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1. Introduction

Borel [L ] showed that given a (connected) real semisimple Lie group G, it admits
a discrete (arithmetic) subgroup I' such that G/I" is compact. In this paper we -
will establish the following refinement of that theorem.

Theorem. Let G be a connected linear semisimple Lie group and 4 a commu-
tative group consisting of involutive automorphisms of G. Then G admits a

discrete (arithmetic) subgroup I” such thé,t G°/I'n G* is compact for each qe 4,

G® being the fixed point set of @ in G and 4 is an abelian group of involutive
automorphisms of @G containing 4 and a cartan involution of G.

As was the case with Borel’s proof, the theorem can be deduced from a result
on Lie algebras. We omit the details of this deduction.

Theorem. Let g be a semisimple Lie algebra and 4 a commutative group con-
sisting of involutive automorphisms of g. Then there is a Q-structure on g such
that all elements of 4 are Q-rational and g admits a cartan involution defined
over Q and commuting with 4.

The kind of Q-structure introduced on g in the special case when g is compact
bas the additional property that all representations of g defined over R are equi-
valeat to representations defined over Q.

" 'The refined version proved here is likely to be of some interest in the context

of geometric constructions for homology of compact locally symmetric spaces
given by Millson-Raghunathan [4] and Millson [1]; in the special case where 4
is trivial, we get Borel’s theorem.,

Borel’s theorem was preceded by results in the case of many classical groups.
Siegel [5] initiated the subject by making the first constructions of uniform arith-
metic subgroups in classical groups beyond SL (2, R). This was generalised to
cover a wilder class of classical groups by Klingen [2]. Ramanatban [3] pomted
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134 M S Raghunathan

out further examples and raised the question (in oral conversations) whether any
semisimple Lie groups admits a uniform lattice.

2. The standard Q-form of 3 compact Lie algebra

Let k be a compact semisimple Lie algebra and k = k®,C. Let1C k bea
cartan subalgebra and ¢t = C-span of z. Let @ be the root system of k with respect
to t and for ae @, let k (o) denote the root space of «. As is well-known there
exists a Chevalley basis of k viz., we have {Hylpe ®} C it and E(9)ek (o),
¢ € ® such that

(i) [Hy, E@)] =2 (@, ¥){w, ¥) - E(W)
(ii) [H(¢), E(W)] = No,yEpsy With Ngy€Z, ¢ +yec®
(ii)) [E(¢), E(— @)] = Hyp.

The complex conjugation in % takes each k(¢) into k(— @) so that for ¢ € @,
E(9) = 1(¢). E(— ¢) for some A(p)eC*. Since (E(9), £ (9)) > 0, we con-
clude that 4 () > 0. Let x e T the adjoint torus of # be chosen such that o (X)
= A(a) V2> 0 for a€ A, a simple system of roots of k. If we set E'(¢)
= A(p)/? E(¢p) = Adx E(¢), we see that for simple g€ A, E'(¢) = A()*/2
E(— @) = E'(— ¢) so that the complex conjugation takes E’(¢) into E’'(— ¢)
for all pe A. It follows immediately that E' (¢) = + E(— ¢) for all pe @ as
well. The E’(9), ¢ € ® together with the {H, | « € A} constitute agair a Chevalley
basis. Let k, be the @ (i)-span of the {E’(¢) | ¢ € ®} and the {H, | € A}. Then
kyis a Q (i)—splitform of k. Let k, be the fixed points in k, of the complex con-
jugation: this is an antilinear involution over Q(i). Then k, is a Q-form of k.
Por each ¢ > 0, it is easily seen that the Lie algebra a, (¢) spanned by E’(+ ¢)
and H (o) over Q (i) is Q (i)—isomorphic to SL (2), is stable under the conjugation
with fixed algebra a,(¢) isomorphbic over Q to SU(2) the standard special unitary

group over Q (i) given by the hermitian form G) ?) An immediate conse-

quence is that the reflection s4 corresponding to ¢ in the Weyl group W of the
adjoint algebraic group K with k as Lie algebra bas a Q-rational representative in
N (T) the normaliser of T in K (for the natural Q-structure on k defined above).
- In particular the unique element wye W which takes all of A into negative roots
bas a Q-rational representative woe N (T)(Q). Let S be the identity component
of the group {x T |wyxw;* = x}. Then on IS, w, acts by Wo (X) = x71,
Further in N (T)/S we bave wy? € T[S so that w, w? wgt = w; 2 = w,? leading
to the conclusion that wo is an element of order 2 modulo S. Note that§ is

defined over Q.

Definition. The Q-structure defined above will be called a Standard 0o structure

on the pair (K, T). ‘

Proposition. Let G be a Q-algebraic group such that the identity component G°

of G is a torus and G/G° is abelian with every element of order 2. Suppose that

G (Q) - (G/6®) (Q) = G|G, is onto and the sequence.
MN1->6-G6->GG~1

-~
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admits a splitting » over R and that the torus G° is anisotropic over R and splits
over Q(i). Then (*) splits over Q as well and the Q-splitting can be chosen to
be conjugate to » by an element of G°(R).

Proof. We argue by induction on dim G. We note first that every subtorus of
G° defined over R is automatically defired over Q. Let X (G°) be the abelian
group of 1 parameter subgroups of G°. The Galois group Gal (Q(»)/Q) ~ Gaj
(C|R) operates on this by x - — x. The group G/G® acts on X (G°) as well and
has an eigen vector in X (G%) ® Q0 hence in X(G%). Let S denote the corres-

ponding torus in T. Sis ev1dent1y defined over Q and normal in G Let G =
G/S. Thea byinduction Fypotbesis we can find u € G° (R)such that p = a(zxo r)a?
is defined over Q@ where r : G/G® — G is the given R-splitting, andz : G — G[S
is the natural map and @ = # (u). If we now set H = 7~ (p (G/GY)), H is defined
over Q ana its identity compcnent H° = S. We are thus reduced to the ¢case when
dim G = 1. First consider the action of the group G/G° on G,. Sincedim G =1,
the automorpbism group of G is ¢f order 2; it follows that G/G° bas a subgroup B
of index almost 2 which acts trivislly on G°% 1If p : G - G/G, is the natural map
p~1(B) is abelian—note that we bave a splitting over R-and bence diagonalisable.
Now we have the exact sequence

0 = X* (B) » X* (77 (B)) » X* (G") — 0

of the character groups. Thzse are modules over Gal (C/R) =~ Gal Q(i)/R and
by assumption the sequence is split as modules over Gal C/R hence also over
Gal Q(i)/Q. Moreover any R-splitting is a @-splitting (X (B) is a trivial Galois~
module). Thus we conclude that p~* (B) admits a Q-splitting of the form B -G°.
The character group is a direct sum X*(B) @ X*(G%) with the action G/G°
trivial on X (B) and nontiivial on X(G% ~ Z; if B# G/G°, X (B) then can be
characterised as those elements which are fixed by G° as well as G/G°. Itis
immediate now tbat B is normal ia G. Consider then the quotient H = G/B. H°
is isomorpbic to G° and is hence 1-dimensional. The sequence

% 1_.>H0->H—>H/H0-——>Z/2—->1

is assumed to be split over R. Let re H/H® be the nontiivial element Then
g~ (7) is a principal Pomogeneous space over Q; it has a rational point over Q
by assumption (G(Q) — G/G° was assumed surjective). Now let =, be .the lift
of = given by the splitting over R and 7, a lift over Q. Then we bave
7o = Tp* X, X € H'(R) so that

(10)? = ToX * 70X = 7> =

Thus =, also gives a splitting of (**); in order to assert that 7,” is a conjugate
of 7, we need only have that x is a square of an element y in H°(R): for then

- S, R | —_ ..
iy =T Tty i ny =150 X

Now H?(R)is isomorphic to the circlé group, hence each x € HO(R) is a square.

We obtain the required Q-splitting by taking the inverse image underf: G — G/B

of the ‘group (7, 1). 'This completes the proof of the proposition.
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Corollary. Let K be a compact (connected semisimple) group and 4 C Aut K
be an abelian subgroup consisting entirely of elements of order 2. Then there
is a A-stable torus T in K and a “standard” Q-structure on (k, t) with 4
consisting entirely of Q-rational automorpbisms of %.

Proof. We assume K = (Aut K)°. We fix a maximal subgroup 4, of 4 which
is contained in soms maximal torus. Let z(4,) be the fixed point set of 4, in
k. Then z(4,) is 4-stable. Moreover a maximal abelian subalgebra of z(4;)
is maximal abelian in k as well. Since A4 consists of elements of order 2, 4 bas
a common eigen vector Xe k. The corresponding torus in K is evid:ntly 4-
stable. Hence there is among abelian subalg:bras of z(4;), a maximal non zero
one say b which is A-statle. Since b is 4-stable s¢ is z (b) the centraliser of & in
z(4;). If b is not maximal abelizn its ortkogonal complement in z (b) will con-
tain a 1-dimensional A4-stable subspace leading to a contradction. Thus b is a
A-stable cartan subalgebra of k. We denote tke corresponding torus by T. Take
now any standard Q-structure on (k, z). The group 4 is a direct product 4, x 4y
where A, N T = {1} and 4, C T. A4, coasists of elements of order 2 and these
are easily seen to be Q-rational. By Proposition we can find x € T'(R) which
conjugates 4, into Q-rational points. Replacing the Chevalley basis we started
out with for d:fining the standard structure by their transforms under 4ddxt
we obtain all the requisite properties. Observe that as x €T (R) the Q-struc-
ture on T remains unchanged. The Q@-structure on k remains isomorphic to the
Qngma] one as well asiseasily seen. If ¥ (T) = normaliser Tin Aut(k), N (T) (0

- N (DT =[N (T)|T](Q) gives surjection at the Q-rational level as the
Dynkin automorphisms fixing 7T'is also Q-rational (all the bypothesis of the propo-
sition are satisfied by G =717 (4) and @ = T).

Lemma. Let G be a connected linear semisimple Lie group ard 4 C Aut G a
finite abelian group consisting of involutiors. Then G admits a cartan involution
commuting with A.

Proof. Let Kbe a maximalcompact subgroup of Aut G containing 4. K defines
a cartan involution of G which evid:ntly commutes with all the clements of A.

Theorem. Let Gbe a connected linear semisimple Lie group and g its Lie algeb1a.
Let A C Aut G be eny group of commuting involutions of G. Then g admits a
O-structure such that all ae 4 are Q-rational and there is a Q-rational cartan-
involution commuting with 4 as well.

Proof Enlarge 4 to irclude a cartan involution @ (¢f. Lemms above). Let
g=u+p bz the certar-decompositiop with u compact. Then u- and p are
A-stable a5 all of 4 commute with 6. Let k = u + ip. Then k is a compact Lie

algebra. By proposition we car fiad a 4-stable torus ¢ in k such that (k, )

admits a standard Q-structure with 4 C K(Q). Since § is Q-rational u and ip
are defined over Q for this Q -structure. This immediately gives a @-structure on
4 + p =g as well. Next since cach ae 4 acts Q-rationally on u as well as ip
and hence on p, each ae 4 is Q-rational for this Q-structure on g.

£
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3. Represeatations of the standard Q-form

The following property of the standard Q-form of k seems to be of some
.interest, : .

. Theorem. Let kg be a standard Q-form of (k, r) with k a compact semisimple
. Lie algebra. Then every representation of ko, defined over R is equivalent to a
unique one defined over Q. ‘

In view of complete reducibility, it suffices to show that each irreducible R-
representation of kg is equivalent to one defined over Q. (The uniqueness part
of the statement is easy to prove: one way is to use the Zariski density of K(Q)
in K (K = simply connected Q algebraic group determined by ko) and use the
fact that represeatations of K (Q) are characterised by their characters: see for
instance Van der Wearden [6, exercise, p. 175]. In fact'it suffices to sbow that
each irreducible representation over Q of kg remains irreducible over R. To see
this observe that if o is an irreducible representation of k, defired over R, o may
be assumed to be defined over some number field; the set of all representations
of k, onafixed £nite diménsional vector space is a variety ¥ defined over @ and
oe V(R). The orbit of o under Kis open in ¥ (R) in view of the Whitebead lemma
and hence contains Q-rational points. We may thus assume o to be dcfined over
a real number field Z D @, with L of minimal possible degree. Consider now
the underlying L Vector space as a Q vector space and denote the corresponding

_representation by =. Since L commutes with the action of K(Q) anrd L-span of

any non zero K (Q)-irreducible Q-subspace of W (o) (= representation space of o)
is z11 of W (o), we corclude ‘gbat r is isotypical of fixed type 7,. Evidently, W (o)
is a quotient of W (7)) ®, L. Since L C R, this last tensor productis irreducible
‘so that W (o) = W(r) ®o L leading to the conclusion L = Q. We have thus
to prove. - - o ‘

Proposition. Let p be an irreducible representation of kq - over-@. Then p ®aR
is irreducible.

Proof. ‘'The Lie algebra ko stlits over (). It follows that over 0() all repre-
sentations over C bave equivalents. In particular this means that an irreducible
representation p over @ decomposes over C into at most two representations.
If p remains irreducible over Q (i) hence over C, there is notbing to.prove. Assume
that p ®q Q@) = p, ® p. over Q(). If p, and p, are inequivalent, then the
commutant of p is an algebra which when tensored with @ (i) is isomorphic to
0 (i) x @ (). It follows that the commutant of p (ko) in End W(p) (W(p) =

representation space for p)is @ (i). Since @ (i) @ R ~ Cis a field, it follows that -

in this case too p remains irreducible. 'We have thus to consider now only the

case * ‘
pP®Q)=c@e

two copies of the same irreducible representation. Let A be a simple system of

0 (i)-roots with respect to T fixed as in the begirring of § 2 and w, be the Weyl

group element defined there. Let S C T be the maximal torus fixed pointwise by wo,

Let A be the highest weight of @ and W (A) C W (o) the eigen space correspor.d-
ingto A. W(A)is defined over @ (). Let o be considered as a subrepresenta-

P.(A)—5
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tion through the direct sum decomposition over Q (i) and label the two factors
by 1, 2. 'Then we can choose the components so that we bave

WA C W(@ W(p ®q Q1)) = W(a), ® W(a),and W(A) C W(ah

is the highest weight space: otherwise W (¢); would be stable under conjugation
so that it will be defined over @ contradicting the irreducivility of p over Q.
Similarly W(A), C W(o),. Now since complex conjugation takes z to -1 in
the torus we have necessarily W (A) = W(A™Y, Since A~ is necessarily the
least weight of ¢ again, we conclude that wy(A) = A~L. Consider now the
representation z of the group B generated by w, and Ton E=W (A +
W(A), + W(A™)y + W(A);. We bave then for u(wp), u(wp)® is the unique
element of order 2 in the group u(7/S)(Q). Now u is a 4-dimensional reel
irreducible Tepresentation of B as is easily seen. Its commuting algebra is thus
a division algebra of degree 2. The restriction of Ead, () to E is seen to be
nontrivial division algebra; since dim E = 4, these commuting algebras must
coincide. If D denotes this division algebra E is necessaiily a 1-dimensional
vector space and the algebra generated by B (Q) is contained in the commutant
H of D in Endg (E) C M,(Q). The last algebra is evidently isomorphic to D
(note degtee D = 2 so that D ~ D). We will show that D is the definite quater-
nion algebra generatedbyi,j, k with i# =j2 = k? = —1ij=k, etc. To see this
let L be the subfield of H generated by u (tg). L is isomorphic Q (i) where we

‘denote by i the square root of — 1 in L. Next set j =z (wg). Now j* =z (wo)*; it

equals eitber the unique element of order 2 in L, viz., —Torj2=1.1fj2=1,
Q [j] contzins a zero divisor a contradiction to je& H. Tbus j2= —1. PFinally
set k=1ij. .Then (if). @) =i*(Gij) =ifit=j=—1 Showing that the
algcbra generated by u(to) and u (W) is isomorphic to the definite quaternion
algebra. This implies that D is a definite quaternion algebra over Q. Hence

"D ®q R remains a division algebra proving that p ®q R is irreducible.

References

[1] Borel A [t] 1963 Topology 2 111-122

[2] Klingen H [11 1955 Math. Ann. 129

[3] Ramanathan K G 1961 Math. Ann. 143 293-332

[4] Millson J and Raghunathan M S 1981° Geometric _construction of cohomology for arithmetic
"~ groups, in Geometry and Analysis, Papers dedicated to V K Patodi, (Bangalore: Indian
. Academy of Sciences), p. 103; Proc. Indian Acad. Sci. (Math Sci.) 90 103

[5] Siegel C L [11 1943 Am. J. Math. 65 1-86

[6]‘ ‘van der Waerden B L [11 1964 Modern algebra (English translation) (New York:

Er‘ed.eric Ungar) Vol. II .




