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Abstract. Tt is shown in this paper that if G is the group of k-points of a semisimple algebraic
group G over a local field k of positive characteristic such that all its k-simple factors are
of k-rank 1 and T = G is a non-cocompact irreducible lattice then I admits a fundamental
domain which is 2 union of translates of Siegel domains. As a consequence we deduce that
if G has more than one simple factor, then I" is finitely generated and by a theorem due to
Venkataramana, it is arithmetic.
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1. Introduction

Let k;, iel, be local fields of characteristic p> 0 with I a finite set. For iel, let G;
be an algebraic group defined, absolutely almost simple and of rank 1 over k;. Let
G{k)=G;and G=]T;; G;. Let TG be a discrete subgroup such that the volume
of G/T" with respect to the measure on G/T induced by a (bi-invariant) Haar measure
p on G is finite. Our aim in this paper is to exhibit for such a I" a “good” fundamental
domain in G. The existence of the good fundamental domain leads to the following
result: if || >2 and I is irreducible, then I' is finitely generated. (I" is irreducible if
for every iel, the projection of G on G; is injective when restricted to I'). The existence
of the fundamental domain is proved along the same lines as in characteristic 0 (see
Raghunathan [6]) but this requires that we extend some results of Kazdan-Margulis
[5]. These last results cannot be extended in the form given in [5] unless p is a good
characteristic for G, for all iel. We prove a modified version of the main lemma of
that paper a version which is weaker but somewhat more delicate to prove. (The
stronger statement that holds in characteristic 0 appears to be false in bad positive
characteristics.) The modified version being weaker necessitates somewhat more subtle
arguments than those given in [5] to draw further conclusions towards the
construction of the fundamental domain. However one obtains as a straight-
forward consequence the following: There is a positive constant C = C(u) such that
vol (G/T") > C (in the measure determined by a Haar measure on G—the constant is
independent of I). ‘

The fundamental domain constructed is a union of a finite number of translates
of a “Siegel domain” and is thus an extension of the corresponding result for arithmetic
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128 M S Raghunathan

groups (Behr [ 1], Harder [4]). The standard properties that hold for these fundamental
domains in the case of arithmetic groups carries over to the possibly non-arithmetic
case as well but we have not elaborated on this here. We note that our construction
is available only when G is a product of groups of rational points of rank 1 groups
over local fields. However when G has even one factor of rank > 2, a theorem due
to Venkataramana [9] assures us that an irreducible I is necessarily arithmetic (and
we can appeal to Harder [4] for the existence of good fundamental domains). Actually
Venkataramana proves that an irreducible I is arithmetic even when all the factors
are of rank 1if || > 2 and provided that T is finitely generated. Our results guarantee
that I' is indeed finitely generated and thus the assumption needed for proving
arithmeticity is indeed always valid. It must however be noted that the finite generation
of I' is deduced as a consequence of the existence of a good fundamental domain and
thus the proof of the arithmeticity uses the existence of a good fundamental domain.

Throughout this paper we deal only with the case when all the G; are adjoint groups.
It is easy to deduce the general case by using the isogeny of any group onto its adjoint
group. We have not spelt out the details; even the formulations are confined to the
adjoint group.

Although our main interest is in lattices we formulate our results in an apparently
more general context. A discrete subgroup I' of a locally compact group F is a
L-subgroup if for every neighbourhood V of 1 in F , there is a compact set K(V) < F
such that K(V)I" contains {geF|gTg~ AV = {1}}. Any lattice in a locally compact
group is a L-subgroup (chapter I, [6]). We prove our results first for irreducible
L-subgroups in G:T" = G is irreducible if the restriction to " of the cartesian projection
of G on G; is injective for every i. We then show that if I' G is an irreducible
L-subgroup it has a suitable density property. From this density property, we deduce
the following. If T’ < G is any L-subgroup, there is a partition [ = (U1 <asr I, of I such
that the following holds: let H, = I, G: and T, the projection of I" on H, then I,
is an irreducible L-subgroup and I" has finite index in I1i <a<r T, (It turns out after
the construction of the fundamental domain that any L-subgroup in G is indeed a
lattice. It is of some mild interest to know if this is true even when G has factors
which are of higher rank.)

I would like to thank Venkataramana in collaboration with whom I had earlier
made some progress on the questions treated here, My thanks are also due to Margulis
for his interest in this work and to Harder for making it possible for me to meet and
talk to Margulis in Bonn.

We use results from the theory of algebraic groups freely without citing references.
Much of the background material needed is to be found in Borel-Tits [2] and some
use is made also of the classification results due to Tits [8].

2. Some lemmas on k-rank 1 algebraic groups

2.1 Letk pe a local field of characteristic p>0and G a connected absolutely simple
k-algebraic group of adjoint type of k-rank 1. We denote by G the locally compact
~oup G(k). of k points of G. In the sequel algebraic subgroups of G are denoted by
'an capital letters in bold face their k-points by corresponding plain types, their
algebras by lower case gothic letters in bold face while the k-points of these
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Lie algebras are denoted by the gothic letters in plain type. In particular the Lie
algebra of G is denoted g. We also identify Lie algebras of algebraic subgroups of G
with the corresponding Lie subalgebras of g. Let T be a maximal k-split torus in G;
by assumption dim T =1 so that the character group X(T) of T is isomorphic to Z.
We fix a generator o of X(T) and define a character ¢peX(T) to be positive if ¢ =ra
with r > 0; also ¢ < 0 if —¢>0. Let ® denote the k-root system of G with respect to
T, 0" = {¢pe®|¢p >0} and ™ = {pe®|¢ <0}. Then @~ is of the form {«} or {0, 2}
for a unique root ae®. The root « is the unique simple root of G with respect to T
and the ordering defined above. Let Z (resp. N) denote the centraliser (resp. normaliser)
of T in G. We denote by U (resp. V) the unique k-split maximal unipotent subgroup
of G normalized by T and having for its Lie algebra u(resp v) the sum | |, o+ o’ (resp
L M—gﬂ of the root-spaces of G (w.r.t. T) corresponding to the positive roots. We
have then g =u + 3+ v. Let P (resp. Q) be the k-group Z-U (resp. Z-V); then P and
Q are minimal k-parabolic subgroups of G. If 2xe®*, the centre U'(resp. V') is a
Z-stable k-split subgroup with Lie algebra u’ = g*(resp. v’ = g~ ). Moreover U’ (resp.’
V') is isomorphic to ¢** (resp. g ~2%) as a k-vector space by an isomorphism compatible
with the action of Z. The group U/U’ (resp. V/V') is also k-isomorphic to a vector
space viz u/u’ ~g* (resp v/v’ g~ %) through an isomorphism again compatible with
Z-action. Since U/U' is affine the natural map: U— U/U’ a U'-fibration is necessarily
trivial. Hence we can find a section 6: U/U’'— U to  defined over k. 6 can in fact
be chosen to be compatible with the action of T on U/U" and U*. We assume that
6 is chosen in this fashion; in particular this means that 6(1)=1. Let o: U - U be the
morphism 0w and define 7: U — U’ by setting u = o(u). 7(u). Note that if 20¢®, t(u) = u.
We denote by G the group generated by U’ and V'. Then G’ is an absolutely simple
k-group which contains T, is of k-rank 1 and is simply connected if 2 xe®”*. Let p:
G — GL(g) (resp.) denote the adjoint representation of G (resp. g) on g. Then j(3)
leaves u stable and we denote by p* the representation of 3 on u obtained by restring
g. It is known —and not difficult to show - that p* is faithful. The product map
B:U x Z x V-G defined by B(u,z,v) =u-zv, ueU, zeZ, veV is a k-isomorphism of
U x Z x V onto an open subset & of G. We define morphisms u:Q—-U, 2:Q-Z,
v:Q-V by setting B7(x)=(u(x),z(x),v(x)) for xeQ. Evidently one has
x = u(x)-z(x)o(x) for xeQ. We set Q=Q(k); then Q is an open (dense) subset of G.
The results summarized and notations introduced above will be used freely in the
sequel.

2.2 The group Z is reductive and its commutator subgroup M is anisotropic over k.
1t follows that M (=M(k)) is compact and (hence) Z has a unique maximal compact
(open)subgroup Z. Now it is well-known that Z hasindex 2in N (and N/Z ~ N/Z). Let v
be any element in N\Z fixed once and for all. Evidently v normalizes Z so that
N =ZU/Z is a maximal compact subgroup in N. Let A be the maximal compact
subring in k. Then g admits a A-free submodule L with the following properties:

(i) g is the k-span of L

(i) L is N-stable
(i) L=Lnu+Ln3+LnNo.

* See Appendix
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(To secure the last condition — in case the residue field of k is small — one argues by
adding onto N the group of elements of finite order in T(k’) for an unramified extension
k' and looking at the action of this bigger compact group on g(k’).) The A-module L
enables us to define a compact open subgroup G of G: we set G = {xeG|x(L)= L} (here
and often in the sequel we identify x in G with its image p(x)eGL(g)). Clearly
G =GNGL(L) (where GL(L) = {xeGL(V)|x(L) = L}; GL(L) is a compact open sub-
groups of GL(g)). For an integer r > 0, let

GL(L)(r) = {xeGL(L)|(x — 1)(L) = w'L},

where 7 is a uniformising parameter. If e, ,. .. ¢, is a A-basis of L and we identify GL(g)
with GL(n, k) through this basis, one has for an integer r >0,

GL(L)(r) = {xeGL(n, A)|x = 1 (mod ")}

Let| [:k—R" be the absolute value on k given by |x| =p~" where x = n"-u, u a unit in
Aand reZ and |0] = 0. As usual we define || X || for a matrix X e M(n, k) by setting || X ||
=max (|X;;|, 1 <i,j<n). Using this norm we define a metric on GL(g) which is left-
translation invariant as follows: let g,heGL(g) then d(g,h)=p if g~ *h¢GL(L); if
9~ *heGL(L), we set d(g, h) = inf {p~"|g~*heGL(L)(r)}. The family GL(L)(r), reZ* is a
fundamental system of neighbourhoods of 1 in GL(g) so that the metric d defined above
is compatible with the topology on GL(g). We obtain a left translation invariant metric
on G by restricting this metric to it. We also set for geGL(g),|g| =d(1,g); it is easy to see
then that if ge GL(L)(r)\ GL(L)(r + 1) for an integer ¥ >0, then |g| = p™". In other words
GLL)(") = {geGL(g)l 9| <p™"}. Also for geGL(L), |g| = | g — 1| (=[}g™* — 1]). As is
well known we have [GL(L)(r), GL(L)(s)] = GL(L)(r +s) for integers r,s>0. In
particular GL(L)(r) is normal in GL(L). Let G (r)=GL(L)(r)nG, reZ"; then G (r) are
compact open rormal subgroups of G and [G(r), G (s)] < G (r + s) and for geG, |g| =

inf {p~"|geG(r)}. We will now establish a series of lemmas using the notions in 2-1
and 2-2.

Lemma 2.3. G(1) = Q and for xeG (1), we have | x| = max (|u(x)|, | z(x), |v(x)|). (Conseg-
uently)ifx,yeG (1) and x = y(mod G (r))for somer > 0,u(x) = u(y) (mod G(r)); z(x) = z(y)
(mod G(r)) and v(x) = v(y) (mod G (r)).

Proof. One has a more general fact. Let U (resp. V) denote the subgroup of GL(g)
stabilising u and u + 3 (resp. vand3+v) and acting trivially on u (resp. ), (1 + 3)/u
(resp. (3 + v)/v) and g/(u + 3) (resp. g/(3 + v)). Let Z be the group {geGL(g)|g(u) = u,
9(3)=3and go)=v}. (ThenUcU,VcVand Z = Z) The morphism (i, z,v) — u.z.v.
of UxZ xV in GL(g) is an isomorphism onto a Zariski open set € and GLIL)(1) =
Q=0 (k) and if x = uz.0, ue U = U(k), ze Z = Z(k) and ve V/ = V(k) with xe GL(L)(1),
then one has |x|=max(|ul,|z|,|v]); this can be checked by explicit matrix
computations using the representation of matrices in End (8) by blocks corresponding

to the direct-sum decomposition g =u+3+ v (note that our choice of L ensured that
L=Lou+Ln3+ L)

Lemma 2.4. (i) If geG (1) is such that lu(g)| > max (|z(g)|, |v(g)|) and x is any element of

G (1), then |u(xgx~ )| > max (| z(ugx 1)), [o(xgx™")|) and the latter inequality is strict if
and only if the former is.
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Discrete subgroups of algebraic groups 131

(i) If geG (1) and xeG ()N P, |v(xgx™ )| =[v(x); if |2(g)| = |v(g)| one has also
|z(xgx~ Ol =1z(0)|. If xeG ()N U and |u(g)| > |2(g)| > v(g), then u(xgx™")|=|u(g)l,
1z(xgx~ 1) =|2(9)| and |v|xgx™")|=|v(g)l.

Proof. We have xgx~!=u(g) u(g)” ‘xu(g)x~*-x¢x~ ¢ ¢ where &= z(g)v(g)eQ.
Now |gl=p™" we have u(g)eG(r)\G(r+1) while CEeG(r). It follows
that u(g) ™ xu(g) x " -xExT1ET L eG(r + 1). Since éeQ, u(xgx~1) =
u(u(g)-u(g)~ "xu(g)x 1 xEx~1E 1) = u(g)(mod G (r + 1)). Hence u(g) = u(xgx~"). It is
also clear that since |¢| <p~" we have |z(xgx~!)|<p~" and |v(xgx~')|<p~" the
inequality being strict if |u(g)| > max (|z(g)|, |v(g)|). Hence the first assertion. To prove
the second assertion, we argue as follows: xgx ™! = x(u(g)-z(g))x ~*-xv(g)x ™ *v(g) ™.
Since xu(g)z(g)x ! is in P, v(xgx~1) = v(xv(g)x*v(g)"*)-v(g); as |xv(g)x " v(g) | <
|u(g)| we conclude that |v(xgx ™) =|v(g)l. If |2(g)| > |v(g)l, |xu(g)x ~v(g)~ | <|2(9)|
while z(x-u(g) z(g)x ~!) = z(g) leading to | z(xgx ~*)| =|z(g)|. The last assertion is proved
along similar lines.

2.5 The group G is a Lie subgroup of GL(g) (based on k). Consequently we can find an
integer r > 0, a neighbourhood W of 0in g and an analytic diffeomorphism e: W - G(r)-
with the following properties:

(i) Treating gand G as subsets of End g and GL(g) respectively, e may be considerd asa
map of W in End (g). The Taylor series of e converges in W and has the following form:

fX)=1+X+ Y e X), (*)

m21

where e,, for an integer m> 2 is a End g-valued homogeneous polynomial on g of
degree m.

(ii) e maps W nu' (resp. Wnu, Wn3, Wnp and W N ') analytically isomorphically
onto G (AU’ (tesp. G (U, G (NNZ, G ()nV and G (r)n V')

(i) Let C:W x W —g be the (analytic) map

CX,Y)=e"Y(e(X) e(Y)-e(X) " -e(Y)™ "), X, Y eW. Then c admits a convergent Taylor
expansion in W x W of the form

CX,Y)=[X, Y]+ ) C X, Y), (+#)

r>0,s>0,r+s>2

where for integers r,s >0, C,;:g X g—g is g-valued bihomogeneous polynomial on
g x g of bidegree r,s.

Lemma 2.6. The Lie bracket operation on g has the following properties:

(i) There is a constant A> 0 such that for any Xe3 we can find Yeun W such that
X1 <Al[X, Y]l

(ii) There is a constant B> 0 such that for any Xeu we can find Yeun W such that
I X1 <B |[X, Y]l where Xeupw is the image of X in u/u’ under the natural map
w:u—u/ and ufu' is identified with g* through the isomorphism o|a:g*Su/y’ if
2u¢d™ we set u' =0). :

(iii) If 20e®* there is a constant C>0 such that for any X ew’ and any Yev we have
I1X[-1YI<CIX Y]l
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The lemma is an easy consequence of the known facts about the structure of k-rank 1
groups: the first assertion is just a reformulation of the fact that p* is faithful; the
second is a consequence of the fact that the Lie bracket in u has the property that,
given any Xeu with X #0, there exists Yeu with [X, Y] #0; the last assertion is
readily deduced from the fact that G’ contains a k-subgroup H k-isomorphic to SL(2)
containing T and such that X e} (the Lie algebra of H).

Lemma 2.7. Let 6:U/U’ - U be the section to w:U—U/U’ defined in 2.1 and (as in
2.1) let 0=0-w and ©:U—~U' be defined by x = o(x)-1(x) for all xeU. There is an
integer d > 0 such that we have the following inequalities: p® | o(x) | = |o(x)| = p~¢| o(x)||
and p?|x| > max (|o(x)], [7(x)1) = p~9|x| for all xeG (1)nU. Also if we set T(xy) =
(%) 1(y) Y{x, y) we have for x,yeG (1)U, [Y(x, y)| < p*|x||y|.

Proof. Since o(1)=1 and o(x)=0(w(x)) is analytic the first inequality is
immediate from the Taylor expansion of o for x sufficiently close to 1. Since G(1)n U is
compct and one has |x| > &> 0 for all x outside a neighbourhood of 1, the inequality
extends to all of G(1)nU. For reasons similar to those given above, we need
only prove the second inequality for x and y close to 1. Now vix,y) =
(xy)e(y) ™! ()7 = xyolxy) ra(y)y T o(x)x 7! = a(xy) ixy-y T to(ya(x)x " =
o(xy) ™ x-x"1a(x) () = o(xy) " 'e(x)a(y). Thus Y(1,y)=w(x,1)=1 for all x,yeU.
Taylor expansion of ¥ near (1, 1) now gives the desired result.

Lemma 2.8. There exist positive integers a,b,c such that the Sollowing hold.

(i) Given xeG (1)nZ, we can find yeG(1)n U such that
|xyx=1y=1 > p~|x].

(i) Given xeG (1)nU we can find yeG()NU such that
[tyxy™ DI = p~tIx|(=p~*|yxy~1)).

(it) If 2ae® there is an integer ¢ > 0 such that for xeG(I)\nU’ and yeG(l)nV,
min (Ju(xyx ™1y~ max (|z(xyx "y ~Y)|, |o(u(xyx Ly~ 1)) [))>p ¢ x| [y

Proof. This lemma follows immediately from Lemmas 2.6 and 2.7 and the Taylor
expansion (+x) of 1.5 for the commutator map. Note that (yxy ™) = t(yxy x"1x) =
(xy~'x7')t(x) for x, yeU so that in proving (i) we have only to choose y so that
max (|yxy~ x|, [t(x)]) = p~®|x|fora preassigned integer b>0. From Lemma 2.6 and
2.7 and the Taylor expansion of C we see that we can find yeG (1)A U such that
lyxy~tx~*| > p~?|6(x)| for a suitable integer b > 0 (independent of x). If | 7(x)| = p ~?|x|
we can take y = 1; if not |g(x)| = |x| and we can take y to satisfy the inequality above
and then |yxy~*x~ 1| > |(x)| so that |2yxy™ 1) = |yxy~'x~!|. (i) and (iii) are straight-
forward consequences of the two lemmas and the Taylor expansion for C cited above
and the fact that satisfies (ii) of 2.5 above.

2.9 Egr the concise formulation of later results we now introduce further notations and
definitions. We say that an element x€G(1) is P-adapted if we have

o(x)] < max (u(x)], |(x)|) (=|x]). (*)
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It is U-adapted if we have
|u(x)| > max (|z(x)], [v(x)|). (%)

Evidently if x is U-adapted it is affortiori P-adapted. The set E= {xeG(1)|x is P-
adapated} can also be describe as follows: Let he T be any element with o(h)| > 1; then
E = {xeG(1)||hxh™*| > |x|}. Note that for any xe G (1) either xe E or v(x)e E. Let E* be
the set of U-adapted elements in G(1). Then one has for heT as above and xeE*,
|hxh™'| > plx|. Finally an element xeG(l) is special if every element of G(1)
centralising x belongs to E. We denote by S the set of all special elements in G(1).
1 20e® let ¢, d be asin lemmas 2.8 and 2.7. When 2a.¢® we set ¢ = 2d and define d as
follows: the group G is the adjoint group of either SL, ;, D a central division algebra
over k or U(h) the unitary group of a non-degenerate, isotropic antihermitian form over
a quaternion division algebra. Let G= GL(2 D) in the former case and G = the group of
similitudes of & in the latter case: note that G < GL(2, D) in both cases with D a suitable
division algebra. The natural map G—Gisa a surjection of maximal rank. Moreover
we may assume ¢ so chosen that the group U (resp. V) of upper triangular (resp. of
lower triangular) matrices in G maps onto U (resp.V) isomorphically while

415~ diagonatmatricesin¢) MAPS D onto Z and is of maximal rank. For geG, g = (g“ g”)
921 922
set|g|= maxls”sz(lgu d;;)and |glo = Inf,gs|gx|; then there is aninteger d>0such

that for geG with g(g)eG(1),

p*lglo > max (|u(g)L, 1 2(9)l, [v(g))) > p~Iglo-

With the above definitions of ¢ and d we define a unipotent element xeG(1) to be
hyperspecial if the following inequality holds.

|t(u(x))| > p°* 24 max (| a(u(x)), | z(x)L, | o(x)])- (*)
This the terminology is justified by

Lemma 2.10. Any hyperspecial element is special.

Proof. We deal with the case 20 ® first. Let x be a hyperspecial element and yeG (1)

an element commuting with x. Let t(u(x)) = p, o(u(x))z(x)-v(x) = &, u(y)-z(y) = and

o(y)=o. Assume that |o|>max (Ju(y)l,|z(y)|)=Inl: we show that this leads to a

contradiction. For g, he G, we denote ghg ™ *h™* by [g, h]. With this notation we have
[x,y] = p[&,n) ™" [o,n] mpl&, 01~ n~ nlp,odn ™"

Now let |p|=p~" and |«|=p~™ and set n=1+m+c+2d+ 1. Since |a|>|n| and

[€] < p~€*24 |p| we see that we have

1=[xy]=[p,n])'nlp,0n" " (mod G (n)).

Now as peU’ and neP, [p,n]eU’". Thus we see that u([x,y])= Lo,n] u([n, aln)
(modG(n),  z([x,y])=2nlp,«] *(maxG(n) and  o([x,y])=vinlp,oln Y
(mod G (n)). Now if t([p, )¢ G (n), (1 p, 2Jn~*)¢G () (Lemma 1.4) so that o[x, y])¢

G (n), a contradiction. Thus we may assume that vo([p,a])eG (n). Again appealing to
Lemma 1.4 we see that z([x,y])= 2([p,«]) (mod G (n)). This means that we have

-1
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necessarily z([p,a])eG (n). In other words |z([p,«])| < p'*™*<*24_ We also have ;,a;
I=[x,y]1="[p,n]-ulnlp,0] ) mod G (n) §

and since 7[p,aln ™" =u([p,a])y~* (mod G (n)) we have in fact
U=[x,y1="[p.n1n"u(Cp,e])n " (mod G (n)).

Now ulp,a])l=Inu(lp,el)n™*|. Tt follows that |o(g-u([p,a])n"Y) =
p~mu[p,01n "t |=p~4u([p,a])l. It follows from Lemma 1.8—since |z([p, )| <p~ "~
that |u([p,a])| > p~'~"""* so that a(n-u([p,«])n ') > p~'"""<=¢. On the other hand ;
we have [p,n]-(nu([p,a])n~')eG(n) and hence by Lemma 1.7 once again (since {
o(Lp, n]-nu(lp,«])n ") = o(nu([p, o] ")) we see that we have |o(qulp,aln™2)| <
php~"<p~i™m=c=4 a3 contradiction. This proves the lemma in the case when 2ae®. i

Assume now that 20¢® and G be the group introduced in 2.9. Let x be hyperspecial
so that

|ulx)| = |2(u(x))| > p** max (|2(x)], |o(x)]).

Let 7(x)eD be any lift of 2(x); set X = ii(x) Z(x) (x) where ii(x) (resp. #(x)) is the unique lift
of u(x) (resp. v(x)) to U(resp. V). In view of the definition of d, one has a lift Z(x) of z(x) to
D such that

|#(x)] > p** max (|2(x)], |#(x)]).

Suppose now that yeZ(x)(=centraliser of x) and j is any lift of y in G; then the map
X">x7"PETTH T =y (x") depends only on x"and y (and not on the lifts £ and j chosen)
and is a2 homomorphism of the cyclic p-group generated by x into k* (since ye Z(x)).
Since char k = p, y, is trivial i.e. % and j commute. If we set ¥ =1(y)-Z(y) il(y) with i(y)

(resp. Z(y), resp. #(y)) in U(resp. D, resp. V), a simple matrix computation shows that

15)| < p~*max (|2]y)l, |i(y))).

As this holds for any lift 7 of y to G we conclude that

150)lo < 5™ max (120) . [0} F
Once again from the definition of d we have é
o)l < max (|z(y)1, | u(y)]).

Hence the lemma.

PROPOSITION 2.11

Let N=a+2b+c+ 6d where a,b,c are as in Lemma 2.8 and d is as in Lemma 2.7
and t €T the unique element such that ut)=n"" Let C<P be the compact set

t(G(1)NU)t(G(1) " V). t. Then given any xeE with |x| < p~ N there exists geC such
that the following holds

lgyg™*1> |yl for all yeE
' lgyg™| > min (p*¥|y|, p) for all yeE*
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(iti) [gyg™"|, 1g™'yg| <min (p®"|y|, p) for all yeE
(iv) lgxg~"|> p"|x]|
(v) gxg~* is hyperspecial.

Proof. Observe that for any heT with |a(h)|> 1, one has |hyh™*|>|y yeE while
|hyh™1| > min (p, |a(R)|-|y|) if yeE*. It is also clear that |hyh™"| < min (p, |a(h)?||y|).
Since |gyg ~!| =|y| for all ge G while E and E* are stable under linear conjugation by
U NG (1), we see that the first three inequalities hold for any geC. Thus we have only to
find geC to satisfy (iv) and (v). In the sequel we will define the elements x;, 1 <i<4and
x'"in G (1) and we will set u(x,) = u;, z(x;) = z; v(x) = v;, u(x) =, 2(x') = 2, v(x') =/,
u(x)=u, z(x)=z and v(x) = v. We define x, =txt™*. Then u; =tut™!, z; =tzt ' =2z
and v/=wt™' so that max(|z,},u|)=p"Ivsl In particular |x,|=
max(|z,},|u,|) =|x|]. Now choose an element £eG(1)NU as follows: if
luy|=p~*|z,|, € = 1;ifnot Eis such that |éz,¢ ™ 127 1| > p~°|z, | (Lemma 2.8). Let x, =
Ex,E7Y then |vy]=|v;|, |2, =1z;| while |u,|>p~?|z,| and also [x,|=|x;|=
max (|u,,]z,]) = pV|v,]. Next let x;=tx,t™"; then we have uy=tu,t™" so that
lus| > pNluy| = p¥ 77| zy| = p¥ 7|z, (since z3= tzgt™'=2,) and |v| <p7V|o,|=
<p 2V max (|u,), |2,]) S max (p~*|usl,p M| z5]) (<p7N*uy)). It is also clear
now that |x;|>p¥~9x,|. We now choose an element neG(1)nU as follows: if
|7(us)| = p~?|us| we set n = 1; if not choose 7 such that t(qusn ") > p~*|us| (Lemma
2.8). Let x, =nxsn~ " Then |x,|=|x;). We claim that |t(us)| > p~"|us| =p~"|usl.
When 5 = 1, this is evident. Hence we assume that n # 1 i.e. [t(u3)] < p~%|us|. Since we
have |u;| > |z3| > |vs] and neG(1)AU it follows from Lemma 2.4 that |uy|=|us],
|z4] = |23] and [v4] = [v3]; now x4 =,’7'X3’1_1 =nuyn ™t nz303n " H(2303) " 2305 and as
7303€P~, we have uy = nuan ™ u([n, 2305]) = [1, u3]-u3-u([n, 2305]). Thus we have

t(ug) = [ u3] 7wz ul([1, 23051))

Now |1(us)| < p™°lus| while |[7,z305]] < p™**|us| s0 that |u([n,2303])| < p ™| us]
as well. By Lemma 2.7, one has t(uz-u([n,2305])) =
tus) t(u([1,2303]) Wtz u( (11, 23051). With |y(us, u([n, 23u51))] < p* |us|-u([n, 2305] <
pV*e*d|y,. On the other hand |t(uy)| <p~®lus| and t(u([n,z305])) <
p%u([n, 23051) > p ¥ T4+ us). Since N—a—d>b and |[mu;]|=p~" |usl, we can
now conclude that (u,) > p~? [u3] = p~°|u,|. We have also |a(u,)| < p|u,|. Finally
let X' =tx,t~%. Then we have u'=tu,t™! 2/ =tzgt" ' =z, and ' =tv,t”". Thus
[v'|<p~V |vgl<p~¥|z4] =p~V|Z|. Next observe that ¢ and t are compatible
with the action of T so that o(u)=to(u)t™' and t(w)=t t(u,)t™". It follows
that |t(u)| = |a(t)]?>-|t(uy)| = p*"|t(us)| = p*° |ugl On the other hand we
have |o(w)| < p*llwo(w)|| = p** N | woluy) | < p***No(uy)| <p***N  |ugl.  Thus
|6()] < PV ug | < PN ew); and N—b—3d>c+2d. Also, |uy]=
lug| 2 p¥ " |z5] =pV ¢z, leading to || =|z,| < p N u | <pTNFE TV )
and —3N+a+b>c+2d. Thus x' is hyperspecial. If we set g =tntét, geC and
x' =gxg~'. From our definitions it is easy to see that |x'| > p"|x|. Thus the proposition
i§ proved.

Lemma 2.12. There is a compact set K < G such that K = G and for any xeG contained
in the unipotent radical of a k-parabolic subgroup of G, we can find geK such that
gxg~'eU. Also if xeG(1), we can find geK such that gxg~*€E.
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Proof. Since G/P is compact and any two minimal k parabolic subgroups of G are

conjugate by an element of G and for any xeG (1) either xeE or vxv~'eE, the lemma
follows.

3. Bound on ““covolumes” and existence of good unipotents
3.1 Notation

We now deviate somewhat from the notation of §2. We will denote by G a direct
product of groups of the form Gi=Gy(k) 1 <i< q where for each i, k;is alocal ﬁf’.ld of
characteristic p > 0 (independent of i) and G, is a connected absolutely almost simple
k-algebraic group of adjoint type of k-rank 1. We fix in each G; a split torus T; and let U,,
V. denote the two maximal ki-split unipotent subgroups normalised by T;. Also Z, and
N; denote respectively the centraliser and normaliser of T, in G; and set @, = U,Z,V,.
Applying the results of §2 to G; we obtain a family of compact open subgroups G; (r), 7
an integer >0, in‘ G, such that for r21, G{r) is a pro-p group, G{(r) > Gyr+1) and

[G(r), G(s)]is contained in G, (r + s). This family of groups define a metric d, on G, if we
set

Qo m=]? if g7'h¢ G, = G,(0)
(9,1 = inf{p~"|g~'heG,(r)} if g7 'heG,

andlet |g|; = dy1, g) for all geG,. We assume G(1) to be so chosen that it is contained in
; =Q(k) and denote by E; (resp. E¥) the set xeG, (1), x = uzv, ue Ui=Uyk) zeZ;=
Zik;) and veV, =V (k,) with [ol; <max (Jul;,|z|) (resp. |u;]| > max (|z,], |v;])}. We also
denote by S, the set {xeE¥| centraliser of x in G,is contained in E;} and call the elements
of §; special elements in G;. Finally let U (resp. T, V.Z,N,Q,Gr), E, E*, S) denote the
product of the U, (resp. T.V,Z,,N,,Q, G(r), E;, E¥,S,) considered as a subset of G.
Also we set for g, heG, d(g, h) = max {d(g,, h)|1 <i < q} where g;h; are tl_le components
of g, h in the factor G; and denote by |g| the distance d(1,g) of g from 1 in the metric d
With these new notations we have the following result which i‘s essentially a
reformulation of Proposition 2.11 and Lemma 2.12 in the new notation.

PROPOSITION 32

There is an integer N>0 and an element teT such that the Jollowing holds. Let

C=1G(1)n UGN U)t. Then E, E* and S are stable under inner conjugation
by elements of C. Further we hape

) lgyg~'1>y for all Y€E and geC

() lgyg™"| > min (p3¥|y), p) Jor all ye E* and geC

(iii) |gyg~1| < min(p®*|y, p) for all y€G(1) and geC or g~ e,
Further given any xeE we can choose g 9€C such that

(i) lgxg™'| > p¥|x|

(v} gxg~'eS.

There is a compact subset K

of G containing 1 with the following property. Given
any xeG whose components X;

are contained in the unipotent radicals of k-parabolic

e ——
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subgroups of the G;, 1 <i < g, there is a geK such that gxg~'eU. Given any xeG (1)
there is a geK such that gxg~ ' €E. (and hence) an element ¢'eC-K such that g'xg’ ™' is
special. Also for geK and xeG (1), we have |gxg~*| < p|x|.

DEFINITIONS 3.3

A subgroup U’ of G is a horocycle if it is conjugate to U in G. A subgroup P’ of G is a
parabolic subgroup if it is conjugate to P(=normaliser of U in G). Such a P’ contains a
unique conjugate U’ of U. The subgroup U’ of P’ is normal in P’ and will be referred to
as the nilradical of P'. An element geG is unipotent if g*” = 1 for some integer r > 0. A
subgroup of G is unipotent if every element in it is unipotent. A unipotent element
is good if it has a conjugate in U (equivalently if it belongs to a horocycle).

Lemma 3.4. Any unipotent element x in [G, G] is good.

Proof. Itis clear from the definition that xeG is a good unipotent if and only if every i,
1 < i< k,the component x; of x in G, is the unipotent radical of a k-parabolic subgroup
of G; i.e. x; is good in the sense of Borel-Tits [3]. Let G, be the gimply connected
covering of G;. Then according to Borel-Tits [3] every unipotent in Gy(k;) is good. The
lemma follows from the fact that the cokernel of the natural map G(k;)— G; is abelian.

Lemma 3.5. Let xeG be a good unipotent element such that x;# 1 for all i, 1 <i<gq
where x; is the component of x in G;. Then x is contained in a unique parabolic subgroup
P(x) of G. Further x belongs to the nilradical U(x) of P(x). If geG is such that x and
gxg~* generate a unipotent subgroup of g, then geP(x).

Proof. One reduces the problem to the case when g = 1 by looking at the projections
into the various factors. Clearly, then assuming that G =G(k), G a connected
absolutely simple adjoint group over k of k-rank 1, it suffices to prove the following
assertion: if xe P is good and y~!xyeP, then yeP. To see this we make use of Bruhat-
decomposition. If y¢ P, y = unu’ where u, w'eU and neN\Z uniquely. Let x' =u"~ Lxu.
Then since ' Pu'~* < P we conclude that n™'x'neP. But for any neN—Z,n"'Unc V
and x’ 5 1 belongs to U, a contradiction. The uniqueness of the parabolic subgroup
containing x is thus proved. We denote this subgroup by P(x). Suppose now that xeU
and P’ is a parabolic subgroup containing x. Since P’ = g~ ' Pg for some geG, we have
gxg~'eP so that geP and hence gxg ~'eU = nilradical of P'. Thusifa good unipotent
belongs to a parabolic subgroup it belongs to its nilradical and hence the second
statement. Now let y = gxg~! and P the (unipotent) subgroup generated by x and y.
Let ze¥ be a nontrivial good unipotent centralising x and y: if ¥ is abelian then we can
take y = z; if not ['¥, W] consists entirely of good unipotents and we can take for z any
nontrivial element in the last term of the descending central series of (the nilpotent
group). Thus it suffices to prove the following: if g and hare commuting nontrivial good
unipotents, then P(g) = P(h). Now gP(h)g~* = P(ghg™*) = P(h) so that ge P(h) leading
to P(g) = P(h).
The following well-known lemma is recorded for future use.

Lemma 3.6. For any parabolic subgroup P' G, G/P’ is compact.

Lemma3.7. Let T < G be a discrete subgroup. Then we have
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®) T'nG (1) is a finite unipotent group

@) If T nG (1) contains a good unipotent x all of whose components in the G; are non-
trivial, then T nG (1) = P(x)

(i) If TG does not contain a non-trivial good unipotent it is abelian.

Proof. G(1)is a pro-p group. The first assertion follows from this. If x,geI’ " G (1) and
x is good unipotent x and gxg~! generate a unipotent group. By Lemma 3.5 geP(x)

if all the components of x are non-trivial; hence the second assertion. The third follows
from Lemma 3.4.

" DEFINITIONS 3.8

A discrete subgroup I' = G is irreducible if the restriction to I' of the Cartesian
projection of G on G; is injective for all i with 1 < i < q. An irreducible discrete subgroup
I"  Gisin good position if either T " G (1) U™ is non-trivial or I’ " G (1) contains an

element of S in its centre and ' G (6N + 1) does not contain any nontrivial good
unipotents.

Lemma 39. If T is irreducible and in good position, T NG (1) < E.

Proof. If 1 # xeI'nG (1)nU one has, NG (1) = P(x) =P < E (Lemma 3.7). If on
the other hand I'n G (1) U = {1}, by definition I’ 1 G (1) contains an element x of S in
its centre. Thus I' © G (1) c centraliser x; and centraliser x c E.

Lemma 3.10. Let C and K be compact sets as in Proposition 3.2. Then given any
irreducible ~ discrete subgroup T <G with TNnG@EBN)#1 we can find
geC'KUCKUK.C.K such that gTg~! is in good position.

Proof. We assume that I is not in good position. Suppose now that 'nG (N +1)
contains a nontrivial good unipotent x. Choose geK such that gxg~'eU; since
lgxg ™1 <p"|x|, |gxg 1| < p~* so that gT'g~! is in good position. Consider now the
case whenI'n G (N + 1) does not contain any nontrivial unipotent. In this case pick an
element x# 1 in TG (8N) and an element geC-K such that x'=gxg~' is in .
Let I"=gI'g™ " if I" A G (N + 1) contains a nontrivial good unipotent y’ we can find
heK such that hy'h™'eI"nG (1)nU where I"=hI'h™*=hgl'g~*h~!. Since
hgeK-CK and I are in good position we need only deal with the case when I'" is such
that I'nUNG (1)={1} and I"nG(N + 1) does not contain any nontrivial good
unipotents. In this case we claim that I is in good position. To see this, observe that we
have only to prove that the element x'(eI" "G (N)nS) is central in I" NG (1). Now
x'el"nG(N) and if yeI"nG (1), xyx~*y~! is a good unipotent contained in
I"'nG (N + 1) and must hence be trivial. Thus x’ is central in I" NG (1).

PROPOSITION 3.11

LetT < G be an irreducible descrete subgroup in good position with T A G (12N) # 1. Let
1#xel'nG (12N). Then there exists geC such that

@) lgyg™* 1=y for all yeT A G (1)

(i) 1gyg™*|=min (p*N|y|, p) for all yeI'nG (1)nE*
(iii) [gxg™*| = p"|x|

» g

/
E
!
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1

(iv) gxg~*' is special.

(v) gT'g™' is in good position.-
(vi) d(gTg™") < d(T).

(Here for a discrete subgroup ¥ < G, d(¥) = 2 xevnaany iy —logX.

Proof. By Lemma 3.9, I'nG (1) < E. Choose now g as in Proposition 3.11. Then
evidently g satisfies all the requirements (i)—(iii) above. We will now show that gT'g ™! is
in good position as well. Let x' =gxg™'. I" =glg~*. If ' nG(1)n U # {1}, there is
nothing to prove. We assume then that I\ G (1)n U = {1}. Suppose now that ' n G
(6N ~+ 1) contains a nontrivial good unipotent y’; then y’ = gyg ™! with yeI'n G (1). But
in view of (i) we have yeI'nG (6N + 1). As T is in good position and y is a good
unipotent, yeU. Now geCc<P so that y =gyg~'eU, a contradiction to our
assumption that I'nG (1)n U = {1}. We conclude thus that I" G (6N + 1) contains
no nontrivial good unipotents. Finally as x is in G (12N), x'eG (6N) so that for ée['nG(1)
x'Ex'E™Vis a good unipotent contained in I" A G (N + 1); thus x’ is central in I n G(1).
It follows that I'" is in good position. To prove (vi) we note that if y’ =gyg~?, yel,
belongs to G (12N), yeG (6N); but then |y'| = | y| so that yeG (12N). It is thus clear that
we have F' = {yel'|gyg~'€G (12N)} = {yel'|yeG (12N)} = F and that for every yeF’,
lgyg ™| = |y| with strict inequality for at least one element if F' = F. It is clear from this
that we have d(gl'g~*) < d(I).

Theorem 3.12. Given any irreducible discrete subgroup I' c G there is an element geG

. such that gTg~'nG (12N) = {1}. (Consequently) if u is a Haar measure on G, for any

discrete subgroup I = G, the volume of G/T for the measure derived from y is bounded
below by a constant C > 0 depending only G (and p).

Proof. The first assertion is an immediate consequence of the Proposition. For
irreducible I', the second assertion follows from the first since G (12N) maps injectively
into G/gTg~!. For general I” we need only prove the assertion under the assumption
that volume (G/I') is finite; and in that case we can decompose G into a direct product
so that I is contained in a corresponding product of irreducible discrete subgroups
in the different factors.

3.13 Proposition 3.11 carries much more information than we have used in the proof of
Theorem 3.12. Suppose that C and C’ are compact subsets of G as in Lemma 3.10 and
I, is an irreducible L-subgroup in G. Then there is a compact set B, < G such that

BoI'o > {geGlgTog ™' nG(12N) = {1}}.
Let Ay = {ghxh™'g™*|xeG (12N),g~'eCUC" and heB,}. Clearly A, is compact. Let
A={0eANnT,|0+1 and gbg~'€G (12N) for some geG}.

Evidently A is finite. Let A, be the subset of all good un.ipotent§ in A and 4’0 its
complement in A. Now xeG is a good unipotent if and only if G-orbit of x under inner
conjugation contains 1 in its closure. Thus there is an integer N’ > 0 such that we have
for all feAj, and geG,

lgbg~t1=p~N
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Lete=|Ay], f=max (1, [(N' — 12N)/3] + 1) and N;=12N +6N(e+f).Let B, = G be
a compact set containing By such that B,y > {geGlg,9~ ' NG (N,) is trivial}.
Let A4, ={ghxh™'g™!|xeG (12N), g™'eCuC, heB,} and A, = {0€eTynA,|6 a
nontrivial good unipotent}.

Let geG be any element and consider the discrete subgroup gI'yg~*. Choose an
element hyeC’ such that hogTog ™ thg* =T, is in good position. We will define
inductively conjugates I 2>13...0of I'in G as follows. Assume T » | i< lis defined to
satisfy the following conditions. There are elements heCu{l}, 1<i<Isuch that

(10) ri+1 =h,~r,~hi_1 for 1 i<l
(2°) I T:nG (12N) = {1}, h = 1.

(3°) IT;nG (12N) # {1}, then (h;, I')) fulfils all the conditions on (g, I') in Proposition
3.2 with the element x;# 1 in I;,nG (12N) taking the place of x in Proposition 3.2
chosen in the following fashion: let bi=hh;_---hog so that T, , =bT b, !; then if
(I';inG(12N))nE* containsa T’ i-conjugate of some element of b,Ayb;” ! we take x; to be
such a conjugate; otherwise x; is taken to be any nontrivial element of I'; » G(12N).

Now if I'nG (12N) = {1} we set b =1;if [,nG (12N) # {1}, choose h,eC so that
(hy, I')) satisfy the conditions on (9, T')in Proposition 3.11 taking in place of x an element
x;in T;nG (12N), x, # 1 which is a conjugate in I, of an element b,5pb; !, 5, €Ay, if
such a conjugate exists in I, G (12N). Note that all the I'; constructed are in good

position and there is an integer r > 0 such that b,I'b7 ' NG (12N) = {1} while (if > 1}
b, b,y NG (12N) # {1}.

H

-

3.14 Let ¥, = {xel'|b,_,xb7 4 €G (I2N)}. Then one has
Y. ={1} c¥ic¥cy,
for 1<igr. Also, clearly for 1 <i<r we have

dfy)=-Y% log|b;-; xb}| >0

xe¥;

while d(T',, ) = 0. For Y€l let (y) denote the I"-conjugacy class of y in I". We then
claim that if 9e'¥,\{1}, then 6e( 8> for some SeA. We have in fact b,0b, G (12N).
While b,,,Tob Y NG (12N) = {1}; the second fact shows that b,.; = xy with xeB,
and yeT". Further b, = b~ 'b,+ so that § =y0y~eA. Now if § €A, ie. if 6 is a good
unipotent it follows that bifb; 'eU\{1} c E* and we conclude that

P72 1bb] > p™NC b, 0b7 1| > pANe-D| ghg -1,

leading to
lng"l Sp—-3N(r+2) )

Suppose then that for every 0e¥\{1}, 6e(6) for delq. In this case let s be the

minimal positive integer such that ¥.1n{8) has cardinality at most one for any

6543. In view of condition 3° (in our choice of the h;) in 3.13, we see that there is
an integer a >0 with a <[ such that bor s +a¥s 10D L, = E* for all d€eAy.
Let r—s—1—a=t, then one has for fe¥,n (6> (6€Aq necessarily) we have

p_12>fb,-9b,_l|>133mlb 3Nt—-N’

-1
s+1+a9bs+1+a’ 2p

-

e~

P — -

N
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by the definition of N'. Thus N'>=3Nt+ 12 so that t<f. It follows now that
r—s<e+f. On the other hand ¥ contains two distinct element 6, 6’ both belonging
to (&) for some deA,. It follows that ¢ = 6’0~ is a commutator (in ', hence) in G.
Evidently it belongs to ¥,. Thus ¥ contains a good unipotent ¢. Let s’ be the integer
(=s5) such that ¢pe¥, ¢¢¥, . ,. Now for all xe¥,.,,, x #1, we have

by s 1Xbg i1l =hgiihg by ---h by xb Bk, By |
>p~6N(r—s')—12N > P_Nl-
Thus by .., = xy with xe B, and yeI'y. As b, xb;: ' €G (12N) while h; ' eC, we conclude

that y¢y "*e€A,. Since b;¢pb; ! is in G (12N) and I, is in good position, b, ¢pb; *eU\
{1} c E*. Thus we find that

PN > by b | = pINET D 2 b by | = pPNET I gdg T

leading to |gog™ | < p~3N¢* 1D and since s=r—e—f,

|g¢g—1| <p—3N(r—e—f+ 1) .
Finally let yeI'—{1} be such that p™" =|gyg ™| < Igy’gl'll for all y’eI’—{1}. Then
|byb™ | < p~"" and hence p~ 12N < |b, . 1yb7 | < p®™ 77 "N leading to the inequality

¥ <6N(r+2)+ N.

We have thus proved the following.

Theorem 3.15. Let I' = G be an irreducible L-subgroup. Then there exist integers
I, No>0 and a finite set A, =T of nontrivial good unipotents such that the following
holds. If geG is such that gTg~* n G(2n+ 1) # {1} with n > N, then there exists S€A,
and 0e{8Y such that |gbg~*|<p™".

COROLLARY 3.16

If P' =G is a parabolic subgroup of G such that U'nTI" # {1}, U’ being the nilradical
of P', then there is a €A, and yeI such that P’ =yP(§)y~!.

4. Fundamental domains

We will prove the existence of a good fundamental domain for an irreducible
L-subgroup I = G in this section. The first step towards this is

Theorem 4.1. Let I" be an irreducible L-subgroup of G and 0eT'\{1} a good unipotent.
Let P(0) (resp. U(0)) be the unique minimal parabolic subgroup (resp. horocyclic subgroup)
containing 6 and °P(6) = {geP|g normalizes U and preserves a Haar measure on it}.
Then °P(6)/°P(6) T is compact.

4.2 After conjugating I by a suitable element of G, we may assume that e U. Clearly
then U(f) = U and P(6) = P. We also set °P =P(6). Let q:P — P/U be the natural
map. Then g maps Z isomorphically onto P/U. Let D be the unique maximal pro-p
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subgroup of Z. (Such a subgroup exists: this follows from the fact that Z =[T];.; Z;
with Z; = Z(k;) where Z;is areductive k;-algebraic group whose commutator subgroup
is anisotropic over k;). Now U admits a family U,, neZ*, of open compact D-stable
subgroups such that | ),.,+ U, = U. The U,, neZ* are all pro-p groups and hence so
are the DU,,. It follows that DU, NT is a finite unipotent group for every n and hence
(DUNT) is a unipotent group which we denote A in the sequel. Let L denote the
“Zariski closure” of A in G. Here and in the sequel we mean by the Zariski closure
of a subgroup I of G, the subgroup G’ of G is obtained as follows: let I'{ = G,) be
the projection of I' in G; and G be the Zariski closure of I'; in G;; let G, = Gi(k,),
thent G’ =TT, G (Note that all Zariski closures in our definition decompose as products
of k-points of algebraic subgroups in G;). We observe that if 4 <G is any set, the
centraliser Z(A4) of A is its own Zariski closure; also 4 admits a finite subset A’ such
that Z(4)=Z(A'). Yet another observation needed repeatedly in the sequel is the
following: if B < G is any subgroup, then Z(B) = Z(B) where B is the Zariski closure of
B. We record for future use the following well known resuit.

Lemma 43. If AT is any subset, the natural map Z(4)/Z(A)T — G/T" is proper.

Proof. Using a standard argument involving the Baire-category Theorem, it is easy
to see that we need only prove that Z(4) T is closed in G. We assume that 4 is finite.
Suppose g,Z(A) and y,eT are sequences such that gnyn converges to a limit. Then
for xe 4, 7, 'g, 'xg,y, =1, 'xy, converges to a limit; but y, 'xy,el". Thus we see that
for some integer m > 0 we have y; 'x,y, = Ym'Xynforalln>m. ie 0,=v,,'€Z(A)T
for n>m. Clearly g,0, converges to a limit. This proves the lemma.

4.4 Now let ® be a maximal abelian subgroup of U N T and set @' = Z(®) ~T". Evidently
fD cd. Let F" be the Zariski closure of ®. We claim that F "/®" is compact. Since F’
is cont'amed in Z(®), it suffices to show that Z(D)/Z(D)N I is compact. If this last
Space 1s not compact, in view of Lemma 4.3 we can find sequences g,eZ(®) and
y,er\{l}, 7» @ good unipotent such that g,y,9, * — 1. We assume (as we may after a
conjugation by a suitable element of T) that Z(®G (1)=Z(®). Since g,xg,; ! =xeG (1)
for all xe® G (1), we conclude that G (1)N® and y, generate a unipotent subgroup
of . By forming repeated commutations of 7a With elements of ® N G (1) we see that we
can find B,ECI? with 6,=g,0,9.! converging to identity, a contradiction. Thus
Z(®)/Z(®)N T is compact. One consequence of this is that Z(®) » U < F’. This follows
from the following two observations: There is a representation p of G on a vector space
W and a vector woeW such that F' = {9€G|p(gyw, = wo}; secondly, the orbit of any
veW under Z(@)N U if relatively compact is trivial (these observations are conse-
quences of standard results about split unipotent groups over local fields). Since ® is
abelian Z(®)n U contains a maximal abelian subgroup U, of U. From the structure of
rz}nk 1 algebraic groups over local fields (using classification, for instance) it is not
dlliﬁcult to see that‘ U is maximal abelian in G. Thus one has Z(F)(=Z(®)) < U,.Since
' = one sees without difficulty that Z(®) « MU < D. U — Z{(A) is contained in U,.
Also since A is unipotent Z(A) is non-trivial, the map Z(A)/Z(A)nT — G/T" is proper

and factors through the compact space Z(®)/Z(®) AT, Z(A)/Z(A) T is compact. Let

®y=Z(A) and F, th iski )
Afso F(E C) U o the Zariski closure of ®,. Then F, = Z(A) and Fo/®, is compact.
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4.5 Consider now the case when |I| =1 ie. G = G(k')k’ a finite extension of k and G a
k-rank 1 absolutely simple k'-algebraic group of adjoint type. In this case A has finite index
P T asis easily seen. Also °P = MU so that (P T)-°P = K-U where K is a compact
subset of P. We claim now that Z(®,)/Z(®,) T is compact. If not we can find g,€G,
y,€T" and a nontrivial good unipotent 6€T such that g,7,0y, 1g- 1 tends to 1. We may
assume that Z(®y)=Z(®,nG(1)) so that for xeZ(®)NG(1), x=g,xg, ! and
g0 g7t are both contained in the same unipotent group. It follows that
7,077 €U AT. Thus replacing 6 by y,8y; * and y, by y,y7 *, we find that g,7,67, gt
tends to 1 withy,ePnT"and 8e U nT. Now gy, = k, ', k€K, u,€V; K being compact
this means that u,6u; * tends to 1. But the inner conjugation orbit of 0 under the
(“split™) unipotent group U is closed, a contradiction. This proves our claim that
Z(®,)/Z(®,)nT is compact. Since Z(®y) > L2 Z(®@o)NT = A, we see that L/A is
compact. We assert now that L > U. To see this let N be the normaliser of L in G. Then
N normalises Z(L) = Z(A) = F,. Let Ny = {glg€eN, g preserves a Haar measure u on
Fol. WLAU=U'#U, let U, ={geUl|gxg~'x"'eU’ for all xeL}; then U,/U" is a
non-compact group. It is clear that U; normalises L and - as is easily seen — that
U, =N,.Now the map No/No T — G/I"is proper: this is seen as folows: let g, N, and
7, be sequences such that g,y, converges to a limit x. We assume (as we may after a
conjugation) that u(F,n G (1)) > u(Fo/®,). Then one can find 6,e®,\{1} such that
9.0,97 1 €G (1). It follows immediately that y, '6,y,el’ n A where 4 is a compact set.
Thus passing to a subsequence we may assume that y, 6,7, = ¥, *0,,7,, for all n > m for
some integer m > 0. But since 6,eU for all n > m, y,ePnT. Since (PAT)/A is finite we
see that we can find y,eA such that g,y, converges to a limit. This shows that No/Nyn
I' - G/T" is proper. Clearly U,L/L ~ U, /U’ is non-compact so that we can find u,e Uy,
y,€T and a nontrivial good unipotent §eT such that u,y,8y, u, tends to 1. Once again
since u,eN,, we canfind §,e®, such that u,0,u, *€G (1). We conclude that y,6y, Land
8, generate a unipotent group. Replacing & by y,6y; * and y, by y,y7 *, we see that
7,6PNT. But then u,y,=k,&, with k,eK and £,eU; as before this leads to a
contradiction since the U-orbit of § is closed. This proves that U’ = U. Thus sine L/A is
compact °P/°PT is compact when G=G(k') G an absolutely simple k'-rank 1
k'-algebraic group of adjoint type.

4.6 Supposenow G = [T, G;. Let G; be a compact open subgroup of G;. Let ;:G— G;
be the cartesian projection and H; = (");;#; * (G}). Then H; is an open subgroup of G.
Let I'= H;nT" and T the projection of I'; on G;. Then T'; is evidently a discrete
subgroup of G;. Since H,/T";— G/T" and H; - G, are proper, one sees easily that the I'; are
L-subgroups of the G,. It is now clear thatif T AU # {1}, then I[';n U, # {1} for all i. By
the results of 4.6 we know that M;U,/M,U,n T ,is compact (M; = ,(M)). It is immediate
from this that MU/MU AT is compact. Now I ¢ P. In fact if I' < P, I'n P normalises
M-UAnT; since MU/MU T is compact, ' n P preserves a Haar measure on MU so
that T" < °P, Now let 1,e T be a sequence such that |t,xt, !| > p"| x| for xeU. Then t, =
image t, in G/T" has no convergent subsequence. But then we can find nontrivial good
unipotents 6, such that ¢,0,¢, * tends to 1, a contradiction since 8,eI' N P and hence
0,eU. Now let fel'\P. Let P'=0P6~* and more generally for any subset 4 =G,
A'=0A40"1 Let Z* =P P and T* the unique conjugate of T in Z,. From the fact
that MU/MU NT is compact, one sees easily that F, is contained in the centre of U
and is hence T*-stable. The same applies to Fj,. It is also not difficult to see that if
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te T* preserves the Haar measure on F) it preserves the Haar measure on Fj, as well.
Let T} = {teT*|t preserves the Haar measure on F,}. Now if t,eT% is such that
image ,(=t,) in G/I" has no convergent subsequence we can find 1 #6,eI"'~ U such
that t,0,t, ! tends to 1. On the other hand we can find 6,# 1 in FyAT such that
t.0,t; ! is in a fixed compact set. We conclude that 6, and 6., generate a unipotent
group, a contradiction since U’ # U. We see thus that T§-M-U/PAT is compact.
Thus T§MU is unimodular and one concludes from this that T*MU =°P. Thus
°P/°P T .is compact. This proves Theorem 4.1.

Theorem 4.7. Let I’ = G be an irreducible L-subgroup. Then there is a finite set >, a
constant t. > 0, a maximal compact subgroup G* and a compact subset n < °P such that

G=G*A-n)T, forallt>t¢,

where fort >0 A, = {|xe T||x(x)| <t}, xis the character on T given by Int ®)(w) = x (),
# a Haar measure on U. Moreover we have for every €Y, £~ 1né (TN E™1OPE) =
E71OP¢ and there exists , > 0 such that if G* AnlynG*A,né # ¢ then ¢ = ¢ and
yeE 0P AT,

COROLLARY 4.8

If|11 22, T is finitely generated. This follows from the fact that for any good unipotent
1=0el, °P(8)/°P(6) T is compact and °P(0) is compactly generated combined with the

theorem above. The theorem is proved by a straightforward imitation of the proof of
Theorem 13.12 of [6].

4.9 From the structure of local fields, we know that we can find a finite field f (of
maximal cardinality such that) each of k; is a finite unramified extension of (X)), the
quotient field of the power series ring f[[X]] in one variable over f. (in other words,
replacing k by a suitable field we may assume that all the k; are unramified extensions of
k). With this modification we see that G = I'T: <i<q G; may be regarded as a semisimple

k-algebraic group of adjoint type and that G = G(k). With these remarks we have thus
following corc’lary.

COROLLARY 4.10

If T <G is irreducible, T is Zariski dense in the algebraic group G.

.Proof Let P < G be any minimal k-parabolic subgroup then I' & P = P(k)). If G/T’
is compact .tl{ls is clea.r from the fact that P is not unimodular when G/T" is not
compact, this is shown in 4.6. Thus it suffices to show that for some minimal parabolic

subgroup P = G, the unipotent radical U of P is in the Zariski closure of I in G.

Theorem 4.7 assures us of this when G/ is not compact. When G/T' is compact we
argue as follows. Let

H be the Zariski closure of I' in G and H = H(k). Let
p:G—PGL(E) be a k-representation of G in PGL(E), E a k-vector space such that
H ={geG|p(g)(p) = p} for a suitable k-point p of the projective space P(E). The closure
of the U-orbit A(U = U(k)) of p contains a U-fixed point since U is k-split. But A is
contained in the G orbit of p and this G-orbit is compact. Thus we find that U has

a fixed point in G/H. This means that a conjugate of U is contained in H. This proves
the corollary. 4
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COROLLARY 4.11

Let G=T1i; G:(I =(1,2,...9)) be as above and T any L-subgroup of G. Then there is
a partition I =1, Ul,---Ul, of I into disjoint subsets I;, 1 <j<r such that if we set
H;=Tliy, G; and I'y=H;=H;NTI then I'; is an irreducible L-subgroup of H; and
[T:<j< T has finite index in T

Proof. We will argue by induction on the number of factors of G. Let |=
{(J ST [Ty G # {1} }. f I is empty I is irreducible and there is nothing to prove.
Assume that | ¢ and let 'el be a minimal element. Let G' =[];.;r G; and G" =
[Lenr Gio Let mG" x G"(=G)~ G’ be the cartesian projection. Let I'y=T"nG’ and
I = #(T"). Evidently I'; is a normal subgroup I'" (note that I'y = =n(I"p)). Let K” be a
maximal compact open subgroup and I = (I’ n (G’ x K”)). Evidently I', = T" < I
and I' is easily seen to be a L-subgroup of G'. We claim that I" is an irreducible
L-subgroup in G'. Suppose that I'' is not irreducible. Since |I'| <|I}, by induction
hypothesis, G’ decomposes as a product [ 1, 4H, such that H,I" = I is a irreducible
L-subgroup of H, and [, I, =T} is of finite index in I". By Corollary 4.10, I', is
Zariski dense in H,,. Clearly I", normalises I';. Hence the Zariski closure Hi of I'y
is normalised by H.,. As this holds for every o, Hj is a normal subgroup of G'. Thus
Hj is a product of certain of the k-simple factors of G’ and from the minimality of
I', one sees that Hy = G. But then {I",,I'y] is nontrivial and contained in H,, a
contradiction to the minimality of I’ if H, # G'. Thus I'" is an irreducible L-subgroup
in G'. Moreover since I'y is Zariski dense in G, it is immediate that the normaliser
of Ty in G’ is discrete. We conclude from this that I is discrete and T has finite
index in I". But this means that I'G” is closed in G or in other words, the map
G"/GAT — G/T is proper. If g,eG” is a sequence tending to infinity modI'g = G" N 1T,
it follows that we can find 6,eI"\{e} such that g,8,9, * tends to identity. On the other
hand for pel’y, g.pg,* = p; thus g,(p0,0" 6, ")g,* tends to the identity; since
p0,0"'0;'eG and G' and G” commute we see that pf,p~ 6, ! tends to 1 ie.
p0,0” 1071 =1 for large n. Varying p over a suitable finite set and using the Zariski
density of I in G, we conclude that 6, commute with G’ for large nie. ,eG"' NI =17
for large n. Thus I'y is a L-subgroup of G”. The induction hypothesis combined with
Corollary 4.10 now shows that ' is Zariski dense in G”. Thus G’ = Z(I';), the
centraliser of I'y in G so that G'/G'nT" — G/T" is proper. One now concludes arguing
as above (with I'§ in place of I'p) that ', = G'nT is a L-subgroup of G'. It is now
clear that 'y x I'” is a L-subgroup of G and has finite index in I'. Using the induction
hypothesis on G’ and G”, the result now follows for G.

5. Appendix
We will prove the following using the notations of §2.

PROPOSITION 5.1
The natural map w: U—U/U’ admits a section 8:U/U’ - U defined over k compatible
with the action of T.

Proof. Since U/U" is affine and U’ is a vector space over k, the fibration o is trivial.
Thus we can find a section p:U/U’ — U defined over k. If py, p, are two sections to
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o one has a morphism «: U/U’ - U’ such that p,(x) = p,(x)-o(x). If p,, p, are defined
over k so is . Let teT; then one has ¢t~ *p(txt ™)t = p(x)- ¢(t, x) where ¢(t, —) is a
morphism of U/U’ in U’ denoted ®(t) in the sequel. It is easy to to see that
¢:T xU/U'-» U’ is a k-morphism and that ®: T—Hom(U/U,U’) (where Hom
denotes the morphisms in the category of algebraic varieties) is a 1-cocycle on T.
Here $=Hom (U/U’,U) is given the abelian group structure derived from that on

U’ and t€T acts on § by f—Int tfIntt™! where Int¢ is the inner automorphism of

G induced by ¢ and Int is the natural automorphism of U/U’ induced by Intt. Let
$(n)={fe$H| f is homogeneous of degree n} (Note that U’ and U/U’ are k-vector
spaces in a natural fashion). Then T acts through the character 2o-na on H(n). It
follows that H*(T, ${n)) = Ofor n # 2 (see for instance Raghunathan [6, Preliminaries]).
If n =2 HY(T, H(n)) will consist of abstract group homomorphisms of T in H(n). Now
®:T - $ necessarily factors through to an algebraic morphism of T into a finite
dimensional k-vector space [ <, <y 9(n) for some integer N > 2. Let @, = p,°® where
P, is the natural projection on $(n). Then since @, is algebraic, it is zero. On the
other hand for n #2, @, is the coboundary of a unique f,e$(n). Since @, is defined
over k, so is f,, as is easily seen. Clearly {f,}o<n<y (With f, = 0) define a morphism f
of U/U'in U'. If we now modify p by f we obtain a section 0 satisfying the requirements
of the lemma.
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