

LETTERS TO THE EDITOR

INTERPRETATION OF 5⁻ LEVELS IN EVEN-EVEN NUCLEI

In a recent note by one of us¹ 5⁻ levels in even-even nuclei were interpreted as possibly belonging to $\lambda = 5$ modes of collective vibration. The evidence in support of this interpretation consisted of the following:

1. The excitation energy of these levels varied very little with mass number suggesting some sort of core excitation.

2. No 5⁻ level was definitely known for $A < 90$ consistent with the breakdown of collective motion characterised by a given number of nodes when the corresponding wavelength at the nuclear surface becomes comparable with or less than the internucleon distance.

Recently Broek² has observed levels in Ni and Zn isotopes and suggests that these may arise from coupling of 2⁺ and 3⁻ states. In view of this it is interesting to re-examine our table on 5⁻ levels and see if a re-interpretation on the lines of Broek is possible.

In Table I are assembled 5⁻ levels which have been known with some certainty. Column I indicates the even-even nuclei considered in the present analysis. In columns II, III and V are shown the excitation energies of 2⁺, 3⁻ and 5⁻ states obtained from various references. Column IV is the sum-energy of 2⁺ and 3⁻ states designated by [E(2⁺) + E(3⁻)]. The last columns, VI and VII, indicate the values of AE(3⁻) and AE(5⁻), where A is the mass number of that particular nucleus.

Now, if the 5⁻ level results from the coupling of (one phonon) 2⁺ and 3⁻ (octupole) states, then one should expect that,

$$[E(2^+) + E(3^-)] = E(5^-).$$

Further one should observe as a result of angular momentum coupling other states namely 1⁻, 2⁻, 3⁻ and 4⁻ besides the 5⁻ level.

The following conclusions can be drawn from Table I:

Columns IV and V indicate that the expected fit for [E(2⁺) + E(3⁻)] and E(5⁻) is not found.

Further only in four cases Cd¹⁰⁸, Cd¹¹⁰, Xe¹³⁰ and W¹⁸² the two energies come within a difference of 0.2 Mev. Of these only Xe¹³⁰ has the E(5⁻) within the predicted energy limit of [E(2⁺) + E(3⁻)] set by Broek.²

Column V also shows that the excitation energy E(5⁻) is far less than the sum-energy of 2⁺ and 3⁻ states. By the way of argument one may suspect the existence of some other groups, different from 5⁻ levels, which has excitation energies in the vicinity of [E(2⁺) + E(3⁻)]. Thus the 5⁻ level has a different excitation mechanism and the possibility of arising from two phonon quintet is less.

The similarities exhibited by the excitation energies of 3⁻ and 5⁻ levels and the quantities of AE(3⁻) and AE(5⁻) having values 200-300 (within certain limits) with the insensitive character to the closed shells, suggest that the same type of excitation mechanism is involved in both 3⁻ and 5⁻ states. Then the interpretation of 3⁻ states as the octupole vibrations of even-

TABLE I

I Nucleus	II ^a E(2 ⁺) Mev	III ^b E(3 ⁻) Mev	IV E(3 ⁻) + E(2 ⁺)	V ^c E(5 ⁻) Mev	VI AE(3 ⁻)	VII AE(5 ⁻)
Zr ⁹⁰	..	2.18	2.2	4.38	2.32	198.0
Cd ¹⁰⁸	..	0.630	2.19	2.82	236.4	208.7
Cd ¹¹⁰	..	0.656	2.056	2.712	226.2	274.3
Sn ¹¹⁸	..	1.22	2.28	3.5	269.0	321.2
Sn ¹²⁰	..	1.18	2.38	3.56	285.6	270.2
Xe ¹³⁰	..	0.528	1.998	2.526	239.8	304.2
W ¹⁸²	..	0.100	1.374	1.474	250.1	294.8
Pb ²⁰²	..	0.961	412.1
Pb ²⁰⁸	..	0.803	2.525	3.328	520.2	570.9
Pb ²⁰⁸	2.614	..	543.8	665.6
				3.71		771.8
Po ²¹⁰	..	1.181	2.91	611.0

(a) Strominger, D. and Hollander, J. M., *Decay Schemes*, Berkeley, California, June 1958.

(b) Hausen, O. and Nathan, O., *Nucl. Phys.*, 1963, **42**, 197.

(c) Ramaswamy, M. K., *Curr. Sci.*, 1963, **32**, 63.

even core gives some evidence to our interpretation of 5^+ states as due to collective vibrations.

Now turning to the other expectation, we find that so far no quintet of 1^+ , 2^+ , 3^+ , 4^+ and 5^+ is observed in the level schemes of all the cases considered in the present analysis.

The table also shows that no 5^+ level is observed for $A < 90$ consistent with our proposed systematics for the 5^+ levels.

The failure to observe the collective 5^+ levels may be attributed to the fact that these levels may be obscured by the transitions in the neighbouring low-lying states.

Thus one can interpret 5^+ levels as collective vibrations of $\lambda = 5$ mode.

Dept. of Physics, S. M. BRAHMAVAR.
Karnatak University, M. K. RAMASWAMY.
Dharwar, October 22, 1963.

1. Ramaswamy, M. K., *Curr. Sci.*, 1963, **32**, 63.
2. Broek, H. W., *Phys. Rev.*, 1963, **130**, 1914.