
FUNDAMENTAL DOMAINS FOR LATTICES
IN RANK ONE SEMISIMPLE LIE GROUPS

BY H. GARLAND* AND M. S. RAGHUNATHANt
YALE UNIVERSITY AND TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY, INDIA

Communicated by Nathan Jacobson, December 4, 1968

Abstract.-We construct a fundamental domain Q for an arbitrary lattice r in a
real rank one, real simple Lie group, where Q has finitely many cusps (i.e., is a
finite union of Siegel sets) and has the Siegel property (i.e., the set { y EE r a-y n
Q $ i4 is finite). From the existence of a we derive a number of consequences.
In particular, we show that r is finitely presentable and is almost always rigid.

0. Introduction.-In this note we announce an extension of Borel's reduction
theory (cf. ref. 1) to an arbitrary lattice in a connected, semisimple Lie group
which is simple and of rank one over the real numbers R (see Theorem 1.2, be-
low). In section 2 we describe some applications of this extended reduction
theory, and in section 3 we give an indication of the proof of Theorem 1.2. Our
proof of Theorem 1.2 relies on the results of D. A. Kazdan and G. A. Margolies
(cf. ref. 4).
After we obtained these results, we learned that in the cases SO(n,1) and

SU(n,1) A. Selberg had also proved Theorem 1.2, his methods being somewhat
different from ours (it seems probable that his methods also work for general R-
rank one groups). A few years ago we had many stimulating conversations with
Professor Selberg, and in these conversations he was kind enough to show us his
early results on the existence of unipotent elements in nonuniform lattices. It
gives us great pleasure to extend to him our hearty thanks.

1. Statement of the Main Theorem.-Throughout this paper G will denote a
linear, connected, semisimple group which is simple and of rank one over R.
r c G will denote a lattice, i.e., a discrete subgroup of G such that G/r has finite
invariant volume. Moreover, r will be called a uniform lattice (resp. nonuniform)
in case G/r is compact (resp. G/r is noncompact). Let g denote the Lie algebra
of G, and f the subalgebra of g corresponding to a maximal compact subgroup K
of G, which we fix once and for all. Let g = f (D b be the Cartan decomposition
corresponding to f and for the whole paper we fix a nonzero vector YO E b. Let
a be the R-span of Yo and let A be the analytic subgroup of G corresponding to
a. g then decomposes into simultaneous eigenspaces relative to Ad A.

In fact there is a unique character a of A, so that (exp Yo)' > 1 and so that

g=n 2ae) na @ j(a) 0 n-a G) n-2a(1.1)

where

= {v C gIAd a(v) = aia v, a C A}, i = :11, ±2,

and 3(a) is the centralizer of a. The existence of the decomposition (1.1) follows
from our assumption that G has R-rank one. n1 = n±2a ®Dn a is a subalgebra
of g, and we let N' denote the corresponding analytic subgroup. Recall that G
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is a linear group; then it is known that NA is a maximal unipotent subgroup.
We also have the Iwasawa decomposition G = KAN+. We let Z(A) denote the
centralizer of A in G and we let P = Z(A)N+. For t > 0 and an open, relatively
compact subset 77 c N+, we set

At = {a E Alaa < t,

and we let et, vdenote the Siegel set KALE. We can now state our mail theorem.
THEOREM 1.2. Let I' c G be a nonuniform lattice. Then there exists to> O an

open relatively compact subset q C N+, and a finite subset v c G, such that:
(i) For all b E :, b-IN+b n r is a lattice in b-IN+b.
(ii) If Q = Ub E= ,! 25tovb) then ur = G,
(iii) the set {Iy £ Frly fln Q# 44 is finite, and
(iv) there exists t > 0, so that for all -y rF, b,b' (E such that 5t, by

n t,,b' # , we must have b = b', and b-yb'-' E P.
Remark: If r is a uniform lattice, then we can, of course, find an open, rela-

tively compact subset Q of G, so that (ii) and (iii) hold for this U.
2. Applications of the Main Theorem.-The following two results are direct

consequences of Theorem 1.2.
THEOREM 2.1. Let r be a lattice in G; then G/r is diffeomorphic to the interior

of a compact differentiable manifold with boundary (the boundary being empty if
G/r is compact).
From Theorem 2.1, we obtain
THEOREM 2.2. (i) r is finitely presentable.
(ii) If M is any r-module which is finitely generated as an abelian group, then

the Eilenberg-Mac Lane groups Hk(r,M) are finitely generated.
(iii) If {MI}i I is an inductive family of F-modules with limit M, then

Hk(rF,M)} i I is an inductive family of abelian groups, with limit Hk(r,M).
Kazdan has shown (cf. ref. 3) that lattices in semisimple Lie groups, all of

whose R-simple factors have R-rank greater than one, are finitely generated.
Assertion (i) of Theorem 2.2 may then be regarded as an extension of Kazdan's
result. In the light of Theorem 1.2, the arguments in reference 6 carry over ver-
batim to give
THEOREM 2.3. If Ad denotes the adjoint representation of G in g, then for every

lattice r C G, we have Hl(r,Ad) = 0, provided that G is not locally isomorphic to
SL(2,R) or SL(2,C).
The following result has something to say about the case when G is locally iso-

morphic to SL(2,C) as well.
THEOREM 2.4. Assume that G is the topological identity component of the set of

R-rational points of an algebraic linear group defined over Q. If G is not locally
isomorphic to SL(2,R), then for any lattice r C G, there exists g C G and a sub-
field k c R of finite degree overt Q, such that grg-g is contained in the k-rational
points of G.
When G is not locally isomorphic to SL(2,C), then Theorem 2.4 follows from

Theorem 2.3, assertion (i) of Theorem 2.2, and a result of A. Weil (cf. ref 7).
When G is locally isomorphic to SL(2,C), then an argument of J. P. Serre (orig-
inally Serre's argument was for arithmetic groups, but Theorem 1.2 allows one to
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carry this argument over to arbitrary nonuniform lattices) shows that Hl(F,Ad)
is almost never zero for nonuniform r. Nevertheless, one is able to obtain
Theorem 2.4 in this case by proving that if r is a nonuniform lattice in G, then a
deformation of r, which takes unipotent elements to unipotent elements, must be
a trivial deformation. As a final application of Theorem 1.2, we give the follow-
ing extension of a theorem of G. D. Mostow (cf. ref. 5).
THEOREM 2.5. Let G = SO(n,1), n > 6, and let r and r' be two isomorphic

lattices in G. Let X = SO(n)\SO(n,1) be the symmetric space associated to G.
Assume that r (and hence r) contains no nontrivial elements of finite order and
that the C' manifolds x/r and x/r which are therefore defined are diffeomorphic.
Then there is an autonnorphism c: G -* G, carrying r onto F'.
Theorem 2.5 is deduced from Theorem 1.2 by using the S-cobordism theorem,

some elementary facts from differential topology, and, finally, Mostow's theorem
given in reference 5.

3. An Indication of the Proof of the Main Theorem.-Let X denote the sym-
metric space K\G, and from now on let r C G denote a nonuniform lattice.
Let 7r:G -a K\G = X denote the natural projection and let e= lr(e). After
conjugating r, we can assume that ey $ e, for all y E r. r acts as a discontinu-
ous group of isometrics on X, and we construct a fundamental domain 8 for this
action of r in the following well-known manner: let d(, ) denote the distance
function on X corresponding to a fixed G-invariant Riemannian metric on X,
and set

8 = {x F XId(ex y) 2 d(jx),'y Fr}

Definition 3.1: Y E b is called a ray, in case Y #O and e exp t Y E 8 for all t <
O.

It is well known, and not difficult to show, that X = &r and that b contains at
least one ray (recall that G/r is now assumed to be noncompact). For Y G b,
we define a subalgebra

ny = linear span of {v C gIAd Y(v) = c-v, c > 0$,
and we let NY denote the corresponding analytic subgroup of G. The following
result is central for the proof of Theorem 1.2.
LEMMA 3.2 (Main Lemma). For every ray Y F b, N,/N, n r is compact.
The proof of this lemma rests on a series of results:
LEMMA 3.3. For every ray Y E b, NY n r contains a nontrivial element.
LEMMA 3.4. If p E r is unipotent, if G, is the centralizer of p, and if rp -

r f Gp, then Gp/rp is compact. t
LEMMA 3.5. If N' is a maximal R-unipotent subgroup, and if N' n r contains

a nontrivial element, then N' n r contains a nontrivial element in the center of N'.
We remark that NY is maximal R-unipotent, so that Lemmas 3.3 and 3.5

imply that NY n r contains a nontrivial element in the center of NY. It is not
difficult then to deduce Lemma 3.2 from this fact and from Lemma 3.4. The
proof of Lemmas 3.3 and 3.5 makes use of the ideas given in reference 4. Though
our proof of Theorem 1.2 is entirely free of case-by-case checks, it nevertheless
seems curious that a case-by-case method does yield a relatively simple proof of
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Lemma 3.5, except in the low-dimensional cases SU(2,1), Sp(2,1), and F4(-2o), and
it is actually only for these cases that one requires the methods given in reference 4,
in the proof of Lemma 3.5.
We fix a K-invariant norm 11 on b. The following lemma is needed in order

to obtain the finiteness of the set 2 in Theorem 1.2.
LEMMA 3.6. b contains only finitely many rays of unit norm.
The proof of Lemma 3.6 is based on Lemma 3.2 and on a further technical

lemma, which we now proceed to describe. Let a,, for Y C b, be the R-span of
Y, and let A y denote the analytic subgroup of G corresponding to ay. We then
have an Iwasawa decomposition G = KA yNy, and for g & G, we let g = ky(g)-
ay(g)ny(g) denote the representation of g with respect to this Iwasawa decom-
position. If g = exp tY', Y' & b, then ay(g) = exp sY for some s E R, and we
set fy'(t) = s. We can now state the necessary technical lemma:
LEMMA 3.7. Let Y E b have unit norm. Then given M > 0, there exists e > 0

such that if Y' is any element of unit norm in b such that Y - Y'| < e, then
there is a maximal to(Y') < 0 such that fy,(to(Y')) = 0 (and hence exp to(Y')Y' =
ky (exp to(Y')Y')ny(exp to(Y')Y')), and such that d(7r(ny(exp to(Y')Y')),e) > M.
Moreover, as Y' tends to Y. to(Y') tends to - .

We can now prove Lemma 3.6. Since Lemma 3.2 implies that Ny/NY n r is
compact for a ray Y, we know that there is a compact subset w c Ny, such that
Ny = w(NY n r). Clearly then, we have a constant M > 0 such that

d(r(n),j) < M, n C w. (3.8)

On the other hand, according to Lemma 3.7, if e is chosen sufficiently small, if
Y' is of unit norm, and Y| -Y'-Y < E, then there exists p = exp tY', so that p =
kono, ko E K, no F Ny, and so that

d(ir(kono),e) = d(r(no),j) 2 A. (3.9)
Clearly, we can find y E F f Ny such that noy CF w. But then from (3.8) and
(3.9),

d(r(p),j) 2 M > d (r(p),y,j),
so that ir(p) X S. Hence the rays of unit norm form a discrete subset of a com-
pact space, and hence a finite set. This proves Lemma 3.6.

Let

S = {Y C b| fY1 = 1 and Yis aray}.
For t > 0, Y F b, let Ay,, = {a F Ay Iaa < t}, where now we define a with
respect to A y and Y, just as we did with respect to A and Yo in section 1. One
can use the preceding results to obtain
LEMMA 3.10. We can find t > 0 and for each Y F S, an open relatively compact

subset coy c Ny, so that if ' = U y E s KAy,, w y, then
(a) I'r= G,
(b) {I E rFI yAn 'o x} is finite.
The proof of (a) follows from Lemmas 3.2, 3.6, and a fairly straightforward

argument again involving Lemma 3.7. Before discussing the proof of (b), we
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note that we can find a finite subset v c G (in fact we can take Z in K), such
that for each Y F 8, we can find a unique by & v such that Y = Ad by-1(Yo)
(where we assume that Yo was chosen so that II Yo!lI = 1). Moreover, we can
choose an open relatively compact set v c N+, so that by-'7by D cy for all
Y E S., We then have

U=Ubed KAI b,

D U y E S KA y,t coy.

Hence, we see that Lemmas 3.10 and 3.2 already imply (i) and (ii) of Theorem
1.2. On the other hand, (b) will follow from

For all b,b' F a, the set y E rlF 5,,, by n 25,b' $ 01, is finite. (3.11)

Now the pair (N+, A) determines a Bruhat decomposition for G. In fact, let
W c K be a set of representatives for the Weyl group of G (relative to A). Then
each g E G has a representation

q = uwmav, uv F N+, a E A, m E Z(A) n K, w E W.

The following is not difficult to deduce from Lemma 3.2:
LEMMA 3.12. There exists CO > 0 such that for all bb' F , E r, if byb'- =

uwmav, then

a" > Co. (3.13)

The significance of the inequality (3.13) seems to have been fully recognized
for the first time by Harish-Chandra. In particular, he has shown that this in-
equality implies (3.11). (See ref. 2 for a discussion when G = SL(n,R). The
proof given there carries over directly to the present case.) Finally, we mention
that (iv) of Theorem 1.2 follows from our earlier results and standard results in
reduction theory, where one might have to shrink the set v (this shrinking is
probably not necessary). Details of the arguments described here will appear
elsewhere.
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