

Arithmetic lattices in semisimple groups*

M S RAGHUNATHAN

School of Mathematics, Tata Institute of Fundamental Research, Bombay 400 005
India

MS received 26 June 1981

1. Introduction

Borel [1] showed that given a (connected) real semisimple Lie group G , it admits a discrete (arithmetic) subgroup Γ such that G/Γ is compact. In this paper we will establish the following refinement of that theorem.

Theorem. Let G be a connected linear semisimple Lie group and A a commutative group consisting of involutive automorphisms of G . Then G admits a discrete (arithmetic) subgroup Γ such that $G^a/\Gamma \cap G^a$ is compact for each $a \in \tilde{A}$, G^a being the fixed point set of a in G and \tilde{A} is an abelian group of involutive automorphisms of G containing A and a cartan involution of G .

As was the case with Borel's proof, the theorem can be deduced from a result on Lie algebras. We omit the details of this deduction.

Theorem. Let g be a semisimple Lie algebra and A a commutative group consisting of involutive automorphisms of g . Then there is a Q -structure on g such that all elements of A are Q -rational and g admits a cartan involution defined over Q and commuting with A .

The kind of Q -structure introduced on g in the special case when g is compact has the additional property that all representations of g defined over R are equivalent to representations defined over Q .

The refined version proved here is likely to be of some interest in the context of geometric constructions for homology of compact locally symmetric spaces given by Millson-Raghunathan [4] and Millson [1]; in the special case where A is trivial, we get Borel's theorem.

Borel's theorem was preceded by results in the case of many classical groups. Siegel [5] initiated the subject by making the first constructions of uniform arithmetic subgroups in classical groups beyond $SL(2, R)$. This was generalised to cover a wilder class of classical groups by Klingen [2]. Ramanathan [3] pointed

* To Prof. K G Ramanathan on his 60th birthday.

out further examples and raised the question (in oral conversations) whether any semisimple Lie groups admits a uniform lattice.

2. The standard Q -form of a compact Lie algebra

Let k be a compact semisimple Lie algebra and $k = k \otimes_{\mathbb{R}} C$. Let $t \subset k$ be a cartan subalgebra and $t = C$ -span of t . Let Φ be the root system of k with respect to t and for $\alpha \in \Phi$, let $k(\alpha)$ denote the root space of α . As is well-known there exists a Chevalley basis of k viz., we have $\{H_\phi | \phi \in \Phi\} \subset t$ and $E(\phi) \in k(\phi)$, $\phi \in \Phi$ such that

- (i) $[H_\phi, E(\psi)] = 2 \langle \phi, \psi \rangle / \langle \psi, \psi \rangle \cdot E(\psi)$
- (ii) $[H(\phi), E(\psi)] = N_{\phi, \psi} E_{\phi+\psi}$ with $N_{\phi, \psi} \in \mathbb{Z}$, $\phi + \psi \in \Phi$
- (iii) $[E(\phi), E(-\phi)] = H\phi$.

The complex conjugation in k takes each $k(\phi)$ into $k(-\phi)$ so that for $\phi \in \Phi$, $\bar{E}(\phi) = \lambda(\phi) \cdot E(-\phi)$ for some $\lambda(\phi) \in C^*$. Since $\langle E(\phi), \bar{E}(\phi) \rangle > 0$, we conclude that $\lambda(\phi) > 0$. Let T the adjoint torus of t be chosen such that $\alpha(x) = \lambda(\alpha)^{-1/2} > 0$ for $\alpha \in \Delta$, a simple system of roots of k . If we set $E'(\phi) = \lambda(\phi)^{-1/2} E(\phi) = \text{Ad } x E(\phi)$, we see that for simple $\phi \in \Delta$, $\bar{E}'(\phi) = \lambda(\phi)^{1/2} E(-\phi) = E'(-\phi)$ so that the complex conjugation takes $E'(\phi)$ into $E'(-\phi)$ for all $\phi \in \Delta$. It follows immediately that $\bar{E}'(\phi) = \pm E(-\phi)$ for all $\phi \in \Phi$ as well. The $E'(\phi)$, $\phi \in \Phi$ together with the $\{H_\alpha | \alpha \in \Delta\}$ constitute again a Chevalley basis. Let k_0 be the $Q(i)$ -span of the $\{E'(\phi) | \phi \in \Phi\}$ and the $\{H_\alpha | \alpha \in \Delta\}$. Then k_0 is a $Q(i)$ -split form of k . Let k_0 be the fixed points in k_0 of the complex conjugation: this is an antilinear involution over $Q(i)$. Then k_0 is a Q -form of k . For each $\phi > 0$, it is easily seen that the Lie algebra $a_0(\phi)$ spanned by $E'(\pm \phi)$ and $H(\phi)$ over $Q(i)$ is $Q(i)$ -isomorphic to $SL(2)$, is stable under the conjugation with fixed algebra $a_0(\phi)$ isomorphic over Q to $SU(2)$ the standard special unitary group over $Q(i)$ given by the hermitian form $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. An immediate consequence is that the reflection s_ϕ corresponding to ϕ in the Weyl group W of the adjoint algebraic group K with k as Lie algebra has a Q -rational representative in $N(T)$ the normaliser of T in K (for the natural Q -structure on k defined above).

In particular the unique element $w_0 \in W$ which takes all of Δ into negative roots has a Q -rational representative $w_0 \in N(T)(Q)$. Let S be the identity component of the group $\{x \in T | w_0 x w_0^{-1} = x\}$. Then on T/S , w_0 acts by $w_0(x) = x^{-1}$. Further in $N(T)/S$ we have $w_0^2 \in T/S$ so that $w_0 w_0^2 w_0^{-1} = w_0^{-2} = w_0^2$ leading to the conclusion that w_0^2 is an element of order 2 modulo S . Note that S is defined over Q .

Definition. The Q -structure defined above will be called a Standard Q structure on the pair (K, T) .

Proposition. Let G be a Q -algebraic group such that the identity component G^0 of G is a torus and G/G^0 is abelian with every element of order 2. Suppose that $G(Q) \rightarrow (G/G^0)(Q) = G/G_0$ is onto and the sequence.

$$(*) \quad 1 \rightarrow G^0 \rightarrow G \rightarrow G/G^0 \rightarrow 1$$

admits a splitting γ over R and that the torus G^0 is anisotropic over R and splits over $Q(i)$. Then $(*)$ splits over Q as well and the Q -splitting can be chosen to be conjugate to γ by an element of $G^0(R)$.

Proof. We argue by induction on $\dim G$. We note first that every subtorus of G^0 defined over R is automatically defined over Q . Let $X(G^0)$ be the abelian group of 1 parameter subgroups of G^0 . The Galois group $\text{Gal}(Q(i)/Q) \cong \text{Gal}(C/R)$ operates on this by $\chi \rightarrow -\chi$. The group G/G^0 acts on $X(G^0)$ as well and has an eigen vector in $X(G^0) \otimes Q$ hence in $X(G^0)$. Let S denote the corresponding torus in T . S is evidently defined over Q and normal in G . Let $G' = G/S$. Then by induction hypothesis we can find $u \in G^0(R)$ such that $\bar{p} = \bar{u}(\pi \circ r)\bar{u}^{-1}$ is defined over Q where $r : G/G^0 \rightarrow G$ is the given R -splitting, and $\pi : G \rightarrow G/S$ is the natural map and $\bar{u} = \pi(u)$. If we now set $H = \pi^{-1}(p(G/G^0))$, H is defined over Q and its identity component $H^0 = S$. We are thus reduced to the case when $\dim G = 1$. First consider the action of the group G/G^0 on G_0 . Since $\dim G = 1$, the automorphism group of G is of order 2; it follows that G/G^0 has a subgroup B of index almost 2 which acts trivially on G^0 . If $p : G \rightarrow G/G_0$ is the natural map $p^{-1}(B)$ is abelian—note that we have a splitting over R and hence diagonalisable. Now we have the exact sequence

$$0 \rightarrow X^*(B) \rightarrow X^*(p^{-1}(B)) \rightarrow X^*(G^0) \rightarrow 0$$

of the character groups. These are modules over $\text{Gal}(C/R) \cong \text{Gal}(Q(i)/R)$ and by assumption the sequence is split as modules over $\text{Gal}(C/R)$ hence also over $\text{Gal}(Q(i)/Q)$. Moreover any R -splitting is a Q -splitting ($X(B)$ is a trivial Galois-module). Thus we conclude that $p^{-1}(B)$ admits a Q -splitting of the form $B \cdot G^0$. The character group is a direct sum $X^*(B) \oplus X^*(G^0)$ with the action G/G^0 trivial on $X^*(B)$ and nontrivial on $X^*(G^0) \cong Z$; if $B \neq G/G^0$, $X(B)$ then can be characterised as those elements which are fixed by G^0 as well as G/G^0 . It is immediate now that B is normal in G . Consider then the quotient $H = G/B$. H^0 is isomorphic to G^0 and is hence 1-dimensional. The sequence

$$** \quad 1 \rightarrow H^0 \rightarrow H \xrightarrow{q} H/H^0 \rightarrow Z/2 \rightarrow 1$$

is assumed to be split over R . Let $\tau \in H/H^0$ be the nontrivial element. Then $q^{-1}(\tau)$ is a principal homogeneous space over Q ; it has a rational point over Q by assumption ($G(Q) \rightarrow G/G^0$ was assumed surjective). Now let τ_0 be the lift of τ given by the splitting over R and τ_0' a lift over Q . Then we have $\tau_0' = \tau_0 \cdot x$, $x \in H^0(R)$ so that

$$(\tau_0')^2 = \tau_0 x \cdot \tau_0 x = \tau_0^2 = 1$$

Thus τ_0' also gives a splitting of $(**)$; in order to assert that τ_0' is a conjugate of τ_0 we need only have that x is a square of an element y in $H^0(R)$: for then

$$y^{-1} \tau_0 y = \tau_0 \cdot \tau_0^{-1} y^{-1} \tau_0 y = \tau_0 \cdot x.$$

Now $H^0(R)$ is isomorphic to the circle group, hence each $x \in H^0(R)$ is a square.

We obtain the required Q -splitting by taking the inverse image under $f : G \rightarrow G/B$ of the group $(\tau_0', 1)$. This completes the proof of the proposition.

Corollary. Let K be a compact (connected semisimple) group and $A \subset \text{Aut } K$ be an abelian subgroup consisting entirely of elements of order 2. Then there is a A -stable torus T in K and a "standard" Q -structure on (k, t) with A consisting entirely of Q -rational automorphisms of k .

Proof. We assume $K = (\text{Aut } K)^0$. We fix a maximal subgroup A_1 of A which is contained in some maximal torus. Let $z(A_1)$ be the fixed point set of A_1 in k . Then $z(A_1)$ is A -stable. Moreover a maximal abelian subalgebra of $z(A_1)$ is maximal abelian in k as well. Since A consists of elements of order 2, A has a common eigen vector $X \in k$. The corresponding torus in K is evidently A -stable. Hence there is among abelian subalgebras of $z(A_1)$, a maximal non zero one say b which is A -stable. Since b is A -stable so is $z_1(b)$ the centraliser of b in $z(A_1)$. If b is not maximal abelian its orthogonal complement in $z_1(b)$ will contain a 1-dimensional A -stable subspace leading to a contradiction. Thus b is a A -stable cartan subalgebra of k . We denote the corresponding torus by T . Take now any standard Q -structure on (k, t) . The group A is a direct product $A_2 \times A_1$ where $A_2 \cap T = \{1\}$ and $A_1 \subset T$. A_1 consists of elements of order 2 and these are easily seen to be Q -rational. By Proposition we can find $x \in T(R)$ which conjugates A_2 into Q -rational points. Replacing the Chevalley basis we started out with for defining the standard structure by their transforms under $\text{Ad } x^{-1}$ we obtain all the requisite properties. Observe that as $x \in T(R)$ the Q -structure on T remains unchanged. The Q -structure on k remains isomorphic to the original one as well as is easily seen. If $N(T) = \text{normaliser } T \text{ in } \text{Aut}(k)$, $N(T)(Q) \xrightarrow{\pi} N(T)/T = [N(T)/T](Q)$ gives surjection at the Q -rational level as the Dynkin automorphisms fixing T is also Q -rational (all the hypothesis of the proposition are satisfied by $G = \pi^{-1}\pi(A)$ and $G^0 = T$).

Lemma. Let G be a connected linear semisimple Lie group and $A \subset \text{Aut } G$ a finite abelian group consisting of involutions. Then G admits a cartan involution commuting with A .

Proof. Let K be a maximal compact subgroup of $\text{Aut } G$ containing A . K defines a cartan involution of G which evidently commutes with all the elements of A .

Theorem. Let G be a connected linear semisimple Lie group and g its Lie algebra. Let $A \subset \text{Aut } G$ be any group of commuting involutions of G . Then g admits a Q -structure such that all $a \in A$ are Q -rational and there is a Q -rational cartan-involution commuting with A as well.

Proof. Enlarge A to include a cartan involution θ (cf. Lemma above). Let $g = u + p$ be the cartan-decomposition with u compact. Then u and p are A -stable as all of A commute with θ . Let $k = u + ip$. Then k is a compact Lie algebra. By proposition we can find a A -stable torus t in k such that (k, t) admits a standard Q -structure with $A \subset K(Q)$. Since θ is Q -rational u and ip are defined over Q for this Q -structure. This immediately gives a Q -structure on $u + p = g$ as well. Next since each $a \in A$ acts Q -rationally on u as well as ip and hence on p , each $a \in A$ is Q -rational for this Q -structure on g .

3. Representations of the standard Q -form

The following property of the standard Q -form of k seems to be of some interest.

Theorem. Let k_Q be a standard Q -form of (k, t) with k a compact semisimple Lie algebra. Then every representation of k_Q defined over R is equivalent to a unique one defined over Q .

In view of complete reducibility, it suffices to show that each irreducible R -representation of k_Q is equivalent to one defined over Q . (The uniqueness part of the statement is easy to prove: one way is to use the Zariski density of $K(Q)$ in K (K = simply connected Q algebraic group determined by k_Q) and use the fact that representations of $K(Q)$ are characterised by their characters: see for instance Van der Wearden [6, exercise, p. 175].) In fact it suffices to show that each irreducible representation over Q of k_Q remains irreducible over R . To see this observe that if σ is an irreducible representation of k_Q defined over R , σ may be assumed to be defined over some number field; the set of all representations of k_Q on a fixed finite dimensional vector space is a variety V defined over Q and $\sigma \in V(R)$. The orbit of σ under K is open in $V(R)$ in view of the Whitehead lemma and hence contains \bar{Q} -rational points. We may thus assume σ to be defined over a real number field $L \supset Q$, with L of minimal possible degree. Consider now the underlying L vector space as a Q vector space and denote the corresponding representation by τ . Since L commutes with the action of $K(Q)$ and L -span of any non zero $K(Q)$ -irreducible Q -subspace of $W(\sigma)$ (= representation space of σ) is all of $W(\sigma)$, we conclude that τ is isotypical of fixed type τ_0 . Evidently, $W(\sigma)$ is a quotient of $W(\tau_0) \otimes_Q L$. Since $L \subset R$, this last tensor product is irreducible so that $W(\sigma) \simeq W(\tau_0) \otimes_Q L$ leading to the conclusion $L = Q$. We have thus to prove.

Proposition. Let ρ be an irreducible representation of k_Q over Q . Then $\rho \otimes_Q R$ is irreducible.

Proof. The Lie algebra k_Q splits over $Q(i)$. It follows that over $Q(i)$ all representations over C have equivalents. In particular this means that an irreducible representation ρ over Q decomposes over C into at most two representations. If ρ remains irreducible over $Q(i)$ hence over C , there is nothing to prove. Assume that $\rho \otimes_Q Q(i) \simeq \rho_1 \oplus \rho_2$ over $Q(i)$. If ρ_1 and ρ_2 are inequivalent, then the commutant of ρ is an algebra which when tensored with $Q(i)$ is isomorphic to $Q(i) \times Q(i)$. It follows that the commutant of $\rho(k_Q)$ in $\text{End } W(\rho)$ ($W(\rho)$ = representation space for ρ) is $Q(i)$. Since $Q(i) \otimes R \simeq C$ is a field, it follows that in this case too ρ remains irreducible. We have thus to consider now only the case

$$\rho \otimes Q(i) \simeq \sigma \oplus \sigma$$

two copies of the same irreducible representation. Let Δ be a simple system of $Q(i)$ -roots with respect to T fixed as in the beginning of § 2 and w_0 be the Weyl group element defined there. Let $S \subset T$ be the maximal torus fixed pointwise by w_0 . Let λ be the highest weight of σ and $W(\lambda) \subset W(\sigma)$ the eigen space corresponding to λ . $W(\lambda)$ is defined over $Q(i)$. Let σ be considered as a subrepresentation

tion through the direct sum decomposition over $Q(i)$ and label the two factors by 1, 2. Then we can choose the components so that we have

$$\overline{W(\wedge)_1} \subset W(\sigma)_2, W(\rho \otimes_Q Q(i)) = W(\sigma)_1 \oplus W(\sigma)_2 \text{ and } W(\wedge)_1 \subset W(\sigma)_1$$

is the highest weight space: otherwise $W(\sigma)_1$ would be stable under conjugation so that it will be defined over Q contradicting the irreducibility of ρ over Q . Similarly $\overline{W(\wedge)_2} \subset W(\sigma)_1$. Now since complex conjugation takes t to t^{-1} in the torus we have necessarily $\overline{W(\wedge)_1} = W(\wedge^{-1})_2$. Since \wedge^{-1} is necessarily the least weight of σ again, we conclude that $w_0(\wedge) = \wedge^{-1}$. Consider now the representation μ of the group B generated by w_0 and T on $E = W(\wedge)_1 + W(\wedge)_2 + W(\wedge^{-1})_1 + W(\wedge)_2$. We have then for $\mu(w_0)$, $\mu(w_0)^2$ is the unique element of order 2 in the group $\mu(T/S)(Q)$. Now μ is a 4-dimensional real irreducible representation of B as is easily seen. Its commuting algebra is thus a division algebra of degree 2. The restriction of $\text{End}_\sigma(\rho)$ to E is seen to be nontrivial division algebra; since $\dim E = 4$, these commuting algebras must coincide. If D denotes this division algebra E is necessarily a 1-dimensional vector space and the algebra generated by $B(Q)$ is contained in the commutant H of D in $\text{End}_Q(E) \subset M_4(Q)$. The last algebra is evidently isomorphic to D (note degree $D = 2$ so that $D \simeq D^0$). We will show that D is the definite quaternion algebra generated by i, j, k with $i^2 = j^2 = k^2 = -1$, $ij = k$, etc. To see this let L be the subfield of H generated by $\mu(t_Q)$. L is isomorphic $Q(i)$ where we denote by i the square root of -1 in L . Next set $j = \mu(w_0)$. Now $j^2 = \mu(w_0)^2$; it equals either the unique element of order 2 in L , viz., -1 or $j^2 = 1$. If $j^2 = 1$, $Q[j]$ contains a zero divisor a contradiction to $j \in H$. Thus $j^2 = -1$. Finally set $k = ij$. Then $(ij) \cdot (ij) = ij^2(j^{-1}ij) = ij^2i^{-1} = j^2 = -1$. Showing that the algebra generated by $\mu(t_Q)$ and $\mu(w_0)$ is isomorphic to the definite quaternion algebra. This implies that D is a definite quaternion algebra over Q . Hence $D \otimes_Q R$ remains a division algebra proving that $\rho \otimes_Q R$ is irreducible.

References

- [1] Borel A [1] 1963 *Topology* **2** 111-122
- [2] Klingen H [1] 1955 *Math. Ann.* **129**
- [3] Ramanathan K G 1961 *Math. Ann.* **143** 293-332
- [4] Millson J and Raghunathan M S 1981 *Geometric construction of cohomology for arithmetic groups*, in *Geometry and Analysis*, Papers dedicated to V K Patodi, (Bangalore: Indian Academy of Sciences), p. 103; *Proc. Indian Acad. Sci. (Math Sci.)* **90** 103
- [5] Siegel C L [1] 1943 *Am. J. Math.* **65** 1-86
- [6] van der Waerden B L [1] 1964 *Modern algebra (English translation)* (New York: Frederic Ungar) Vol. II