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" Abstract. The finite element method has progressed rapidly from
simple engineering principles through rigorous mathematical formal-
isations to become a body of engineering knowledge incorporating
well-defined conceptual schemes and operational procedures. The
current practice however leads to a series of difficulties which are
actually inter-related. In this paper, we describe an additional concep-
tual scheme called ‘field-consistency’, and demonstrate new method-
ology and terminology that helps to clear up this area of the finite
element method that had remained difficult to understand for some
time. The new procedure also enhances the predictive capabilities of
error analyses of the method, giving it some of the self-criticality needed
for a ‘falsifiable’ scientific basis. This paper is alsoin a limited sense, an

~ essay on how the processes of the method of science are seen to work in
this area of engineering know-how.

Keywords. Constrained strain-field problems; finite element; shear
Jocking; membrane locking; parasitic shear; field-consistency; func-
tional reconstitution; additional stiffening parameter; the scientific
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1. The field-consistency paradigm — introduction

1.1 History of the finite element method

The finite element method, as we know it today, was invented by practising
aerc'maut_ical engineers and its early developments proceeded from simple
engineering judgement. Its initial acceptance as a valid and reliable method of
struqtural analysis was based on an a posteriori understanding of the results
obtained by it in terfns of known analytical results of familiar and tractable
structural problems (Turner et al 1956; Argyris 1960). '

. The method soon began to accept more rigorous mathematical formalisations of
lts.pr(_)cedur_es. This involved the identification of variational and weighted residual
principles such as those of minimum total potential, complementary energy, mixed
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To this extent, the finite element method was becoming a formal science.

However, the weakest link in the chain remained that of the actual chojce of the
discretisation domain (in terms of shape and size and orientation with respect to
coordinate axes) and the shape function definitions over that domain that would
produce the weighted residual discretised approximations of the continuum
behaviour in that domain, Here, the method was practised more in the form of a
skilled ‘art’ rather than as a precise ‘science’. We shall presently see what we mean
by this.

The strategy of discretisation was based on the quick acceptance of a broad
conceptual scheme which crystallised into a conventional wisdom that was readily
backed by the authority of teacher and text. Around 1977 (Zienkiewicz 1977), the
cardinal principles that informed this wisdom were summarised thus — the
piecewise approximations used over element domains should be based on complete
polynomials: these should be compatible, i.c., satisfy the continuity of these
functions or their derivatives, where required, across inter-element boundaries;
these functions should be able to represent states of constant strain in the limit; and

finally, that these functions should be able to recover strain-free rigid body
motions. -

1.2 Introduction of field-consistency concepts

applications, even though these same elements were in many other respects,
excellent. Some familiar examples of these were known under the names ‘shear

locking’, ‘membrane locking’, ‘parasitic shear’ etc., some of which we shall

examine later. The terms of the conceptual schemes embodied in the conventional
wisdom so far did not therefore provide all the sufficient conditions. Conversely, it

~Some of these problems were recorded in the literature quite early as ‘locking’,

‘parasitic shear’ etc. and quite often, it is believed now, some went unrecorded as
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The need for a new conceptual scheme, not so much to supercede the old wisdom
as to complement it, was apparent. The early work of the author and his colleagues
(Prathap & Viswanath 1982; Prathap & Bhashyam 1982; Somashekar i983'
Viswanath & Prathap 1983) focussed on some of the strategies or ‘tricks’ that Were:
used to salvage elements that suffered from deficiencies such as shear locking
membrane locking, parasitic shear, locking at incompressible limits etc. This wa;
performed within the context of the prevailing paradigms and its inadequacies
especially with respect to its inability to provide a ‘falsifiability’ capability of erro;
analysis, became quit. obvious. In the terminology of Kuhn (1962), a ‘paradigm
change’ was called for. Subsequent work on curved beams (Prathap 1985a), plane
stress modelling of flexure (Prathap 1985b), plates and shells (Prathap 1985¢ ’d) and
bricks (Prathap 1984a,b) led to the formulation of the new paradigm, calaled for
brevity, the field-consistency principle, and definition of new terminology (Prathap
1984c,d), a new error norm (Prathap 1985¢) and its use to bring all these
phenomena under a single classification.

1.3 Field-consistency as a ‘falsifiable’ scientific basis

Before passing on _tg the main body of the new theory, we shall briefly consider
here how the identification of the problem area, the founding of a conceptual basis
to examine the problems and tackle them and see why they are effective, can be
examined in the context of the processes of the method of science, and in
particular, the ideas of Popper (1972) and Kuhn (1962) on the scientific method.

The test of any body of knowledge to succeed as a science is established from its
ability to proceed from its conceptual schemes to predict or anticipate a priori, a
wide range of observed, observable or verifiable phenomena, using specially
designed operational procedures. In this paraphrasing of Popper’s falsifiability
theorem (Popper 1972), we shall consider the body of knowledge known as the
“finite element method’ to have become a true science only when it incorporates
within itself specific procedures which constitute the elements that can contribute
to its own self-criticism. '

We therefore seek to associate a certain paradigm or conceptual scheme that
guides the selection of the discretisation process involved in the finite element
method so that predictable results will always emerge. The critical aspects of this
are seen to be the choice of shape and size of the elements and the form of the
interpolation functions chosen. It is further necessary to incorporate auxiliary
procedures that can anticipate the type and degree of error that will result from the
discretisation procedure alone.

Having done this, it is logical to see if these a priori anticipations are really true
by carrying out actual digital computations with the finite element. Thus, in the
finite element method, we are in a position to perform numerical experiments,
which could confirm or falsify the predictions we make, starting from the postulates
of the conceptual schemes that inform the critical stage of this discretisation
process. These could be viewed as Kantian experiments, in the terminology of
Medawar (1979, pp. 69-77).

The work initiated by the writer and his colleagues has been directed towards
founding an additional conceptual scheme called field-consistency, defining the
new terminology to give it a proper vocabulary, devising an operational procedure
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called the functional re-constitution technique to give it a self-critical error analysis
capability and using it to examine a series of problems in the finite element method
that had defied a proper ‘scientific’ analysis earlier.

In this paper, we review the work done in this area and its possible applications
to the design and development of finite element software.

2. A brief overview of the field-consistency approach

We describe very briefly in this section, the basic features of the principle. In
subsequent sections, we shall take up a more comprehensive description of the
conceptual scheme and procedures. We shall then consider the error analyses
aspects of the new methodology and show how the present definitions allow a
greater degree of self-criticality of the procedures involved. We shall finally review
the work done to develop specific elements based on this theory and their potential
applications in general purpose software. :

The field-consistency approach emphasizes the need to recognize that problems
in structural mechanics (or more generally, in continuum mechanics), which need a
description in terms of several strain-fields derived from one or more field variables,
may require that one or more of these strain-fields must vanish in certain
constraining limits. - Conventional displacement method approaches based on
independent low order functions that satisfied only the principles outlined earliet
under the conventional wisdom could not ensure that these strain-fields would
vanish in what, in our new terminology (see below), was called a ‘consistent’ way.
These field-inconsistencies led to the enforcement of spurious constraints in the
limit. '

It remained now to devise an operational procedure that could perform an error
analysis, keeping track of how field-inconsistencies emerged through the mathema-
tics of discretisation to cause the degraded performance known as ‘locking’, or poor
or delayed convergence even where locking was absent, and violent spurious stress
oscille}tions. This operational procedure, called the functional re-constitution
technique, was successfully applied to a wide range of problems (Prathap &
Bhashyam 1982; Prathap & Viswanath 1982, 1983; Prathap 1984a—d, 1985a—¢). The

conceptual scheme offered new strategies to devise ficld-consistent elements free of

these errors and the field re-distribution strategies (Ramesh Babu & Prathap
1985a,b; Prathap & Ramesh Baby 1985a,b) appear to be the most elegant method

of designing elements free of locking and spurious stress oscillations. An
elaboration of these ideag follows.

3. Definition of the ﬁeld-consistency terminology

We pegin by defining the terminology and vocabulary of the new paradigm in as
consistent a way as the presept state of the art makes it possible.

3.1 Constrained multi-strain-field problems

We first recognize a single classification scheme for those problems which show
POOr convergence, stress oscillations etc.
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when a finite element discretisation is made. These are problems in structural
mechanics which need a description of its continuum behaviour by more than one
strain-field. In many practical situations, the engineering dimensions of the
problem (e.g. a very thin Timoshenko beam, a very thin Mindlin plate) or the
physical response due to the nature of the loading and the supports (e.g.
inextensional bending of an arch) or the problem statement (e.g. an exterior
penalty function approach) will require that one or more of these strain-fields must
be constrained in particular ways. The discretised functionals for the strain energy
of a finite element corresponding to the constrained strain-fields should be able to
vanish in a way that ensures that only true constraints emerge in the limit. Where it
fails to do so, we have the problems associated with field-inconsistency.

Table 1 gives a representative list of exercises which come under this class. In this
review, we shall examine one of these exercises to show that the inability of the
chosen field interpolations of a finite element to represent consistently the
constrained strain-fields, can result in the very poor performance reflected as
locking, poor convergence, stress oscillations etc.

3.2 Field-consistency

As we have stated earlier, one of the critical steps in the discretisation process is the
selection of interpolation functions to describe the field variables over the element
domain. These functions are usually chosen in the form of polynomials of a certain
order. The number of constants used in each interpolation will depend on the
number of nodes at which the field variable appears as a degree of freedom, and any
other additional nodeless degrees of freedom corresponding to that field variable
that may be introduced. From these definitions, one can compute the strain-fields
also as interpolations associated with these constants by obtaining the correct
derivatives of the field variables. In a multi-strain-field problem, these strain-fields

~ will have as coefficients, terms from more than one field variable. Depending on

the order of derivatives of each field variable appearing in the definition of that
strain-field and on the order of the interpolation functions used for each
contributing field variable, the coefficients of the strain-field interpolations may have
constants from all contributing field variable interpolations or from only one or
some of these. In some limiting cases of physical behaviour, it will become

Table 1. Some constrained multi-strain-field problems.

Strain-fields

Name of

exercise Unconstrained  Constrained
Plane stress. phne strain, 2D; 3D brick modes of ‘

flexure Normal Shear
Plane strain, 20); 3/) bricks modes of nearly

incompressible clasticity ‘ Distortional Dilatational
Shear flexible beams (Timoshenko) and plates

(Mindlin) Bending  Transverse shear
Inextensional bending of curved beams; thin shells ~ Bending Membrane
Shear flexible thick curved beams; shells Bending Membrane and

shear
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necessary for these strain-fields to be constrained to zero values. These can arise
naturally, but indirectly, from classical variational statements (e.g. the minimum
-energy principle in displacement type elements) on which the finite element models
are based, in certain geometrical situations, €.g., vanishing thickness of shear
flexible beams, plates and shells, or they can arise directly in exterio. penalty type
formulations, e.g., the discrete Kirchhoff hypothesis enforcement in thin plates and
shells by a large penalty factor. In the former case, the constraints are embedded

internally in the formulation and emerge as the geometrical or material limits are

reached at which these constrained states are the natural condition for the problem.
In the latter case, the constraints are introduced externally and reflect the limiting
constrained state directly.

Where the discretised strain-field is such that all the terms in it (i.e. the constant,
linear, quadratic etc.) have, associated with it, coefficients containing contributions
from all the independent interpolations of the field variables that appear in the
definition of that strain-field, the constraint that appears in the limit can be
correctly enforced. Such a representation is said to be field consistent. The
constraints thus enforced are called ‘true constraints’. Where the discretised strain-
field has coefficients in which the contributions from some of the field variables are
absent, the constraints may incorrectly constrain the contributions from the field
variables present. These are called ‘spurious constraints’.

3.3 Errors of the first and second kinds

We now try to draw a distinction between the special errors that arise due to the
‘spurious constraints’ and the more familiar errors of discretisation. In a continuum
problem with unconstrained strain-fields and only a single field variable, the errors
of discretisation are of simple form and these usually vanish rapidly as the mesh size
is reduced. However, in a multi-strain-field problem in which at limiting cases,
constrained strain-fields must be enforced, the ‘spurious constraints’ can give rise to
a form of errors that vanish very slowly with reduction in mesh size, and whose
slowness of convergence and magnitude of error is greatly exaggerated by changes
in the structural parameters that emphasise the appearance of the limiting physical
situations. _

By way of illustration of these concepts, we shall examine the results from the use
of linear two-noded Timoshenko beam elements to predict the vertical deflection at
the tip of a cantilever beam loaded by a tip shear force (Prathap & Bhashyam 1982).
Figure 1 shows the rate of convergence obtained when the conventional element
FI (for field-inconsistent) is based on an exact integration of all matrices. It is clear
that convergence is extremely slow, making the use of such elements impractical.
Obviously, there are errors of a form which are not those recognized as the usual
errors of discretisation. To see this distinction clearly, we shall also show by the line
marked by FC (for field-consistent), the convergence obtained by the use of
elements which have been modified according to the field-consistency require-

ments. The convergence is rapid and is similar to that obtained in unconstrained-

problems. .

Walz and coworkers (Walz et al 1970) recognized the existence of these two
kinds of errors. This interpretation in terms of ‘errors of the first kind’ and ‘errors
of the second kind’ was found usefu] when Prathap & Bhashyam (1982) separated




Field-consistent finite elements

- 325
6
B X exact
5- FC
4]
3-
3,
o
2
1-
I
0 F
-1
-2 — T S— Figure 1. Convergenée plot of tip deflection of
2 4 6 8 10 a cantilever beam under tip shear load for
number of elements Lit =10

the spurious constraints from the true constraints for an exactly integrated shear
flexible element. It was seen that a field consistent element obtained by reduced
integration, which had only the true Kirchhoff constraints, had errors which
vanished rapidly as the mesh size was reduced. These errors were independent of
the related structural parameter - the thinness of the beam, (/t) — and these were
‘dentified as errors of the first kind. On the other hand, the field-inconsistent
clement which would result from an exact integration and which will have the
additional spurious constraints, will have errors due to these constraints which are
exaggerated in a (1/t)* fashion (Prathap 1985¢). In the very thin limits, these errors
are so large as to make the results virtually meaningless. This phenomenon is
known as ‘Jocking’, and these locking errors aré called ‘errors of the second kind’.

3.4 Functional reconstitution after discretisation

We examine now how we can provide a procedure that will give this class of
problems in the finite element method, a ‘falsifiability’ capability — essentially an
error analysis procedure interpreted after Popper’s falsifiability criterion (Popper
1972). Starting from the basic premises of the paradigm, its definitions and its
operational procedures, the finite element model will produce a numerical result to
a physical problem. This answer may be in error because the physical model is
wrongly stated, or because the mathematical modelling due to the finite element
discretisation process was faulty. Here, we are primarily concerned with the laws of
numerical analysis alone —we must be able to satisfy ourselves that the
discretisation process has introduced a certain predictable degree of error and that
it converges at a predictable rate, i.e., it is removed in a predictable manner as the
discretisation is improved in terms of the mesh refinement.

To make this sort of error analysis possible, we try to devise auxiliary procedures
that can anticipate the type and degree of error that will result from the
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discretisation process alone and see that this is really the Case when an actual digital
computation with that element is made.

The field-consistency paradigm allows the incorporation of such a procedure to
make accurate 4 priori estimates of errors of the second kind in constrained
multi-strain-field problems which are ‘inconsistently’ formulated. We call this
procedure, the functiona] re-constitution technique (Prathap & Bhashyam 1982;
Prathap 1985a,b).

The method of functional reconstitution after discretisation (Prathap &
Bhashyam 1982) showed how shear locking emerges in a simple linear shear
flexible beam element in which the norma] displacement w and face rotation ¢ are
in(.k.'pendently interpolated. We shall elaborate on this when we consider the shear
Hexible heam clement in greater detail later, Here, we shall briefly describe this
technique. :

The problem of locking arises because of the need to work with a finite gize
element, Thus, in a finjte element idealisation, the mathematical operations of
defining a smal] byt non-infinitesimal element, prescribing interpolations for the
field variables over this domain to a certain order of polynomial, and of
subsequently integrating the functional for the strain energy of the element will
result in a discretised estimate for the straip energy of that region in terms of the
values of the fie]d variables at the nodes and element sizes. In many practical

Teasonably finite size. Ip this case, the Structural parameter enforces the ‘spurious
constraints’ and adds an additional “spurious energy” and therefore an ‘additional
stiffening’ effect. These constraints are physically equivalent to an altered system in
the non-penalty regime, which WE can obtain by reconstituting a functional for the
effective strain energy of an element based on a finite size discretisation. This is

done, by carrying out the discretisation oOperations for a finite sjze element,

volume. This strain energy density represents 4 physical System that contains the
locking” effect dye to field inc0n51stency. This procedure of obtaining a strain

energy functional for the field inconsistent system will be called functional
reconstitution. ; R
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theoretically predicted value. In multi-strain-field problems which are inconsis-
tently modelled, errors of the second kind can be exaggerated without limit as the
structural parameter that acts as a penalty multiplier becomes indefinitely large.
The percentage €Iror norms therefore saturate quickly to a value approaching
100% and do not sensibly reflect the relationship between error and structural
parameter even on a Jogarithmic plot.

Prathap (1985¢) introduced a new error norm called the additional stiffening
parameter, €. This helps to recognise the manner in which the errors of the second
kind can be blown out of proportion by a large variation in the structural
parameter. Essentially, this takes into account the fact that the spurious constraints
give rise to a spurious energy term, and consequently alter the rigidity of the
system being modelled. In many examples, it was seen that the rigid'ity, 1, of the
field consistent system and the rigidity, I', of the inconsistent system, were related
to the structural parameters in the form,

- 1= allty},

where [ is an element dimension and ¢ is the element thickness. Thus, if w is the
deflection of a reference point as predicted by an analytical solution to the
theoretical description of the problem and w(fem) is the deflection predicted by a
field inconsistent finite element model, we would expect

e = wiw(fem) — 1= a(llf)? (1)

A logarithmic plot of the new error norm against the parameter (I/t) will show a
quadratic relationship that will continue indefinitely as (// t) is increased. This was
found to be true of the many multi-strain-field problems reviewed by Prathap
(1985¢) and this will be further described in the subsequent sections.

By way of illustration of the distinction made by this definition, we shall
anticipate again the results from § 4. If we represent the conventional error norm

in the form
E = [w — w(fem)}/w, | @)

and plot both E and the new error norm e from the results for the same problem
illustrated in figure 1 using 4 FI clements against the penalty multiplier (I/f)* on a
logarithmic scale, the dependence is as shown in figure 3. It can be seen that E
saturates quickly to a value approaching 100% and cannot meaningfully show how

' the error propogates as the penalty multiplier increases indefinitely. On the other
hand, e captures this relationship, if it exists, very accurately.

3.6 Spurious stress oscillations

The fact that finite element models can give rise to violent stress oscillations have
been known for some time (Barlow 1976). It is also known that in such problems,
there may be optimal locations where the stresses can be correctly sampled in spite
* of the violent stress oscillations. We now know that these oscillations arise uniquely
in constrained multi-strain-field problems (Prathap & Ramesh Babu 1985¢) and the
e stresses that oscillate thus are those that correspond to ‘inconsistently’ represenged
constrained strain-fields. These oscillations represent spurious self-equilibrating
stress-fields generating the spurious -energy terms leading to ‘locking’ Of poor

- ——
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convergence. The stress oscillations can therefore be thought of as the mechanism
by which the spurious stiffening energy of locking is distributed as a self-

inconsistent part of the constrained strain-fields are self-equilibrating, Zero-points
emerge from such terms and consequently sampling at these points give correct
stresses. It was possible in all such cases (Prathap & Ramesh Babu 1985¢) to
determine these sampling points from g consideration of self-equilibrated
re-distribution of the inconsistent part of the constrained strain-fields alone,

4. An illustrative example. The poor bending response of a shear flexible beam

be based on simple linear Interpolations.
It is apparent that early experiments with such an element proved to be

These early interpretations were based on an understanding in terms of the rank
and singularity of the matrices corresponding to the penalty-linked, i.c., the shear
énergy terms. These interpretations argued that the exact mtegration of the shear
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dramatic improvement in efficiency obtained by making it field-consistent (FC). A
map of percentage error E can be made for N-element models of a cantilever beam
under tip shear load for various ratios of length of beam L to beam depth ¢. Figure 2
shows the relationship on logarithmic scales. It is evident that over the practical
range in which the Timoshenko beam theory is appropriate (i.e. say L/t =5 to
L/t = 1000), the FI models are virtually impractical to use ~ needing as many as
100(L/f) elements to achieve the same accuracy as that obtained with 10 FC
elements!

A reworking of the same shear flexible linear beam element (Prathap &
Bhashyam 1982) afforded a better understanding of the principles involved.
Although the improvement was brought about by reduced integration, this was
rationalised in terms of the types of constraints seen at the penalty limits. The
foundation of the functional re-constitution procedure was laid in the paper and it
| was seen to give very accurate predictions of how an exactly integrated element
would behave in static and dynamic problems. The elaboration in terms of

ficld-consistency interpretations came later and in this section, we reinterpret all
this from this view point.

4.2 Description of element

The strain energy of a Timoshenko beam of length 2/, taking into account the effect
of transverse shear deformation, can be written as the sum of its bending and shear
energy terms,

| U= Uz+Us, 3)
l
| Up= = J El6, 2 dx, (4a)
2 -1
1 .
Ug = % J KGA(8—w ) dx. (4b)
-1

In (4a) and (4b), w is the transverse displacement and 6, the section rotation. E and

—F1 modelling
- --FC modelling
o N=10
100 1
104 7/ - 2
.
. § 14 ~
S [
! P
i 0.1 1
0-01

W element model of a
10 1000 gigure 2. Error map for N-clement ! '
1 > ¥ Z(l). /Sto Tlifnoshenko cantilever beam with tip shear load.
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G are the Young’s and Shear moduli, respectively, and %, the shear correction
factor. 7and A are the moment of inertia and the area of cross-section. The strain
energies correspond to flexural and shear strains of the form

x=20 (5a)

y=60-w,, (5b)

4.3 The field-inconsistent element

The conventional procedure is to start with a linear isoparametric representation of
the two field variables w and . These functions are

Ny =(1-972, |
N = (1+8)12, (6)

where the dimensionless coordinate ¢ = x// varies from — L'to +1 for an element of
length 2/. The strain energies in (4a) and (4b) are then directly computed, in an
analytically or numerically exact way, using these interpolation functions in the
expressions for the strain-fields.

We can now examine, from the field-consistency point of view, the implications
of this approach. If we start from the linear interpolations seen in (6), we can
associate two constants with each of the field variable interpolations in the
following manner,

W= ag+a; (x/]), (7a)

0=0bo+b; (x/). (7b)
These lead to the following interpolations for the strain-fields

X = (b,11), | | (82)

y = (bo—-al/l)ﬁ-bl‘ (x/D). (8b)

An exact evaluation of the strain energies of the element will now give

Us = 3 (ED @D {(b1))2, (9a)
Us = 2l (kGA)(Zl) { (b —41/1)2 +1/3 b%} . (Oh)

Itis possible to see from this that in the constraining physical limit of 4 very thin

bo— ay/l 0, | (10a)

In our terminology, constraint (10a) is field-consistent as it containg constants
from both of tl_le two contributing fiel_d—variables relevant to the shear stra‘in-‘fieidk

hes.e COnstrau?ts can then accommodate the true Kirchhoff constraint jn d Vi
Physically meaningful way.»In direct contrast, constraint (10b) contains only a term b

—
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from 6. A constraint imposed on this will lead to an undesired restriction of 8 — this
is the ‘spurious constraint’ that leads to ‘shear locking’ and violent disturbances in
the shear force prediction over the element, as we shall see presently.

4.4 The field-consistent element

A field-consistent element can be formulated free of this deficiency in many ways.
The ‘trick’ is to evaluate the shear strain energy so that only the consistent term will
contribute to the shear strain energy. This can be done by simply dropping the
undesirable term from the shear strain interpolation in (9b). This same result can
be achieved by a reduced integration rule - i.e. a Gaussian one-point integration of
shear energy. Other techniques like addition of bubble modes, hybrid and mixed
methods can produce the same result if the manipulations are judiciously done to
ensure field consistency. : :

A field-consistent redistribution strategy is offered here as the most elegant
procedure. In this, substitute-shape functions,

N, =N, = 1/2,

are used for the  field variable in the shear-strain definition alone [equation (5b)].
This substitute-shape function can be thought of as a least squares smoothed
equivalent of the original linear interpolation so that the shear-strain field is now
‘consistently’ interpolated in terms of the original nodal degrees of freedom. This
technique is versatile in that it restores field-consistency without disturbing the
number of the nodal degrees of freedom, and in freeing the order of integration
from the field-consistency requirement. The shear-forces are computed directly
from these smoothed functions and are free of the violent fluctuations seen in an

inconsistent formulation.

4.5 Functional reconstitution

It is simple to derive the shear locking present through the functional re-
constitution procedure. The strain energy of a uniform beam of length L and
thickness ¢ can be written as

L L '
= J El0.2 dx+ -71-[ KGA(0—w,.)? dx. (11)
. 0 )

0 <

If an element of length 2/ is isolated, the discretisation process produces energy for
the .element of the form [see ),

me = L(EDQ1)(0,:) + L(KGA)(2)(8—w.x)*
+ L (kGAPP)(21)(6,3/3), (12)

where the constants in (9) which appear in the discretisation process have been
re-constituted into their original continuum form @s contributing field variables.
From this re-constituted functional, we can consider that an idealisation of a beam
region of length 2/ into a linear finite element would produce a modified strain

energy density within that region of
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Te = 7 (EI+kGAPI3)0,2 1 1 kGa (- Wsx)?. (13)

This strain energy density reflects the altered physical system that contains the
shear locking effect. The re-constituted functional for the whole beam is then,

L 1 L .
o= % j EI(1+kGAPI3ED 0,24y + 5[ kGA(0-w,,)dx.
0 0

An exactly-integrated or field-incqn_sistent finite element mode] tends to behave as

It is possible to show that this 4 priori estimate for the error due to

e(fem) = w/w(fem)—1. (16)
From (15), we can postulate the error mode] prediction to be
e=1'1-1= kGAI?/3E] (17)

Figure 3 shows the variation of ¢ with the structural parameter that denotes the
penalty multiplier in thig case, namely kGL%/ Ef2, for the case presented in figure 1.
The crosses indicate the additional stiffening parameter computed for the finjte

Figure 3. Error norms, e, E as functions of

4 2 28 8 Penalty multiplier for g cantilever beam under
log(kGL/t?) tip force.

| |
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element computation [(16)] and the solid line shows the variation as predicted by
the error model [(17)].

In the example, therefore, we have been able to demonstrate that the field
consistency approach has been given a powerful ‘falsifiability’ capability by the
functional re-constitution procedure. We are able to predict that an element,
designed in a certain way and containing certain measurable deficiencies, should
behave in a precisely quantifiable erratic way. Prathap & Bhashyam (1982) also
give an example where it is shown that the error prediction in (14) is equally
accurate for a dynamic case - the free vibration of a simply-supported Timoshenko
beam. Figure 4 shows how an estimate of the additional stiffening parameter based
on the square of the frequencies of the first mode, i.e.

e = w*(fem)/w?—1,

varies with the additional stiffening parameter for a simply-supported beam.

4.7 Shear force oscillations

The inconsistent constraint will further appear as a violent spurious shear force
oscillation. If V is the shear force predicted by a field-consistent shear strain field
and if V is the shear force obtained from the original shear strain field, we can write
from (8b),

V = kGA (by—a;/1), (18a)
V =V+kGA(b,) (x/1). (18b)

We see that V has a linear term that relates directly to the constant that appeared in
the spurious constraint (10b). Thus, in a field-inconsistent formulation, this
constant will activate a violent linear shear force variation when the shear forces are
evaluated directly from the shear strain field given in (8b). Using an extension of
the functional re-constitution procedure, it is possible to make a priori estimates for
the magnitude of these oscillations. This establishes that field-inconsistency is the

log e,log E

1009/ error
1€

-1 T Figure 4. E normse, E as functions of slepder-
L 2 3 ness ratio for the first frequency of a cantilever
log(L/t) beam.
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‘Figure 5. Shear force oscillations for a canti-
lever beam with tip moment.

problem — a straight cantilever beam with a concentrated moment at the tip. One
to ten equal length field-inconsistent elements were used and shear forces were
computed at the nodes of each element. In each case, only the variation of the
element at the fixed end is shown, as the pattern repeats itself over all other

elements. At element mid-nodes, the correct shear force, i.e. V = 0, is correctly

lines is the prediction made by the functional re-constitution exercise (Ramesh
Babu & Prathap 1985b).

S. Field-consistency and shape, size and orientation of elements

The preceding analysis has focussed attention on one aspect of the discretisation
strategy, namely, the selection of field-interpolations over an element domain and
the subsequent derivation of strain-fields and strain energies from it, and how this
can have disastrous effects if consistency of constrained strain-fields is not assured
in problems that require it. Equally critical to the task is the division of the
continuum region into element domains — it js now known that shape, size and
orientation of the element grids are Very important factors in assuring that the true

rémoved is to monitor the additional stiffening parameter as the geometrical ratios
to which it is sensitive are increased indefinitely.

It was also well-known that the errors of locking become larger if elements are
distorted ~ in terms of location of nodes, curved edges, deviation from rectangular
forms etc. we shall consider this now. ~
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In 0qe~dﬁmensional problems, as in shear flexible beams and in curved beams,
the choice is unambiguous as long as the description is linear — i.e. two nodes at the
ends of the element. However, where more than two nodes are to be distributed
over an element and isoparametric transformations are used, the field-consistency
requirements can be accurately met only if the disposition of the nodes ensures that
t_he.transformation from the local-coordinate axes to the global coordinate system
is linear so that no new spurious constraints are brought in.

In two-dimensional problems, e.g. plane stress modelling of flexure, shear
flexible plates and shells etc., it is now known that division into low order triangular
elements often leads to locking, even with reduced integration. It is also known that
quadrilateral elements can be used safely only if they are rectangular and
well-aligned with the global axes directions. If these requirements are not met, it
may not be possible to devise simple methods of field-redistribution of the strain
fields that will ensure that the constrained strain-fields yield only and all the true
constraints.

A good example to demonstrate this is the finite element modelling of a shear
flexible theory such as the Mindlin plate theory (Mindlin 1951). In the thin plate
limit, the shear strains must vanish to produce the Kirchhoff constraints i.e.
Yz =0,—w,,— 0 and vy,,=0,—w,, — 0. The field-redistribution strategies can
work efficiently only if the isoparametric transformations ensure that these
constraints remain true even after the transformations. In fact, the emerging
wisdom on the use of low-order C° continuous Mindlin plate elements is as follows—
(i) Linear triangles behave very poorly unless they are right-angled, have the sides
containing the right-angle parallel to global x and y axes, and have separate in-
tegration points for the shear strain energies associated with ;. and 7y, Tes-
pectively (Prathap 1985c). _ '

(ii) Bi-linear quadrilaterals can be used most efficiently only in rectangular form
with edges parallel to global x, y axes, and with consistently re-derived shear-strain
fields based on the original nodal degrees of freedom (Prathap 1984e).

These restrictions are not unexpected as the formulation of the shear strain
energy in the Mindlin plate theory, and the subsequent identification of the
Kirchhoff constraints in the penalty limit of the thin plate theory, depends
intrinsically on the definition of an x and y orthogonal cartesian system. Therefore,
the retention and enforcement of all the true constraints is possible only in a
rectangular form of the element. Many elements free of this restriction exist

(Hughes & Tezduyar 1981; Crisfield 1984), but are made possible by manipulating
the shear energies so that true constraints which are non-invariant are omitted and
any zero-energy modes introduced thereby may have to be suppressed in some
way, e.g., by addition of a stabilisation matrix (Belytschko ez al 1981).

The behaviour of 3-D elements is very similar. Hexahedral elements behave
much more accurately than tetrahedral elements, especially in problems where
high-aspect ratio elements are used to model regions of flexure or nearly-

incompressible elasticity. Again, expectedly, the accuracy Is best if rectangular
elements are used.

6. Some constrained multi-straih-field problems

In table 1, we have seen a list of problems in structural mechanics which need a

description by multiple strain-fields and in which one or more of these strain-fields
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are constrained in cértain physical regimes. We shall now examine, briefly, the

issues involved in trying to design for field-consistency, and also survey some of the

6.1 Plane-stress flexure— 4-noded and 8-noded elements

_Although many plane stress finite elements can exactly represent rigid-body and
constant-strain modes, they are too stiff in their response to the simple flexural
action of a beam. The problem is due to the inability of the plane stress elements to
yield shear-strains that are consistently represented. In the case of the 4-noded
element (Prathap 1985b), the errors result in ‘locking’ and these errors progress
indefinitely as the element aspect ratio increases. The 8-noded element does not
lock, but performs with a reduced efficiency. Both elements show violent
shear-stress oscillations in modelling flexure - linear in the 4-noded case and
quadratic in the 8-noded case, All these difficulties are overcome when
field-consistent shear-strain definitions are used to design the improved 4-noded
and 8-noded plane stress elements (Prathap et al 1985).

6.2 Two-noded and three-noded curved beam elements

a ‘membrane locking’ phenomena that arises when the constrained strain-fields
corresponding to inextensional bending are not ‘consistently’ recovered.

free of shear and membrane locking (Ramesh Babu & Prathap 1985b; Prathap &
Ramesh Babu 1985a). These will be the most efficient elements of their class.

6.3 Two-noded and three-noded axisymmetric shell elements

6.4 8-Node a_nd 20-node brick elements

Brick elements in flexure suffer from locking due to parasitic shear in the same way
that plane stress elements do. Brick elements can be made field-consistent in
flexure by using a field re-distribution strategy to define consistent shear
strain-fields. An 8-node element has been successfully tested (Prathap 1984a).
Brick elements also perform very poorly in near-incompressible elastic limits. This
can be corrected if the volumetric strains are designed to be field-consistent and the

%
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“modifications for this were successfully made for é 8-node brick (Prathap 1984b).

Work is now underway to design a field-consistent 20-noded brick element.

6.5 A C° continuous 4-node platelshell element

A C° continuous doubly curved shell element was considered very tricky to achieve
because of ghe combined problems of shear and membrane locking. We have been
able to design a simple 4-noded element using field-redistribution to eliminate
membrane and shear locking. The element has been successfully tested in a
laminated anisotropic doubly curved shell version.

7. Field-consistency and ‘variational tricks and crimes’

In 'the ea'rly years of the formal rationalisation of the finite element discretisation
proce.ss. in terms of variational calculus, it was believed that the functionals
descrlplng the .total potential or complementary energy, Or weighted residual
equations, or virtual work equations, must be integrated exactly over the element
domai-n for the process to be mathematically complete and correct. The subsequent
experience with constrained multi-strain-field problems was to indicate that such an
z‘}pproach may be too unrealistic. Thus, the exact integration of functionals derived
from independent low order polynomials will tend to impose 2 set of strain-fields
which are uncharacteristic of the actual physical conditions in the constraining limit
at practical levels of idealisation.

The first response t0 such an fmpasse was to experiment with short-cuts such as
reduced integration, selective integration, addition of bubble-modes etc. The types
of techniques varied greatly and their number has been growing rapidly. Very
often, the successful use of the technique preceded the actual understanding of the
mechanics of its operation, and not surprisingly, these techniques could and did fail
when not properly used. In this section, it will be instructive t0 review briefly, some
of these ‘variational crimes’ from the point of view of field-consistency. The list
given below is by no means exhaustive, as many ingenious variations continue to be
invented, but it is believed that it is a good representative sample of some of the
procedures available.

7.1 Unequal order interpoldtion

This is perhaps the simplest to understand, as no ‘trick’ such as reduced integration
s involved. This proceeds from an understanding of the fact that field-inconsistency
arises when equal order interpolations are used for field variables which appear in
different orders ofits derivatives in the strain-field that has to be constrained. Thus,
if one ensures that the strain-field is consistently represented by a proper & priori
choice of unequal order interpolations for the contributing field variables, there
would be no ‘locking’. : o '

A simple illustration of this is to consider a mixed linear/quadratic interpolation
version of the beam element considered in §4. We can associate the following
constants with each of the field variable interpolations thus:

(19a)
(19b)

w = a0+01(X/[)+a2(x”)2’
g = bo+b(x/]).
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The shear strain-field now becomes
Y = (bo—ar/l)+ (b, = 2ay/1) (x/1). (20)

It is clear that in the penalty limit, the two constraints that appear will enforce the
Kirchhoff constraints in a ‘consistent’ manner.

7.2 Reduced integration/selective integration

This is perhaps the first of the ‘variational crimes’ to have been discovered. It
proved to be very effective in many cases and was at first quite difficult to justify.
Early attempts to explain its effectiveness were based on the number of constraints
introduced at integration points and on its relation to the tota] number of degrees of
freedom available in the model, Often, the orders of integration, although lower

functional, were still too high to remove locking, or so low that singularities or
Zero-energy mechanisms were introduced. This Jed to considerable experimenta-
tion and confusion.

With the field-consistency paradigm, we have clearer rules ag to the optimal
integration strategy for constrained multi-strain-field problems. What is important
is that the strain energy functional comprising the constrained strain-fields must be
‘consistently’ represented. Ap optimal order of integration js one that will integrate
all the contributions from the ‘consistent’ terms and remove all the contributions
from the ‘inconsistent’ terms in the strain-field interpolation. If the order of
Integration is not high enough to cover all the ‘consistent” terms, one or more of the
true constraints will vanish, leading to a rank-deficiency and to Zero-energy
mechanisms that can degrade the performance of the element in certain
applications. Again, an order of integration that is high enough to retain only one
Spurious constraint is enough to cause ‘locking’.

It is also clear that the optimal rule for the constrained part of the strain energy
functional need not be the correct rule for the unconstrained part of the energies.
This suggests that a selective integration Strategy is often required. Again, it is
possible that, in some cases, an optimal integration strategy cannot be found for a
particular problem and Some other technique may be required to achieve

~ field~consistency.

7.3 Reduced interpolation ~Smoothed function approach

We have considered an aspect of this and its equivalence to reduced integration
when we examined the linear beam element earlier in this paper. In this technique,
we re-derive interpolations for the field variables contributing to the inconsistent
terms_ of the constrained strain-field such that the new interpolations are
‘consistent’ with the other field definitions. This can be obtained by a simple
least-squares Smoothing operation opn the original shape function. The smoothed
shape function is now a ‘consistent’ version built up from the same degrees of
' fr.eedo.n} as the original functiop —thus the number of degrees of freedom or
dlsgosuwn of the nodes in the element is not disturbed. For the unconstrained
Strain-fields, the original interpolations are retained. |
Ip most cases, the use of smoothed interpolations js identical to the use of an
optimal Integration Strategy, However, One can envisage cases where an optimal

[ TS
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cedueed integration strategy may not exist, but consistent field interpolati
e derivend using a least-squares technique to reduce the original field to 11;0}1“8 -
freld descriptions for these variables. Moreover, once a set of smoothed subseﬁrtftw
Tanchions e availuble, these can be casily incorporated in a shape functio:
spberontine that can be called up as desired from the field-consistency requirements
of the problem. A uniform order of integration can now be used throughout - a
Jesirahle feature as it relenses the restriction on the order of integration from the
field-consisteney requirement and allows it to be determined from other considera-
Thanits, tupered or varying properties over an element.

7.4 Addinon of immn;mrihlc* modes or bubble functions

This is one of the carlier techniques used to restore field-consistency in a
mult-strain-field problem. We can show, through the simple illustrative example of
the hinear beam, how this works.

We introduce what is called a bubble function (often, this is an incompatible
maode in the sense that it does not satisfy the continuity requirement across some of
the clement boundaries) through a nodeless variable. Thus, for the linear beam this
bBecomes:

W agtay (xID)+ AN~ (x/D)?], (21a)
g = bo+ by (x/1). (21b)

‘The shear strain-field now becomes
y = (by—ar/1)+ (b, +2A1D) (x/1). (22)

‘Thus, in the penalty limit, the two constraints thai z}pp;ar will enforce the
Kirchhoff constraints in @ ‘consistent” manner. The similarity to the method of
using unequal order interpolations (§7.1) is obvious. However, A is no longer
associated with a node and is best condensed out of the stiffness matrix. T}ie
¢lement that results will be identical tO each of the element versions considered in
: " 7' - p , .

g} Qil fs tliiigc;t:::t iz"l)r'rccognise that the addition of but_)ble functions must be done
carcfully, keeping in mind that it is the fieid-conSistency requirement that 1S

paramount. In fact, it is this over-riding con51dertiqn that dictates that iri many
problems, the functions SO added must be chosen in a way that makes it non-

.

conforming Of incompatible.

7.5 Field*redistribution

This method is one of the most recently introduced (Oleson 1983). This recognises

that the directly derived constrained strain-field which is inconsistent is also of a

higher order than the consistent yersion of this strain-field. This higher order field

is therefore redistributed ina special way that makes it very similar to the smoothed

. d/mixed method (§7.6). Again, the lower
[ ion ¢ ch (§7.3) of the hybrid/mixe thod
x‘z?etrloge?gptrs awhigh th)e redistribution strategy 18 directed must be based on

. ctive. -
field-consistency criteria for the method t0 be effe

e
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1.6 Hybrid and mixed methods

Since the invention of the assumed stress strategy of deriving stiffness matrices
(Pian 1964), hybrid or mixed elements, based on. complementary ecnergy,
Hellinger-Reissner or Hu-Washizu theorems, have been very powerful in many
problems where conventional displacement type elements had failed. With the
advantage of hindsight, it is possible to reconcile this. The power of these methods
resides in their ability to control the stiffness matrix by varying the number of terms
in each stress-field. It is becoming obvious to us now that this can be construed as
another method to achieve field-consistency by a smoothing type operation. If the
assumed stress fields correspond to the inconsistent strain-fields derived from the
displacement fields, then locking and stress oscillations will still remain in the
hybrid/mixed element. However, if the assumed stress-fields are chosen carefully
S0 as to cover only the consistent parts of the constrained strain-fields, the element
so obtained will be identical to a field-consistent displacement mode] derived by
any of the other techniques illustrated in the various sub-sections of §7.

Thus a hybrid/mixed element that starts with linear interpolations for displace-
ments and rotations, and constants for the moment and shear force fields, will
produce a beam element that is identical to one obtained by any other technique
such as reduced integration, addition of bubble functions ctc. If, a linear shear
stress field had been used, the element would have locked. This has been observed
when continuous force field mixed elements were derived (i.e. with force quantitics
also as nodal degrees of freedom) and the practice now is to use only discontinuous
force field mixed elements. The field-consistency paradigm, therefore, offers a
comfortable position from which the success of hybrid and mixed formulations can
be easily evaluated. o

Since an element with the same efficiency can be derived through, the
displacement type process with any of the techniques described here, it would seem
that the additional mathematical operations and complexity that follow from a

7.7 Energy compensation

- - From our field-consistency point of view, this falls into the realm of inexcusable
‘variational crimes’. The idea of compensation can be traced to- the fact that
field-inconsistency leads to spurious energies emerging from the constrained
strain-fields, which are then grossly cxaggerated as the structural parameter that
e;n‘forces th_e penalty limit becomes very large. This can be artificially removed by

as applied to the Poo’r plane stress modelling capability of the 4-node element. In
- this, a Qredetermmed factor is used to multiply the stiffness matrix derived in a
conventional way (and therefore, with field-inconsistencies present). Not surpri-
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singly, in this example, this factor is exactly the same as the additional stiffening
purameter for this problem (Prathap 1985b). }

‘The constant € is problem-dependent an

‘ d needs to be manipulated from problem to
problem and even from mesh to mesh or suppor

: t condition to support condition in
order o achieve good results.

‘ Again, quite expectedly, stress predictions,
especially those pertaining to the constrai

ned strain-fields from such methods can
be very unreliable. The point to note here is that the energy compensation
procedure is an artificial one in that it deliberately introduces an error to
compensate for another error, without seeking to remove the error at its very
source (i.e. without trying to establish field<consistency at all).

7.8 Reduced interaction

“T'his is another interesting variation, that has appeared recently (Mohr 1980). This
p method sceks to trace the inconsistency in a constrained strain-field to the
: ficld-variable that leads to the inconsistent terms and replaces the original
interpolation for it (i.e. the one used for that field-variable in t

he unconstrained
strain-ficlds) with a lower order interpolation so that consistency is achieved. This

is very similar to the smoothed function approach, except that it differs only in the
strateny for choosing the lower order interpolation. In the reduced interactipn
approach, this is often done by simple inspection, whereas in the smo.othed function
approach, itis done by ensuring a least squares smoothed relationship between the
inconsistent and consistent strain-fields. The method works well, especially when

the choice of the lower order interpolation is the same Or closely resembles the
smoothed function equivalent.

.

8. Concluding remarks

' iderable interest
In this paper, we have surveyed an area that has gengrated considera , *
’ ' A\ derstand, in the terminology of the
and controversy 1n recent years. We understar : & from the
philosophy of science (Kuhn 1972), that tk.ns uncertainty 1€8 e artin the
incompleteness of the current paradigms that informed tl;‘e stgfv :ntioﬁal L om
finite element method. Jt was also clear that whereas the conv ey ofa
succeeded very well in most situations so as t0 sustain an apphca;:xonsf e e
billion dollars a year, there were still large areas where they ,
e e : d :
re-definition of paradigms Was needt} : ino wisdom
The first task was therefore to classify the problem are®: ?rlxisrrrl:iirfldiroblems
on the subject at present seems to indicate that these are ?O;: 1 o more of these
théxt need'description by several strain-fields and in VchltZ skoir; o give i class of
strain-fields are to be constrained. The next appropria e e olved s
problems a name for quick reference of the pnnmp}es ?‘ﬁ - the other more
hoped that the requiremént of ‘field-gonm?tgncyl wi nt]s .
‘; well-known principles used in construlc;tlg)gr férrlllstir; gﬁtlliat‘ e present bo gy of
. ' t tas he P terms
The last but equally importan : < to provide 1t aquxiliary terms
- : hard scietfce 18 op -
cquires the semblance of a nar¢ > g - capability. The
E?Oxzigeggcz C21111(*1 procedures that can give it an errora r;aflg:;i of?}iscretisaﬁm
concept of ‘errors of the second kind’ to delineate @ s%emid oty 10 ke a
errorspand the ‘additional stiffening pargmeter were ou

e RISRPR
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priori error models and a posteriori evaluations of elements used in this class of

roblems. o . e e
P The extension of these concepts to other similar field problems will be of further
interest and the invention of new techniques or ‘tricks’ that can rc..st.uru
field-consistency will be interesting academic exercises. Of more 111111}&11{310
practical relevance will be the re-design of the existing element libraries of major
general purpose software packages so that many capabilities which did not ‘czi:xst cin
now be included. The library of field-consistent elements offered here (see §6) is a
small beginning in this direction.

The author is deeply indebted to Professor R Narasimha, for the inspiration and
encouragement that led to this interpretation of the work done, and to lD:“ B R
Somashekar, for the constant help and encouragement throughout the period over
which the field-consistency concepts were introduced and tested. ‘
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