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ABSTRACT

An analysis of K-conversion coefficients of E2 transitions of the type
2t 0%, 0t —2F, 4+ =21, 6+—=4+, and 8+—6* together with their methods. of
determination has been carried out. The ratios of experimental to
theoretical o values are plotted against the atomic weights and it is seen
that there is no similar behaviour among these transitions.

I. INTRODUCTION

ONE of the most useful procedures for the classification of nuclear energy
levels is the method of internal conversion. The internal conversion process
constitutes one of the most effective methods of assigning angular momentum
and parity quantum numbers to the low-lying nuclear states. In many
cases it provides the decisive information for constructing a decay scheme.
‘The parity change and angular momentum change of the nucleus may
be deduced from the primary nuclear information obtained from a compa-

‘rison of observation and accurate theoretical values of the conversion of
coeflicients.

The first major effort to calculate the internal conversion coefficients
was made by a group of British physicists in the early thirties. These calcu-
lations were completely relativistic and based on a point nucleus and un-
screened electrons. The discovery of nuclear isomerism in the forties made
it clear that internal conversion coefficients for higher multipoles and almost
all values of Z were needed. In view of the laborious nature of the ‘exact’
calculations (relativistic and full effects of the coulomb field of the point
nucleus included) a number of approximate models were introduced: non-

relativistic electron dynamics as one instance and, alternatively, the Born
approximation as another. ’

Since the comparison of measured and computed coefficients was used
to assign multipole orders or spin changes and parity changes to the transition,
34 ‘ ‘
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the correctness of theoretical results could not be called into question unless
this assignment could be established in an independent way.

This required a considerable development of the techniques developed
for deciphering decay schemes and these techniques (together with their
theoretical basis) were not available until around 1950, and later. As an
example the angular correlation of gamma rays in cascade may be mentioned.
The approximate conversion coefficients did not compare favourably with
the British results, but this comparison could be made only with extrapolation
outside the expected region of validity of the formulae.

Rose et all undertook to extend the results for the internal conversion
coefficients for K shell to a wide range of values of Z and transition energy,
using Dirac hydrogen-like wave functions. The model for this first calcula-
tion was exactly the same as in the early British work. The results showed
clearly that the approximate calculations had a much more restricted range
of validity than expected. In physical terms the internal conversion process
is very sensitive to the small distance behaviour of the electron wave functions
and, for a proper description of this, a relativistic treatment with the nuclear
interaction included is mandatory.

Rose ef al.? have computed the internal conversion coefficients for
electric and magnetic multipole radiation for the K-shell in the relativistic
case with the unscreened coulomb field acting on the electron.

After the K shell calculations were completed, it became evident that
L shell calculations were just as badly needed. With the L shell results one
could eliminate the necessity of measuring gamma-ray intensities and consider
“only K/L ratio. - Actually, this ratio is now recognised as an insensitive indi-
cator of the state parameters but with the L sub-shell coefficients it is now
realized that the ratios of conversion electrons from the various sub-shells
do provide a clue for these parameters which is often decisive. When the
planning of the L shell calculations was initiated in 1949 it was recognized
at once that screening effects, hitherto ignored, might become more important.
It was also realized that, with comparatively minor added complications,
the M sub-shell coefficients could also be obtained.

Even before the completion of the screened coefficients it began to appear
that the assumpton of a point nucleus would not suffice for certain cases
(heavy nuclei and especially magnetic dipole transitions). This fact emerged
from the work of Sliv® and collaborators who reported an appreciable reduc-
tion of the magnetic dipole coefficients for Z > 60. Subsequently Sliv3
and his group extended their early calculations to virtually all Z values, of
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interest and obtained K shell coefficients with a finite size nucleus. The
model taken for the nucleus by Sliv® and coworkers was a uniformly charged
sphere with radius 1-20x 1072 A3 cm. The nuclear currents were taken
to be on the surface of the nucleus. Only slight variations in the calculated
values were observed when the nuclear radius was altered by ten per cent. or
when the nuclear currents were taken to be uniformly distributed rather than
confined to the nuclear surface. They therefore conclude that the internal
conversion coeflicients are not sensitive to the details of the distribution of
charge and current within the nucleus and that the differences from the
““ Point Charge * values are principally the result of the removal of infinities
in both the transition potentials and relativistic electron wave functions.

Green and Rose* included finite nuclear size into their calculations.
Finally, the K and L shell coefficients are recalculated by Rose® with the
same effects of finite size but with a very slightly different model than that
used by Sliv.3 :

For a finite nucleus the two calculations lead to conversion coefficients
which differ by less than five per cent. in almost all cases of physical impor-
tance. The result of either treatment is that the part of the conversion
coefficient which is dependent on dynamic structure effects is but a few per
cent. of the part which is independent of these effects.

- Church and Wenesers pointed out that nuclear models which allow for
shell §tructure effects can lead in some cases to (dynamic) structure-dependent
contributions to the internal conversion coefficients which are sizable fractions
or perhaps even larger multiples of the structure-independent contributions.
The fact that atomic electrons can penetrate within the nuclear charge and
current distributions gives rise to additional nuclear matrix elements for inter-
nal conversion which are different from the leading conversion matrix elenient.

Thf’ I:aading conversion matrix element is identical with that for gamma-ray
emission of the same multipole order,

.The comp?mson’ of experimental and theoretical values of internal con-
version coefficients is becoming more interestin

. McGo‘.yan and Stelspn7 have reported higher valyes for the K-conver-
sion coefficients. The discrepancies between the experimental and theore-
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Subba Rao® has collected and analysed the data on the K-conversion
coefficients of pure E2 transitions from the first excited 2+ state to the ground
state of even-even nuclei. He has concluded that K-conversion coefficients
may possibly depend on the deformation of the nucleus. His survey points
out the reasonable agreement with theory (when the large experimental errors
are considered) at low and high Z and a systematic trend to higher valnes
in the deformed nuclear region of the rare earths.

Ramaswamy? has carried out a similar study of K-conversion coefficients
of transitions of the type O+t—2*+ with conclusions similar to those of Subba
Rao. However, the error limits considered by them are still large and the
observed deviations open to some question.

Thosar et al.,'® comparing their recent measurements of K-conversion
coefficients for some of the deformed even-even nuclei, with the values ob-
tained by earlier workers, conclude that the discrepancy between the theore-
tical and experimental values can be very much reduced using improved tech-
niques and taking into account the possible contributions due to various
uncertainties. This is in contradiction to Subba Rao’s conclusion that there
may exist some kind of correlation between the nuclear deformation and the
deviations of measured K-conversion coefficients from theory.

The discrepancies and inconsistencies discussed above stimulated us
to further studies of all the E, K-conversion coefficients. Hence in this
article we have attempted to make a survey of pure E2 K-conversion
coefficients.

II. CoMPILATION OF DATA

Tables. I to V show most of the available data on K-shell internal con-
version coefficients of pure E2 transitions. Transitions of the type 2+—0*,
0t -2+, 4+-2+, 6t =4+ and 8+ —6* are represented in Tables I, IT, III, IV and
V respectively. The first and second columns in the tables represent the
nucleus and the transition energy respectively. The third column gives
the method used for the determination of the K-shell internal conversion
coefficients. Experimental values of the coefficients are compiled in the
fourth column and the corresponding references in the fifth one. Wherever
an error is not assigned on the experimental value of ay, we have assigned
an error of 8% for PBS method and 109 for any other method. The weighted
averages of all the observed values are given in the sixth column. The seventh
column gives the theoretical values of ay, from the references given in the
eighth column, The last column ‘shows the ratio R (ag) of the experimenta]
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Finally, the K and L shell coefficients are recalculated by Rose® with the

same effects of finite size but with a very slightly different model than that
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to theoretical values. R (o) is plotted against the atomic weight in Figs. 1
to 4. Some of the available data on experimental oy, values are not included
in the tables due to the lack of information on the experimental methods
involved.

IIT.  ANALYSIS OF DATA AND DISCUSSION

(@) Spherical Region

Deviations are pronounced for Tel2, Xe'26, Xe'®0 and Xe's? in Fig. 1.
In the case of Tel* and Xe'26 all the ay, values are determined by P B S methods
only and hence we can attribute the deviations to the possible systematic
experimental errors. 2+-s0* transition in Bal® shows better agreement
with theory than 2+—0+ which is pure E2. So we may expect a correlation
between the deviation of o and the nuclear structure among these nuclei.
The nuclei beyond A > 192 do not lic on the R (ax) =unity line and a general
trend in o for 2+—0* transitions to be lower than theory is observed for the
spherical nuclei.

In Fig. 2, out of the three points that lie in the spherical region, one
point, i.e., Pd%¢ deviates from the unity line.

In Fig. 3, the points lie equally well on both sides of the line R(ax) == unity.
The closed-shell nuclei Sn''8 and Sn® lie far above the unity line. Devia-
tions are observed in most of the cases where relative intensity measurements
are made for the measurement of aj.

All the spherical nuclei deviate in Fig. 4, among which Z1%, Sn!18, Sp20
are closed-shell nuclei.

All the o values for 6+-s4+ transitions except in the cases of Nd4 and
Cm®4, are determined from relative intensity measurements and the accuracy
of the experimental o, value depends in turn on the theoretical value used
for the normalization of the relative values, In general, aj values show a
tendency to be Iower than theory.

‘Measured oz, values for % —6* transitions are not available for any
nucleus in the spherical region.

Pd™¢ (in Figs. 1 and 2), Cd'® and Xel3o jp Figs. 1, 3 and 4 behave
similarly.

The closed-shell nuclei Sns ip Fig. 3 and Sn' in Figs. 3 and 4 lic well

above the unity line whereas the same nucleus Spl18 lies below the line in
Fig. 4.
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Since Nd'# agrees with theory in Figs. 1 and 3 and as it lies below the
unity line in Fig. 4, the 6+ —4* transition may not be pure E2 and there may
be an admixture of M3 transition. Hg®" is an interesting case because there
is a good agreement for the 4+—s2+ transition in Fig. 3 but the point lies
slightly above the line for 2+—0*+ transition in Fig. 1 which is a pure E2
transition.

(b) Deformed Region

An analysis of Fig. 1 clearly indicates that the large deviations observed
by earlier workers are very much reduced in the deformed region. Nuclei
other than Gd's2, Dy60, Erles Erlés, Hf180 Wyis2 Os'86, and Os0 Jie on the
line R (ax) = unity. As we have taken the weighted averages of all the
available data on ag 50 as to reduce the possibility of a constant error entering
the experimental values no particular comment can be made on the above
deviation. In the case of Os188, a large deviation is observed for the 20,

transition (633 Kev.) and hence there is the possibility of 633 Key. transition
being not pure E2,
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values obtaired by gamma scintillation spectra method are usually higher
than those obtained by other methods. Coincidence methods yield good
results almost in all the cases. In general, the values obtained by IEC method
are in good agreement with one another. It will be of interest if ax values

for pure E2 transitions of all types are remeasured using the improved
techniques.
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