edge, to trace the multiple post-buckling deformation modes, and to predict
the residual strength of the damaged structure (Naganarayana & Atluri 1996).

12. Expert advisor for finite element analysis

It is very desirable to carry out tasks that involve high levels of expertise, experience
and judgement even in the absence of the required experts. Today, this desire has come
close to fulfilment to some extent due to the advances in software technology. Expert
system activities are initiated (Naganarayana & Prathap 1992) keeping enhancement of
FEPACS capabilities in mind. An expert advisor was firstincorporated into a 3-dimensional
finite element package for problem modelling and adaptive mesh control (Prathap '& Na-
ganarayana 1992). Later, an expert advisor was devised for the general purpose finite
element modelling of the 2-dimensional structures using the C-language in the DOS en-
vironment (Naganarayana et al 1994). It is now planned to develop a full-fledged expert
system for general purpose finite element modelling as a module in NALGRAF - the
pre-/post-processor that is being developed at NAL (see § 10). Currently, as a first step
toward this goal, the solid modelling and graphics capabilities are being enhanced with
reference to the experience and expertise acquired over the past few years. The software
is developed in C. The menu operations and graphics are supported by the X-development
tools and Motif in the UNIX operating system environment.

13. Finite element structural optimisation

A structural optimisation module is being developed for integration with FEPACS. The
module is being planned to incorporate several state-of-the-art Mathematical Pro gramming
Techniques available in the literature for structural optimisation (Haftka & Kamat 1985).
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In the first phase of development, constraints based on static consideration only will be
considered with the objective being weight minimisation; the basic structural elements —
TRUSS, BEAM?2 and SHEL4 — will be supported; and a design sensitivity analysis based
on both displacements and stresses will be incorporated.

Using FEA alone for repeated analysis during the process of optimisation is quite ex-
pensive. Hence, approximate methods (Schmit & Miura 1976) are devised (e.g. Taylor’s
series expansion to define the approximate analysis problem) such that the constraints and
the objective function values can be quickly evaluated with reasonable accuracy and much
less expense. Currently, each FEA cycle is followed by several approximate analysis cycles
and the sequence is repeated until the results converge.

14. Conclusions

In this paper, we intended to outline the research and development activities involved in
developing the general purpose Finite Element Package for Analysis of Composite Struc-
tures (FEPACS). The element technology, modelling and solution capabilities of FEPACS
are briefly described. The current version of FEPACS has the state-of-the-art element tech-
nology based on what are called the C-concepts. It incorporates a complete library of finite
elements (1-, 2- and 3-dimensional linear and quadratic). Each element is free of all er-
rors of locking, delayed convergence and stress oscillation even in its most general form.
The package, currently, has the linear static, instability and dynamic (free/forced vibra-
tions) analysis capabilities. It can model any general isotropic, orthotropic, anisotropic,
and laminated composite structure subjected to hygro-thermo-mechanical loads.
Currently, several research and development activities are in progress in an effort to
enhance the FEPACS capabilities both in terms of utility and applicability to a wider range
of problems. The current linear solution capability of FEPACS is being augmented by an
independent module based on frontal strategies. Work is in progress to evolve automated
general nonlinear solution capability for finite element applications. From pre- and post-
processing point of view, FEPACS is now being supported by two commercially available
GUI’s - MSC-XL on UNIX platform and DISPLAY-III on DOS platform. An indigenous
GUL is being developed in the C-language using X-developmental tools and Motif kit for
graphical support on UNIX platform. An expert advisor for structural modelling, finite
element modelling and structural analysis is being developed in association with such
a GUI. A module for structural optimisation is also under progress to be incorporated
with FEPACS. Finally a module for damage assessment and/or prediction is also initiated

particularly for composite applications. In this paper, all these activities were also briefly
touched upon. :

The authors are grateful to Prof. R Narasimha and Dr. K N Raju for their constant encour-
agement and keen interest in the activities. They also acknowledge Dr. K Guruprasad, M/s
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Mr Bhaskar, Mr Cheman, Ms Shashirekha, Ms Geetha, Ms Manju and Dr. Rajashekar for
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