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Abstract

In this paper, the variational basis for finite element analysis of elastodynamic problems

has been examined using the principle of virtual work. It has been shown that derivation

of a complete and accurate mathematical description of the nature of errors in free

vibration analysis involves a simultaneous consideration of errors in both displacement

and strains. This is in sharp contrast to the error analysis in elastostatic problems where

the variational basis involves only strains.

Two fundamental important theorems on errors in variationally correct

formulations in computational elastodynamics have been discussed and illustrated with

simple one-dimensional elements. A geometric interpretation of the behavior of these

errors in approximate solutions from a variationally correct formulation has been

presented using the Frequency-Error Hyperboloid. Furthermore, it has been observed that

the variationally correct formulations with consistent mass matrices yield
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eigenfrequencies that are always higher than the analytical values, independent of domain

discretization. This is not necessarily true for variationally incorrect lumped mass

formulations, and the computed eigenfrequencies can be higher or lower than or equal to

the exact ones, depending on the discretization scheme.

1. Introduction

Finite element analysis can be regarded as a tool for obtaining approximate solutions to

differential equations using piecewise assumed interpolation functions. Conventionally,

the method involves the use of element equilibrium equations derived from the basic

principles of variational calculus [1-3].

In the finite element analysis literature, it can be observed that while extensive

research work has been reported on error analysis for elastostatic problems [4-9],

definitive and conclusive work on error analysis for elastodynamic problems is relatively

scanty.  The best-fit paradigm, emerging out of the least action principle in the sense of

the orthogonality condition resulting from Hu-Washizu’s theorem, has been used

successfully in interpreting the mechanism of computation and in predicting errors for

finite element analysis of elastostatic problems [6]. The Function Space projection

theorems also have been primarily utilized for error analysis and for the explanation of

the origins of pathological problems in computation for elastostatic systems [1,5,8,9].

There has been considerable interest in recent years on finite element error

analysis approximation to the vibration problems of structures [10-13]. Most of these
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have been based on a posteriori approaches, without any reference to possible variational

basis or projection theorems underlying the discretisation process. Note that the

differential equations governing elastodynamics are approximated through a

discretisation procedure producing stiffness and mass matrices and the accuracy of the

solution will depend on the quality of both stiffness and mass matrices. It is tempting to

postulate that the quality of these matrices can be addressed by examining the variational

basis for the derivation of the stiffness and mass matrices.

There has been no definitive or conclusive work on a priori error analysis for

elastodynamic problems in general, primarily due to the complex operations involved in

the extraction of eigenvalues. Fried [10] conducted a posteriori error analysis using an

error indicator that served as a measure of the relative change of an eigenvalue for the

hierarchical finite element method. Using equal length elements only, Cook [11] re-

examined the errors arising from both consistent mass and lumped mass matrices for

simple bar and beam vibration problems, and concluded that lumped mass methods yield

lower natural frequencies than those of the consistent mass methods. This observation,

valid for equal meshing, cannot be extended to arbitrary meshing situations.

Quite recently, attempts were made to derive error convergence rates and

estimates for the finite element elastodynamics of one-dimensional elements like bar and

Euler- Bernoulli beam [14] and Timoshenko beam [15]. Here the qualities of stiffness

and mass matrices were assessed independently using what were called the stress and

momentum correspondence principles. Underlying the approach is the tacit assumption

that stresses (strains) and velocities (momentum) obtained through the finite element

discretisation process are least square accurate approximations of the true stresses, etc.
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These are seen as consequences of projection theorems resulting from the virtual work

principle.

The present work studies how computations in finite element method for free-

vibration problems can be interpreted using the Function Space Approach. The Rayleigh

Quotient has been reviewed using the Function Space Approach. Using the principle of

virtual work, the equivalent projection theorem equation for elastodynamics has been

derived. This equation reflects the principle behind the occurrence of errors in the

computation for free vibration. An energy-error rule for free vibration analysis has also

been derived. Furthermore, a geometrical interpretation of the errors associated with the

computation of approximate natural frequencies using the Rayleigh Quotient has been

derived in terms of a Frequency-Error Hyperboloid. This allows us to see geometrically

that for arbitrary meshing and for a given mode the approximate values for the natural

frequencies computed through variationally correct formulations are always higher than

the exact values, but this is not generally true for lumped masses.

The simple one-dimensional linear two noded bar element has been used to

illustrate the fundamental principles that guide finite element computations in

conservative or self-adjoint problems. The consequences of replacing the consistent mass

matrices by lumped mass matrices has also been critically examined.
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2. The Rayleigh Quotient, the projection theorem and the energy-error rules for

elastodynamics

2.1. Inner products

For the purpose of analysis, we first define two types of inner products and the norms

they describe. These inner products are global in character, and are presented as

summation over Ne elements of the complete domain of analysis.

 2.1.1. Stiffness-inner product and norm

If {a} and {b} are vectors each of  r-rows, and [D] is a positive definite square rigidity

matrix of size r × r, then their stiffness-inner product is defined as

∫∑
=

>=<
ele

T
N

1ele

dx}b]{D[}a{b,a
e

                            (1a)

and the stiffness-norm squared value of the vector {a} is given as

>=< a,aa
2

                                            (1b)

2.1.2.  Inertia-inner product and norm

If {c} and {d} are vectors each of  s-rows, and [ρ] is a positive definite square inertia

density matrix of size s × s, then their inertia-inner product is defined as 
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∫∑
=

=
ele

T
N

1ele

dx}d]{[}c{)d,c(
e

ρ                                           (2a)

and the inertia-norm squared value of the vector {c} is given as

          )c,c(c
2

=                                               (2b)

2.2. Rayleigh Quotient and the energy-error rules for elastodynamics

Free, simple harmonic vibration of a continuum in a particular normal mode with

displacement modal function u(x) and natural circular frequency ω can be expressed as a

space (x) and time (t) dependent displacement function

{ } { } tiexutxU ω)(),( =        (3)

If the approximate modal displacement function is denoted by some admissible vector

}u{  (satisfying the kinematic boundary conditions), and the resulting approximate modal

strain vector is }{ ε , then the Rayleigh Quotient is defined as

 
2

2

2

u

ε
ω =                                                  (4)
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Here the parameter ω  represents the approximate value for the angular frequency

(radians per sec) corresponding to the normal mode approximated by the admissible

displacement function }u{ .

The weak form of the classical differential equation of free vibration readily

yields the following expressions,

2

2
2

u

ε
ω =                                 (5)

and
),(

,2

uu
><

=
εε

ω                           (6)

Here {u}, {ε} and ω are the analytical modal displacement vector, modal strain vector and

the corresponding (exact) natural circular frequency respectively. Note that equations (4)

and (5) can be obtained from the statement of the Rayleigh Quotient, but equation (6) can

be obtained only through the virtual work principle [5]. Combining equation (4) and (6),

one may obtain the following expression,

)uu,u(,
22 ωωεεε −>=−<                                          (7)

Equation (7) is a consequence of the virtual work principle, and can be interpreted as

Total virtual work done by error of stress on approximate strain

     = Total virtual work done by error of inertia force on approximate displacement
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Combining equations (4) and (5), we get another rule

2222
22

uu ωωεε −=−                                               (8)

or

           Error of global strain energy = Error of global kinetic energy

This can be interpreted as the elastodynamic energy-error rule, governing the error in

energies due to discretisation.

It will be useful also to compute the energies of the errors in strain and

displacements,  due to discretisation process and to examine if a simple relationship

exists between these quantities. The energy of the strain error can be expanded as

follows.

εεεεεεεεεεε −−−=−+=− ,2,2
22222

           (9)

Note that for elastostatics, it has been shown earlier that the virtual work principle can be

used to prove the following orthogonality condition

0, =− εεε                (10a)
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Thus from equation (8), one obtains the energy-error rule for elastostatics [5, 8],

222
εεεε −=−                      (10b)

i.e.      The strain energy of the error= error in the strain energy

Using the energy-error rule (equation (8)) and the virtual work rule (equation(7)), one can

have from equation (9)

2222222
2222

2
u)u,u(2u)uu,u(2uu ωωωωωωωεε +−=−−−=−

    [ ] 2
222

2222 u.u)u,u(2u ωωωωω −++−=

i.e.

    [ ] 2
222

2
2

u.uu ωωωεε −+−=−                            (11)

The above equation has been presented earlier using the weak form by Strang and Fix [5],

but with normalizing the approximate displacement norm ( 1u
2

= ).

The error in the eigenvalue is given by the expression derived from above as

2
2

222
2

2
u

uu
1

ω

ωεε

ω
ω −−−

=











−                  (12)
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2. The Frequency-Error Hyperboloid

From equation (11), one can derive the following equation

12
2

2

2

2

2

2

=
−

−+
−

uu

uu

ω

εε

ω
ω

 (13a)

or

1
u

Z
1
Y

u

X
22

2

2

2

2

2

=−+
ω

                   (13b)

1

H

A

E

F

)( ωω =

εε −=Z

ω
ω

=Y

uuX −=

Fig 1. Geometric interpretation of  eigenvalue analysis of the
variationally correct formulation using Frequency-Error Hyperboloid
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where  uuX −= , ωω /Y =  and εε −=Z . With the approximate modal

displacement vector u  arbitrarily scaled to some chosen constant, ),( 2
2

sayau = ,

and noting that all norms and frequencies are positive, equation (13b) can be interpreted

to be the algebraic representation of the surface of the first octant of a hyperboloid of

one-sheet (Figure 1).

It can be noted that this hyperboloid intersects the Z=0 plane (or the X-Y plane) in

the quarter of an ellipse of semi-axes of magnitudes u  and 1  along X and Y axes

respectively. The point E at the apex of this ellipse on the ωω /Y =  axis, of coordinates

(X=0, 1/Y == ωω , Z=0) represents the analysis with approximate functions replaced

by exact ones.  A plane 1/Y == ωω  parallel to the X-Z plane (and tangential to this

ellipse) through this point E intersects this octant of the hyperboloid along a straight line

EF. The equation to this straight line EF on the 1/Y == ωω  plane is given by,

XZ ω=                       (14)

One can note that for the ellipse AE on the X-Y  plane and the portion of the hyperboloid

connected to it, except for the special point E, does not represent any real finite element

computation because of the absurdity of the situation on the X-Y plane that for non-zero

values of the displacement error X, all the strain errors Z vanish. Thus the only feasible

surface that represents real computational results is that portion of the first octant of the

hyperboloid that lies bounded by the straight line EF on one side on the 1/Y == ωω
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plane (given by equation (14)), and the hyperbola EH on the other side on the X=0 plane,

given by the following equation

1
u

Z
22

2

2

2

=−
ωω

ω
  (15)

This portion of the hyperboloid of points representing finite element computation for

elastodynamic analysis can be called the Frequency-Error Hyperboloid. It is now obvious

that the computationally feasible surface of this hyperboloid is enveloped by the straight

line EF (equation (14)) and the hyperbola EH (equation (15), both originating from the

critical point E. In this surface, one observes that for a given modal displacement error

norm uu −  the strain error satisfies the condition

uu −≥− ωεε   (16)

Thus from equation (11), we have the following condition satisfied by variationally

correct formulations for arbitrary discretisation,

ωω ≥   (17)

It is thus obvious that for variationally correct formulations, in agreement with the weak

form of the differential equation, the computed approximate natural frequency for a given



13

mode is always greater than the corresponding exact natural frequency. The equality sign

is valid only when exact modal functions are used in the analysis, so that all errors

vanish. Such a condition is represented by the point E which is also the limit of

convergence of finite element computation by finer discretisation. 

An approximate but variationally correct formulation for elastodynamics satisfies

the following two conditions.

(a) The continuity of the derivatives as required by the weak form is satisfied within the

element.

(b) The mass matrix is consistent, i.e. it is developed through the variation of the kinetic

energy used in the weak form.

Variationally incorrect formulations violate at least one of the conditions (a) and (b). For

such formulations, equations (6),(7) and (11) are not satisfied, and conditions (16) and

(17) are not necessary valid. Note that for all formulations, equation (8) is valid always

since it springs from the conservation of energy only. Hence when consistent mass

matrices are replaced by lumped ones, no guarantee of upper bound of the exact

frequency can be given. In fact, the computed approximate frequency with lumped

masses can be greater than, equal to or less than the exact frequency for the same mode,

according to the distribution of the nodal points.

3. Order of convergence of approximate finite element eigenvalues

An important question raised in evaluating the quality of a finite element formulation is

whether the convergence rate is uniformly optimal. One method to evaluate this is to plot
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the convergence to zero of a suitable error norm as meshes are refined and to verify if

these lines (curves) have optimal slope [16]. It is desirable that the order of convergence

be derived a priori from first principles, as was done for example using the

correspondence principles [14,15]. In what follows, we now attempt to introduce an

approach using the Function Space arguments and the Rayleigh Quotient to predict the

optimal slope of uniform convergence for finite element elastodynamical model.

The energy-error rule for elastodynamics discussed by equation (8) clearly shows

that the error in the approximate finite element strain energy is exactly same as the error

in the approximate finite element kinetic energy. In other words the order of convergence

is same for both quantities. In this section, we shall make use of this theory to investigate

the rate of convergence of the approximate eigenvalue of free vibration problems. 

Before we derive the order of convergence estimate for elastodynamics, let us

review the case of finite element elastostatics. In a finite element (i.e. the sub-domain

region), the exact displacement , strain and stress fields ( )σε andu ,,  are replaced

by finite element solutions ( )σε andu ,, . It is known from the projection theorem [5]

or alternatively from the orthogonality condition arising from the Hu-Washizu theorem

[6,14], that

  0)( =−∫
e

T
dxσσεδ          (18)

From this, one can proceed to demonstrate that if displacement fields u  are chosen

complete to order nx  (for simplicity a one dimensional problem with x, or non-
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dimensional ξ  is chosen as the coordinate variable), so that strain (stress) fields are

complete to the order 1−nx , then the finite element can model actual strain (stress) field

of order nx  in a best-fit manner. Let

)(.............)()( 2
2

2110 ξξξσ n
n

n LhaLhahLaa ++++=      (19)

where )(ξnL  are suitably normalised Legendre polynomials and h is the element length.

This form allows us to exploit the orthogonality condition given by equation (18). From

equation (18) one can show that

 )(.............)()( 1
1

12
2

2110 ξξξσ −
−

−++++= n
n

n LhaLhahLaa      (20)

Thus a finite element computation produces approximate strains (stresses) which are

accurate to O(hn). From this it is simple to show that the error of the energy (= energy of

the error) is of the O(h2n) [14].

To extend this theory to elastodynamics, one must carefully examine the energy

error rule for elastodynamics (equation (8)). Let us introduce the idea of generalised mass

in the same equation, where 1
22

== uu ; then we have






 −=





 −− 2222

ωωεε       (21)
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Equation (21) clearly explains that the error in the approximate eigenvalue is still

governed by the error in the strain energy. Therefore, the order of convergence discussed

earlier for the elastostatic case is directly applicable to the approximate eigenvalue

obtained from a variationally correct formulation. In other words, the finite element

eigenvalues obtained from consistent mass formulation, 
2

ω  should have an order of

convergence of the error in the strain energy, and therefore of O(h2n). For the linear bar

element, this will mean that a consistent mass finite element model will have a

convergence of O(h2). This will be illustrated with numerical examples in section 7.4.

5. Numerical experiments to illustrate the elastodynamic error rules

In this section we shall illustrate the elastodynamic energy-error rules presented in the

previous section with some examples.

5.1. Analysis of floating bar (both ends free)

L

x

Fig 2. Free-free bar
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Consider a bar with both ends free (Figure 2). The exact expressions for the modal

displacement u and natural circular frequency ω for the fundamental antisymmetric mode

are given by 

2

2

L
E

L
x

sinau
ρ
π

ω
π

=





−=  

where L is the total length of bar, E is the Young’s modulus and ρ is the density of the

material of the bar. Here x is measured with the bar center as the origin. The same

problem has been analysed using Rayleigh Quotient with linear and cubic displacement

functions representing approximately the fundamental (antisymmetric) mode. The

approximate displacement functions chosen should satisfy geometric boundary condition

for the antisymmetric mode,

0)0( ==xu

 The admissible linear and cubic displacement functions representing the first mode

are taken as 
L

x2
bu

−
=  and 








−+

−
= 3

3

L
x4

L
x

c
L

x2
bu  respectively, so that the linear

function has a single generalized degree of freedom b and the cubic function has two

generalized degrees of freedom b and c. The approximate functions given above satisfy

the necessary geometric boundary conditions for the antisymmetric mode. For the cubic

function, the fundamental natural (antisymmetric) mode of the free-free bar corresponds
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to a specific ratio of the two generalized degrees of freedom, (c/b=-1.076), so that the

admissible cubic function representing the fundamental mode is given by

















−−

−
= 3

3

L
x4

L
x

076.1
L

x2
bu       (22)

The results of the analysis are presented in Table 1. It can be seen that the solution

satisfies the elastodynamic projection theorem and energy-error rule given by the

equations (7) and (8).

5.2. Analysis of a fixed-free bar

A fixed-free bar shown in Figure 3 has been analysed using the exact method and using

the Rayleigh Quotient method using a linear modal function. Here the geometric

boundary condition is 0)0x(u == , where x is measured with the left end of the bar as

origin. The results for the fundamental mode are tabulated in Table 2. It can be seen that

the solution satisfies the elastodynamic projection theorem and energy-error rule

presented in Equation (7) and (8).

L

Fig3.  Fixed free bar
x
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5.3. Analysis of a simply supported beam

Consider a simply supported Euler beam as shown in Figure 4. The exact expressions for

the modal transverse displacement w and natural circular frequency ω for the

fundamental transverse mode are given by

( )
A

EI
LL

x
sinaw 2

2

ρ
π

ω
π

==

where L is the length of  beam, A and I are the sectional area and sectional moment of

inertia of the beam respectively. Here the co-ordinate x is measured with left end of the

beam as origin. The same problem has been analysed using Rayleigh Quotient with a

quadratic displacement function representing approximately the fundamental transverse

mode. The approximate displacement functions should satisfy geometric boundary

condition for the fundamental transverse mode,

0)Lx(wand0)0x(w ====

Let us chose the approximate quadratic displacement function representing the

fundamental transverse mode as 







−







=
L
x

1
L
x

bw , which satisfies the geometric

x
L

Fig 4.  Simply supported beam
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boundary conditions. It is observed that the analysis satisfy the elastodynamic error rules

presented in Equations (7) and (8). The results are tabulated in Table 3.
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Table 1. Analysis results of  the free-free bar using exact and approximate methods for

the fundamental mode

Approximate solutions
Exact solutions

Linear function Cubic function

Modal displacement
function 






−=

L
x

sinau
π

L
bx2

u
−

=
















−−

−
= 3

3

L
x4

L
x

076.1
L

x2
bu

Modal strain 





−==

L
x

cosa
Ldx

du ππ
ε

L
b2

dx
ud −

==ε
















−−

−
== 3

2121
076.1

2

L

x

LL
b

dx

ud
ε

(Strain energy)×2 22 a
L

AE
9348.4=ε 2

2
b

L
AE

4=ε 2
2

b
L

AE
926.4=ε

Inertia norm ( ) 2
2

2 9348.4
aALu ρ

π
= ( ) 22

3
1

bALu ρ= ( ) 22

875.9
926.4

bALu ρ=

Eigenvalue 2
22

L
E

ρ
πω =

2

2
12

L
E

ρ
ω =

2

2
875.9

L
E

ρ
ω =

(Kinetic energy)×2 222 a
L

AE
9348.4u =ω 2

22
b

L
AE

0.4u =ω 2
22

b
L

AE
926.4u =ω

(Error in strain energy)×2
22

εε −
)b0.4a9348.4(

L
AE 22 − )b926.4a9348.4(

L
AE 22 −

(Error in kinetic energy)×2
2222 uu ωω −

)b0.4a9348.4(
L

AE 22 − )b926.4a9348.4(
L

AE 22 −

>−< εεε , )(4 2bab
L

AE
− )(926.4 2bab

L
AE

−

)uu,u(
22 ωω − )(4 2bab

L
AE

− )(926.4 2bab
L

AE
−

Elastodynamic  projection theorem

)uu,u(,
22 ωωεεε −−>−<          (equation (7))

0 0

Elastodynamic energy-error rule





 −−



 −

2222
22

uu ωωεε    (equation (8)) 0 0
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Table 2. Analysis results of the fixed-free bar using exact and approximate methods for

the fundamental mode

Exact solutions Approximate solutions

Modal displacement
function 








=
L2
x

sinau
π

L
bx

u =

Modal strain 







==
L2
x

cosa
L2dx

du ππ
ε

L
b

dx
ud

==ε

(Strain energy)×2 2
2

2
a

L
AE

8
π

ε = 2
2

b
L

AE
=ε

Inertia norm ( ) 22

2
1

aALu ρ= ( ) 22

3
1

bALu ρ=

Eigenvalue 2

2
2

4 L
E

ρ
π

ω = 2

2
3

L
E

ρ
ω =

(Kinetic energy)×2 2
2

22 a
L

AE
8

u
π

ω = 222
b

L
AE

u =ω

(Error in strain energy)×2
22

εε − 







−






 22
2

8
ba

L
AE π

(Error in kinetic energy)×2
2222 uu ωω − 








−






 22
2

8
ba

L
AE π

>−< εεε , )( 2bab
L

AE
−

)uu,u(
22 ωω − )( 2bab

L
AE

−

Elastodynamic  projection theorem

 )uu,u(,
22 ωωεεε −−>−<             (equation (7))

0

Elastodynamic energy-error rule

 



 −−



 −

2222
22

uu ωωεε         (equation (8))
0
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Table 3. Analysis results of the simply supported Euler beam using exact and

approximate methods for the fundamental mode

Exact solutions Approximate solution

Modal displacement
function 






=

L
x

sinaw
π









−







=
L
x

1
L
x

bw

Modal strain 













=








−=

L
x

L
a

dx
wd ππ

ε sin
2

2

2

22

2 2
L
b

dx
wd

=







−=ε

(Strain energy)×2 2
3

4
2

a
L
EI

2 







=

π
ε 2

3

2
b

L
EI4
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6. Consistent mass versus lumped mass in finite element analysis for elastodynamic

problems

For computational efficiency, engineers often employ the lumped mass technique, which

effectively replaces the consistent (non-diagonal) mass matrices by lumped (diagonal)

mass matrices. The present section examines the variational correctness of finite element

results for elastodynamic analysis using these different methodologies.

The weak form of the elastodynamic differential equation yields a mass matrix

[Mce]  from the inner product with the approximate modal function in the following

manner.

dV}u{}u{)u,u( T

ee

ρ∫∑=

            = }{dV]N[]N[}{ e

e

T

e

Te δρδ ∫∑

= }]{M[}{ ece

e

Te δδ∑                      (23)

where [N] is the shape function matrix for the approximate modal displacement function

in an element e is }]{N[}u{ eδ= , where { }eδ  is the nodal displacement vector for the

element. The consistent mass matrix is given by

dV]N[]N[]M[
e

Tce ρ∫=                                             (24)
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If the mass matrix is computed according to equation (24), then the elastodynamic error

equations (12) and (13a,b) are satisfied, since it is consistent with the weak form of the

elastodynamic differential equation.

However, for computational convenience, engineers often use the lumped mass

matrix instead of the consistent one. In a lumped mass matrix, all the off-diagonal

elements are set equal to zero, and the masses are lumped only in the diagonal elements

of the matrix. With the lumped mass matrix, the inner product of equation (23) is

replaced by the expression

   2e
i

e
i

e i

ele

e

Te *)(m*}]{M[*}{ δδδ ∑∑∑ =                  (25)

where e
im  is the mass associated for the ith diagonal term for the lumped mass matrix

[Mle]  for the element e. The term *e
iδ  denotes the ith displacement component of the

displacement vector { }*e
iδ  for the lumped mass case. Using the lumped mass formulation

effectively replaces  equation (4) by

    *)(m.)* (    *)*,( 2e
i

e
i

e i

2 δωεε ∑∑=                           (26)

where the approximate modal displacement function for the lumped mass in an element

is given by *}]{N[*}u{ eδ=  and the corresponding eigenvalue is .)* ( 2ω  If }u{  and

2)(ω are replaced by *}u{  and 2)* (ω  then equations (7), (8) and (11) are violated. In
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other words, elastodynamic results of finite element analysis with the lumped mass

matrices are variationally incorrect.  However, from the principle of conservation of

energy, a modified energy error rule, given below  is satisfied by the lumped mass

formulations.

( ) ∑∑−=−
e i

e
i

e
imu 222222

*)(** δωωεε       (27)

Note that the inner product 
2

*u  of equation (8) is  replaced by equation (26).

A variationally correct finite element formulation for elastodynamics with

consistent mass matrix always yields eigenvalues (natural frequencies) higher than those

obtained by analytical methods for arbitrary meshing. This is not necessarily true if

lumped mass formulation is employed. In fact, lumped mass analysis can yield

eigenvalues which are either lower than, or higher than, or equal to the exact eigenvalue

according to the position of the nodes. This is illustrated with numerical examples in the

next section.

7.  Numerical experiments with the linear bar element

2u
1u

l

1 2

Fig 5. Two noded linear bar element
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7.1. Element displacement and stiffness

Consider the linear two noded bar element shown in Figure 5. The approximate modal

displacement u  is given by linear interpolation function as







=






 −=+=

l
x

Nand
l
x

NwhereuNuNu 212211 1            (28)

Here l is the element length and x is measured with the left end of the element as origin,

and ui is the nodal displacement vector at node i. The modal strain-displacement relation

is given as

}]{[
11

}{}{
2

1 eB
u
u

lldx
ud

δε =












−==

where [B]  is the modal-strain displacement matrix and   T
21

e ]uu[}{ =δ      is the

element nodal displacement vector.  The element rigidity matrix is [D]=EA where A is

the sectional area and E is the Young’s modulus of the material. The element stiffness

matrix is given by









−

−
=∫

=
=





11
11

0
]][[][

l
AEl

x
dxBDTBek           (29)
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7.2. Consistent mass formulation

When the mass matrix is constructed so that it is consistent with the weak form and the

displacement approximation, it is referred to as consistent mass matrix. The consistent

mass matrix for the linear bar element it is given by equation (24) as









=





21
12

6
Al

M ce ρ
       (30)

7.3. Lumped mass formulation

The lumped mass matrix is formulated by lumping of mass at the element nodes. This

produces a diagonal mass matrix. For the linear bar element the lumped mass matrix is

given by









=





10
01

2
Al

M le ρ
      (31)

Mass lumping greatly simplifies matrix calculation involving the extraction of

eigenvalues.
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7.4. Frequency analysis

A fixed-fixed bar has been analysed with different types of discretisations (with uniform

and varying element lengths) using consistent and lumped mass matrices. Figures 6 and 7

show the discretization schemes using two and three bar elements.

The results of the analysis are graphically presented in Figures 8 and 9. It can be

observed that the approximate eigenvalues for a given mode using the consistent mass

matrix are always higher than the exact eigenvalue of the respective mode for all kinds of

meshing. In other words, the exact eigenvalue forms the lower bound of the sequence of

approximate eigenvalues using consistent mass formulation. This is a fact which is

(1-α)LαL

L

Fig 6. Element discretisation details
(2-element case)

(1-2α)L αLαL

L

Fig 7. Element discretisation details
(3-element case)
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independent of the discretisation schemes. This confirms what we had projected from the

frequency error hyperboloid earlier.

 However, with lumped mass formulation, the discretisation decides whether the

approximate eigenvalues will be lower than or higher than the exact eigenvalue. In fact,

for some critical discretisation, the approximate eigenvalue  can even be equal to the

exact one, as indicated by the intersecting points A and B in Figures 8 and 9.

Thus when the lumped mass matrix is used, the guarantee of obtaining upper

bounds to the exact eigenfrequencies of the structure is lost; in some particular cases, it is

possible to show that the eigenfrequencies will be underestimated, but no proof of it can

be given in general.

While it is generally true that consistent mass formulations yield eigenfrequencies

higher than  the exact value, it has been observed that for the present problem, analysis

with the lumped mass formulation employing equal length elements, yields approximate

eigenfrequencies which are lower than the exact value. The convergence trend of the

errors in the eigenvalues with increasing number of equal length elements N is shown in

Figure 10. The error in the eigenvalue is defined as, 













−= 12

2

ω
ω

e , where 2ω  is the exact

eigenvalue and  
2

ω  is the approximate finite element eigenvalue. For consistent mass

analysis the error e always turns out to be a small positive number but for lumped mass

analysis it can be positive, negative or zero. Therefore , for the purpose of obtaining the

convergence graph we used only the modulus of the error e . It is seen that, as discussed

in section 4, the error has an order of  convergence of O(h2), where 
N
L

h =  is the element

length. Here L is the total length of  bar and N is the number of elements.
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We see from Figure 10 that the errors for an equal length element mesh from the

consistent and lumped mass formulations are nearly exactly equal in magnitude but

opposite in sign. One can envisage a physical picture where the lumped mass case is

equivalent to a formulation where the discretisation of the mass (or inertia) properties

leads to a heavier configuration than the consistent mass case. Thus while both cases

shows a second order convergence rate, it is possible to manipulate the mass matrix such

that the errors of the order of h2 canceled out, giving a fourth order (i.e. O(h4)) accuracy.

This is in fact the basis of higher order mass of Goudreau [17], where the new mass

matrix is obtained as the average of the lumped and consistent mass matrices, i.e.

[ ] [ ] [ ]{ }lecehe MMM +=
2
1

.
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Fig 8. Variation of eigenvalue with change in element length (2-element case) for
the fundamental mode using both consistent and lumped mass.
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7.5. Illustration of the energy-error rule and projection theorem.

It is interesting to examine whether the lumped mass formulations conserve the

relationships described by the elastodynamic energy-error rules and projection theorems.

Table 4 tabulates these quantities for the equal length two and three element solutions for

consistent mass and Table 5 repeats these for lumped mass. It is very clearly seen that

due to the extra variational nature of the lumped mass formulation, the mass became

“heavier” (compare the third rows ( inertia norm) in Tables 4 & 5). Even then, from the

principle of conservation of energy the lumped mass formulations satisfy the modified

Elastodynamic energy-error rule (equation 27). But it will be meaningless to talk of a

projection theorem for the variationally incorrect lumped mass formulations because, the

inertia-inner product is now mixed with continuous (exact solution) and discrete (lumped

mass solution) functions. These arguments are confirmed with the algebraic expressions

presented in tables 4 & 5.

The parameters a and b present in the expressions of Tables 4 & 5 are the

amplitudes of the exact and approximate finite element solutions respectively.
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Table 4.  Analysis Results for the fixed-fixed bar with exact solution and with two and

three equal length bar elements using consistent mass formulation for the fundamental

mode

Approximate finite element solutions
Exact solution

2- element solution 3- element solution

(Strain energy)×2 22 9348.4 a
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Table 5. Analysis Results for the fixed-fixed bar with exact solution and with two and

three equal length bar elements using lumped mass formulation for the fundamental mode

Approximate finite element solutions
Exact solution

2- element solution 3- element solution
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8. Conclusion

An energy-error rule and the projection theorems have been derived using the variational

(weak form) approach of Strang and Fix [5] for the elastodynamic problems. It has been

demonstrated with numerical examples that a variationally correct formulation

(consistent mass) always satisfies these theorems but any extra variational formulation

(lumped mass) violates these. The effect of replacing consistent mass by lumped mass

has been critically examined.

An attempt has been made to present a geometric interpretation for the errors

associated in the computations of eigenfrequencies of structural mechanics problems.

Also the upper bound nature of approximate finite element eigenfrequencies for

consistent mass to exact eigenfrequncies are proved mathematically using the Frequency

Error-Hyperboloid. The guarantee of upper bound is lost when a lumped mass is used;

this fact has been illustrated with numerical examples using the two noded linear bar

element.
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