A NOTE ON GENERATORS FOR ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS

M. S. Raghunathan

> In this paper we construct systems of generators for arithmetic subgroups of algebraic groups.
1.1. Let k be a global field and G an absolutely almost simple simply connected (connected) k-algebraic group. We fix once and for all a faithful k-representation of G in some $\mathrm{GL}(n)$ and identify G with its image under this representation. In the sequel we will freely use results from Borel-Tits [1] without citing that reference repeatedly. Practically all facts about reductive algebraic groups used are to be found there. Let S be a finite set of valuations of k containing all the archimedean valuations and Λ be the ring of S-integers in $k: \Lambda=$ $\left\{x \in k \mid x\right.$ an integer in the completion k_{v} of k at v for all valuations $v \notin S\}$. For a subgroup $H \subset G$, we set $H(\Lambda)=H \cap G L(n, \Lambda)$. More generally for an ideal $\mathfrak{a} \neq 0$ in Λ, we set

$$
H(\mathfrak{a})=\{x \in H(\Lambda) \mid x \equiv 1(\bmod \mathfrak{a})\} .
$$

We fix a maximal k-split torus T in G. We assume that $\operatorname{dim} T \geq 2$ i.e. that k-rank $G \geq 2$. Let Φ denote the root system of G with respect to T. We fix a lexicographic ordering on $X(T)$, the character group of T and denote by Φ^{+}(resp. Φ^{-}) the positive (resp. negative) roots with respect to this ordering. We also denote by Δ the corresponding simple system of roots. For $\phi \in \Phi$, let $U(\phi)$ denote the root group corresponding to $\phi: U(\phi)$ is the unique T-stable k split subgroup of G whose Lie algebra is the span of the root spaces $\left\{\mathfrak{g}^{r \phi} \mid r\right.$ integer $\left.>0\right\}$ (here for $\psi \in \Phi, \mathfrak{g}^{\psi}=\{v \in \mathfrak{g} \mid \operatorname{Ad} t(v)=\psi(t) v\}$, \mathfrak{g} being the Lie algebra of G). With this notation our main result is
1.2. Theorem. The group $\Gamma(\mathfrak{a})$ generated by $\{U(\phi)(\mathfrak{a}) \mid \phi \in \Phi\}$ for any non-zero ideal $(\mathfrak{a}) \subset \Lambda$ has finite index in $G(\mathfrak{a})$.

Note. Tits [8] has obtained this result for Chevalley groups. However the methods of this paper are very different and make no use of Tits' results.
1.3. We denote by U^{+}(resp. U^{-}) the group generated by $U(\phi)$, $\phi \in \boldsymbol{\Phi}^{+}$(resp. $\boldsymbol{\Phi}^{-}$). For $\phi \in \boldsymbol{\Phi}$, let $G(\phi)$ denote the (k-rank 1) subgroup generated by $U(\phi)$ and $U(-\phi)$. We denote by T_{ϕ} the connected component of the identity in kernel ϕ and by $Z\left(T_{\phi}\right)$ the centraliser of T_{ϕ} in G. Then $Z\left(T_{\phi}\right)$ is reductive and $G(\phi)$ is its maximal normal semisimple subgroup all of whose k-simple factors are isotropic. For $\alpha \in \Delta$ let $V^{+}(\alpha)$ (resp. $V^{-}(\alpha)$) denote the subgroup of U^{+}(resp. U^{-}) generated by the $U(\phi), \phi \in \Phi_{\alpha}^{+}$(resp. $\left.\Phi_{\alpha}^{+}\right)=\left\{\phi \in \Phi^{+}\right.$(resp. $\left.\Phi_{-}\right) \mid \phi$ not a multiple of $\left.\alpha\right\}$. Then $V^{+}(\alpha)$ and $V^{-}(\alpha)$ are normalised by $Z\left(T_{\alpha}\right)$. The centraliser $Z(T)$ of T normalises all the $U(\phi), \phi \in \Phi$, and hence in particular U^{+}, U^{-}, $V^{+}(\alpha)$ and $V^{-}(\alpha)$ for all $\alpha \in \Delta$. We will establish the following
1.4. Claim. Let \mathfrak{a} be a nonzero ideal in Λ and (as in Theorem 1.2) let $\Gamma(\mathfrak{a})$ denote the subgroup of $G(\Lambda)$ generated by $\{U(\phi)(\mathfrak{a}) \mid \phi \in \Phi\}$. Then for any $g \in G(k)$ there is a non-zero ideal \mathfrak{a}^{\prime} (depending on g) in Λ such that $g \Gamma\left(\mathfrak{a}^{\prime}\right) g^{-1} \subset \Gamma(\mathfrak{a})$.
1.5. Let $\tilde{\Gamma}=\{g \in G(k) \mid$ for any nonzero ideal $\mathfrak{a} \subset \Lambda$, there is a nonzero ideal $\mathfrak{a}^{\prime} \subset \Lambda$ such that $g \Gamma\left(\mathfrak{a}^{\prime}\right) g^{-1}$ and $\left.g^{-1} \Gamma\left(\mathfrak{a}^{\prime}\right) g \subset \Gamma(\mathfrak{a})\right\}$. It is then evident that $\widetilde{\Gamma}$ is a subgroup of $G(k)$. Since $Z(T)$ normalises $U(\phi)$ for all $\phi \in \Phi$, it is easily seen that $Z(T)(k) \subset \widetilde{\Gamma}$. We will presently show that $U(\pm \alpha)(k) \subset \widetilde{\Gamma}$ for all $\alpha \in \Delta$. This will prove the claim since the $\{U(\pm \alpha)(k) \mid \alpha \in \Delta\}$ and $Z(T)(k)$ generate all of $G(k)$. Suppose then that $\alpha \in \Delta$ and $u \in U(\pm \alpha)(k)$. Then u normalises $U(\phi), \phi \in \Phi_{\alpha}^{+}$(resp. Φ_{α}^{-}). It follows that we can, for any non-zero ideal $\mathfrak{a} \subset \Lambda$, find a non-zero ideal $\mathfrak{b} \subset \Lambda$ such that $u U(\phi)(\mathfrak{b}) u^{-1} \subset$ $U(\phi)(\mathfrak{a})$ for all $\phi \in \Phi_{\alpha}^{ \pm}$. If we denote by $\Gamma_{\alpha}(\mathfrak{b})$ the group generated by $U(\phi)(\mathfrak{b}), \phi \in \Phi_{\alpha}^{+}$or Φ_{α}^{-}, this means that $u \Gamma_{\alpha}(\mathfrak{b}) u^{-1}\left(\subset \Gamma_{\alpha}(\mathfrak{a})\right) \subset$ $\Gamma(\mathfrak{a})$. Thus to establish the claim we need only show that for any nonzero ideal \mathfrak{b} in Λ, there is a non-zero ideal \mathfrak{c} in Λ with $\Gamma(\mathfrak{c}) \subset \Gamma_{\alpha}(\mathfrak{b})$ for all $\alpha \in \Delta$. This follows from the following stronger result.
1.6. Lemma. Let $\alpha, \beta \in \Delta$ be such that $\alpha+\beta \in \Phi$. Then there is an element $t=t(\alpha, \beta)$ in $\Lambda, t \neq 0$ such that for any ideal $\mathfrak{a} \neq 0$ in Λ, the group generated by $\{U(r \alpha+s \beta)(\mathfrak{a}) \mid r \cdot s \neq 0, r \alpha+s \beta \in \Phi\}$ and $U_{\beta}(\mathfrak{a})\left(\right.$ resp. $\left.U_{\beta}(\mathfrak{a})\right)$ contains $U(\alpha)\left(t \mathfrak{a}^{3}\right)\left(\right.$ resp. $\left.U(-\alpha)\left(t \mathfrak{a}^{3}\right)\right)$.

Proof. We treat the case of $U(\alpha)$; the other case, viz. of $U(-\alpha)$, is entirely analogous. Consider first the case when Φ is reduced i.e. $2 \phi \notin \Phi$ for any $\phi \in \Phi$. Let α, β be as above then the commutator
map $(x, y) \rightarrow x y x^{-1} y^{-1}$ of $G \times G$ in G defines a k-morphism

$$
c: U(-\beta) \times U(\alpha+\beta) \rightarrow U(\alpha)
$$

As Φ is reduced, $U(\phi)$ is abelian and hence k-isomorphic to a k-vector space and c is easily seen to be a k-bilinear map. Let $U_{c}(\alpha)$ denote the group generated by Image c. Then $U_{c}(\alpha)$ is a k-algebraic subgroup-in fact a k-vector subspace of $U(\alpha)$. Since c is compatible with the action of $Z(T)$ on both sides, $U_{c}(\alpha)$ is $Z(T)$-stable as well. It is easy to see that our lemma follows if the following holds: $U_{c}(\alpha)=U(\alpha)$. In fact one concludes that there is a $t \in \Lambda \backslash\{0\}$ such that $U(\alpha)\left(t \mathfrak{a}^{2}\right)$ (resp. $\left.U_{-\alpha}\left(t \mathfrak{a}^{2}\right)\right)$ is contained in the group generated by $\{U(r \alpha+s \beta)(\mathfrak{a}) \mid r \cdot s \neq 0\}$ and $U_{\beta}(\mathfrak{a})$ (resp. $U_{\beta}(\mathfrak{a})$). Evidently this equality holds if the following two conditions are satisfied:
$\mathrm{C} 1: U(\alpha)$ as a $Z(T)$-module is irreducible over k.
C 2 : The map c is non-trivial.
By using split semisimple subgroups of G containing T (BorelTits [1, Theorem 7.2]) one sees easily that C 2 fails only if Char $k=$ $\langle\alpha, \alpha\rangle /\langle\beta, \beta\rangle=2$ or 3 . When C 2 fails and char $k=2$ we consider the k-morphism

$$
c^{\prime}: U(-\beta) \times U(\alpha+2 \beta) \rightarrow U(\alpha) \cdot U(\alpha+\beta)=U^{*}
$$

obtained by restricting the commutator map in G. Now U^{*} is a direct product of $U(\alpha)$ and $U(\alpha+\beta)$ and this direct product decomposition is compatible with the action of $Z(T)$. Thus c^{\prime} may be regarded as a pair $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ where

$$
c_{1}^{\prime}: U(-\beta) \times U(\alpha+2 \beta) \rightarrow U(\alpha)
$$

is a k-morphism which for fixed $u \in U(\alpha+2 \beta)$ is a homogeneous quadratic polynomial on $U(-\beta)$ and for fixed x in $U(-\beta)$ is linear on $U(\alpha+2 \beta)$ while

$$
c_{2}^{\prime}: U(-\beta) \times U(\alpha+2 \beta) \rightarrow U(\alpha+\beta)
$$

is bilinear. To prove the lemma once again it suffices to show that the group $U_{c^{\prime}}(\alpha)$ generated by the image of c^{\prime} contains all of $U(\alpha)$. Now if C 1 holds, this is indeed the case. To see this observe that $U(\alpha)$ and $U(\alpha+\beta)$ are distinct isotypical T-submodules of U^{*}-as a T module U^{*} is semisimple. Thus if c_{1}^{\prime} is non-trivial $U_{c^{\prime}}(\alpha) \cap U(\alpha)$ is a nontrivial $Z(T)$-stable k-vector space hence is all of $U(\alpha)$. That c_{1}^{\prime} is non-trivial is checked using the Chevalley commutation relations in a Chevalley group containing T and contained in H. Finally
if characteristic of $k=3, \mathrm{C} 2$ fails and C 1 holds, we consider the commutator map restricted to $U(-(\alpha+3 \beta)) \times U(2 \alpha+3 \beta)$ as a $k-$ morphism of this variety into $U(\alpha)$. One sees easily that it is bilinear and non-trivial. This leaves us to deal with the situation when C 1 fails. From the classification of Tits [6] of groups over global fields, it is easy to conclude that if C 1 fails one has necessarily char $k=2$ and G is a group of Type C_{n} with Tits index as below

(C2 also fails in this case). But in this case one has a description of G as the special unitary group of a non-degenerate hermitian form h over a quaternion algebra (over k) with respect to an involution whose fixed point set is of dimension 3 (over k) (such that h has Witt index $n / 2-n$ is necessarily even). Explicit matrix computation leads us in this case to the conclusion that $U_{c^{\prime}}(\alpha)=U^{*}$ (in the notation introduced above).

Consider now the case when Φ is not reduced. Let Φ_{0} be the reduced system associated to Φ and Δ_{0} the corresponding simple system. If $\alpha, \beta \in \Delta_{0}$ we are reduced to the preceding case. If $2 \beta \in \Delta_{0}$ since $U(\beta) \supset U(-2 \beta)$ and $U(\beta) \supset U(2 \beta)$ we are again reduced to the preceding case. Then we are left with the case $\beta \in \Delta_{0}, 2 \alpha \in \Delta_{0}$. In this case one notes that the preceding considerations show that $U(2 \alpha)\left(t \mathfrak{a}_{2}\right)$ is contained in the group generated by $\{U(r \alpha+s \beta)(\mathfrak{a}) \mid r$, $s \neq 0, r \alpha+s \beta \in \Phi\}$ and $U(-\beta)$. This reduces the lemma to proving that the map $c: U(-\beta) \times U(\alpha+\beta) \rightarrow U(\alpha) / U(2 \alpha)$ obtained from the commutator map is such that Image c generates all of $U(\alpha) / U(2 \alpha)$. This is easily checked. Hence the lemma.
1.7. Let $\mathfrak{a} \subset \Lambda$ be a non-zero ideal. Then $G(\alpha)(\Lambda)$ normalises $V(\alpha)(\mathfrak{a})$. Consequently $G(\alpha)(\Lambda)$ normalises $\Gamma_{\alpha}(\mathfrak{a})$ and hence also $\Psi_{\alpha} \stackrel{\text { def }}{=} \Gamma_{\alpha}(\mathfrak{a}) \cap G(\alpha)(k)$. We also set $\Psi_{\alpha}=\Psi_{\alpha}(\Lambda)$. Observe that for any $g \in G(\alpha)(k)$, and a non-zero ideal $\mathfrak{a} \subset \Lambda$, there is an ideal \mathfrak{b} (depending on \mathfrak{a} and g) such that $g \Psi_{\alpha}(\mathfrak{b}) g^{-1}$ is contained in $\Psi_{\alpha}(\mathfrak{a})$: this follows from Claim 1.4 combined with Lemma 1.6, which shows that $\Gamma\left(t \mathfrak{a}^{3}\right)$ is contained in $\Gamma_{\alpha}(\mathfrak{a})$. It is easy to see from this that the following collection T of subsets of $G(\alpha)(k)$ is the family of open sets for a topology on $G(\alpha)(k): \mathrm{T}=\{\Omega \subset G(\alpha)(k) \mid$ for every $x \in \Omega$, there is a non-zero ideal $\mathfrak{a}(x)$ in Λ such that $x \Psi_{\alpha}(\mathfrak{a}(x))$ is contained in $\Omega\}$. (That T constitutes a topology is seen easily from the fact that $\Psi_{\alpha}(\mathfrak{a}) \cap \Psi_{\alpha}(\mathfrak{b})$ contains $\Psi_{\alpha}(\mathfrak{a b})$ and that if $\mathfrak{a} \neq 0, \mathfrak{b} \neq 0$, then
$\mathfrak{a b} \neq 0$.) Let L and R denote respectively the left and right uniform structures on $G(\alpha)(k)$ for the topology T. Then we assert that a sequence $x_{n} \in G(\alpha)(k)$ is Cauchy for L if and only if it is Cauchy for R. Assume that x_{n} is Cauchy for L. Let $l \geq 0$ be an integer such that $x_{n}^{-1} x_{m} \in \Psi_{\alpha}(\mathfrak{a})$ for all $m, n \geq l$. Let $t \in \Lambda \backslash\{0\}$ be as in Lemma 1.6. For an ideal $\mathfrak{a} \neq 0$ let $\mathfrak{a}^{\prime} \neq 0$ be an ideal such that $x_{l} \Psi_{\alpha}\left(\mathfrak{a}^{\prime}\right) x_{l}^{-1}$ is contained in $\Psi_{\alpha}(\mathfrak{a})$. Since x_{n} is Cauchy for L there is an integer $l\left(\mathfrak{a}^{\prime}\right)>0$ such that $x_{n}^{-1} x_{m} \in \Psi_{\alpha}\left(\mathfrak{a}^{\prime}\right)$ for $m, n \geq l\left(\mathfrak{a}^{\prime}\right)$. Then for $m, n \neq \max \left(l, l\left(\mathfrak{a}^{\prime}\right)\right)$ we have $x_{m} x_{n}^{-1}=x_{n} x_{n}^{-1} x_{m} x_{n}^{-1}=$ $x_{l} \cdot x_{l}^{-1} x_{n} \cdot x_{n}^{-1} x_{m}\left(x_{l}^{-1} x_{n}\right)^{-1} \cdot x_{l}^{-1} \in \Psi_{\alpha}(\mathfrak{a})$. Thus x_{n} is Cauchy for R as well. The converse is proved analogously. It follows that there is a canonical identification of the completions of $G(\alpha)(k)$ with respect to R and L and we denote this common completion by $\widehat{G}(\alpha)(k)$. Then $\widehat{G}(\alpha)(k)$ is a topological group in a natural fashion. The closure of $U(\alpha)(k)$ (resp. $U(-\alpha)(k)$) in $\widehat{G}(\alpha)(k)$ is obviously the same as the completion $\bar{U}(\alpha)(k)$ (resp. $\bar{U}(\alpha)(k))$ of $U(\alpha)(k)$ (resp. $U(-\alpha)(k)$) in the congruence subgroup topology. If $\bar{G}(\alpha)(k)$ denotes the completion $G(\alpha)(k)$ with respect to the congruence subgroup topology we have natural commutative diagrams as follows:

Since $\bar{U}(\pm \alpha)(k)$ generate $\bar{G}(\alpha)(k)$ (as an abstract group) (Raghunathan [5]) one sees that π is surjective. We will now prove the following result.
1.8. Proposition. Let $G(\alpha)(k)^{+}$denote the normal subgroup of $G(k)$ generated by $U^{+}(\alpha)(k)$. Then $G(\alpha)(k)^{+}$centralises the kernel of π ($=C$).

Proof. One knows from the work of Tits [7] that any noncentral normal subgroup of $G(\alpha)(k)$ contains $G(\alpha)(k)^{+}$. Thus it suffices to show that $C(=$ kernel $\pi)$ is centralised by an element x in $G(k)^{+}$ which is not central in $G(\alpha)$-the centraliser of C in $G(\alpha)$ is a normal subgroup of $G(\alpha)$. We know that Ψ_{α} contains a non-trivial element of $U(\alpha)(\Lambda)$ (Lemma 1.6). Let u be such an element; then u can be
written as a product:

$$
u=x_{r} x_{r-1} \cdots x_{1}
$$

where for $1 \leq i \leq r, x_{i} \in U\left(\phi_{i}\right)(\Lambda)$ with $\phi_{\varepsilon} \Psi_{\alpha}^{ \pm}$. Let

$$
u_{i}=x_{i} x_{i-1} \cdots x_{2} x_{1}
$$

Let A_{i} be the following assertion: for any ideal $\mathfrak{a} \subset \Lambda, \mathfrak{a} \neq 0$, there is a nonzero ideal $f_{i}(\mathfrak{a}) \subset \Lambda$ such that $\rho u_{i} \rho^{-1} u_{i}^{-1} \in \Gamma_{\alpha}(\mathfrak{a})$ for all $\rho \in G(\alpha)\left(f_{i}(\mathfrak{a})\right)$. Then A_{0} holds if we set $f_{0}(\mathfrak{a})=\mathfrak{a}$. Assume that A_{l} holds for some l with $1 \leq l<r$ and we will show then that A_{l+1} holds as well. Let $\mathfrak{a}^{\prime} \subset \mathfrak{a}$ be a non-zero ideal such that $x_{l+1} \Gamma_{\alpha}\left(\mathfrak{a}^{\prime}\right) x_{l+1}^{-1} \subset \Gamma_{\alpha}(\mathfrak{a})$ (Claim 1.4 and Lemma 1.6). Let $f_{l+1}(\mathfrak{a})=$ $f_{l}\left(\mathfrak{a}^{\prime}\right) \cap \mathfrak{a}$. Then for $\rho \in G_{\alpha}(\mathfrak{b}) \mathfrak{b}=f_{l+1}(a)$, we have $\rho x_{l+1} \rho^{-1} x_{l+1}^{-1} \in \Gamma_{\alpha}$ while $x_{l+1} \rho u_{l} \rho^{-1} u_{l}^{-1} x_{l+1}^{-1} \in x_{l+1} \Gamma_{\alpha}\left(\mathfrak{a}^{\prime}\right) x_{l+1}^{-1} \subset \Gamma_{\alpha}(\mathfrak{a})$. But one has

$$
\begin{aligned}
\rho u_{l+1} \rho^{-1} u_{l+1}^{-1} & =\rho x_{l+1} u_{l} \rho^{-1} u_{l}^{-1} x_{l+1}^{-1} \\
& =\left(\rho x_{l+1} \rho^{-1} x_{l+1}^{-1}\right) \cdot x_{l+1}\left(u_{l} \rho^{-1} u_{l}^{-1}\right) x_{l+1}^{-1}
\end{aligned}
$$

so that $\rho u_{l+1} \rho^{-1} u_{l+1}^{-1}$ belongs to $\Gamma_{\alpha}(\mathfrak{a})$. We conclude that for each ideal $\mathfrak{a} \subset \Lambda, \mathfrak{a} \neq 0$, there is an ideal $\mathfrak{a}^{\prime} \neq 0$ such that $\left[u, G(\alpha)\left(a^{\prime}\right)\right] \subset$ $\Psi_{\alpha}(a)$. Passing to the completions it is now clear that this means that u centralises C in $\widehat{G}(\alpha)(k)$ proving Proposition 1.8.
1.9. Let $\widehat{G}(\alpha)(k)^{+}$denote the closure of $G(\alpha)(k)^{+}$in $\widehat{G}(\alpha)(k)$. Then $\widehat{G}(\alpha)(k)^{+} \xrightarrow{\pi_{0}} \bar{G}(\alpha)(k)$ is a central extension where π_{0} is the restriction of π to $\widehat{G}(\alpha)(k)^{+}$. Let C_{0} denote the kernel of π_{0}. Then C_{0} is a closed subgroup of C; and since C is the projective limit of the family $\left\{G(\alpha)(\mathfrak{a}) / \Psi_{\alpha}(\mathfrak{a}) \mid \mathfrak{a}\right.$ a nonzero ideal in $\left.\Lambda\right\}$ of discrete groups, it follows that C_{0} is the projective limit of a family of discrete abelian groups

$$
C_{0} \simeq \operatorname{Lim}_{\leftarrow} C_{i}
$$

We have for $i>j$ a map $f_{i j}: C_{i} \rightarrow C_{j}$ which may be assumed to be surjective as also the natural map $f_{i}: C_{0} \rightarrow C_{i}$. Now for every i the central extension $\widehat{G}(\alpha)(k)^{+} /\left(\right.$kernel $\left.f_{i}\right)$ of $\bar{G}(\alpha)(k)$ is a locally compact central extension split over $G(k)^{+}$. But from PrasadRaghunathan [3] one knows that the universal locally compact central extension $\widetilde{G}(k)(k)^{+} \rightarrow \bar{G}(\alpha)(k)$ split over $G(k)^{+}$has ker ϕ a subgroup of the group μ_{k} of roots unity in k. It is now easy to deduce
from this that C_{0} is a finite cyclic group of order at most $\left|\mu_{k}\right|$. Since $G(k) / G(k)^{+}$is finite (Margulis [2]) one concludes that C is finite. The following result is immediate from the finiteness of C.
1.10. Proposition. For any non-zero ideal $\mathfrak{a}, \Psi_{\alpha}$ is an S-arithmetic subgroup of $G(\alpha)$.

Proof. If $U \subset \widehat{G}(\alpha)(k)^{+}$is any open subgroup, then $U \cap G(k)^{+}$is an S arithmetic subgroup, since C is finite and (hence) π maps $\widehat{G}(\alpha)(k)$ onto $\bar{G}(k)$. Since for any $\mathfrak{a} \neq 0, \Psi_{\alpha}(\mathfrak{a})$ contains a subgroup of the form $U \cap G(k)$ with U open in $\widehat{G}(\alpha)(k)$ our contention follows.
1.11. Corollary. If $P(\alpha)=Z(T) \cdot U(\alpha)$ then for any ideal $\mathfrak{a} \neq 0$ in Λ, there is a finite subset $\Sigma_{\alpha}(\mathfrak{a})$ in $G(\alpha)(k)$ such that

$$
Z\left(T_{\alpha}\right)(k)=\Psi_{\alpha}(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) \cdot P(\alpha)(k)
$$

(this is a theorem due to Borel; for a proof see Raghunathan [4, Chapter XIII]).
1.12. Theorem. Let \mathfrak{a} be a nonzero ideal in Λ. Then there is a finite set $\Sigma(\mathfrak{a}) \subset G(k)$ such that $G(k)=\Gamma(\mathfrak{a}) \cdot \Sigma(\mathfrak{a}) \cdot P(k)$ where $P=Z(T) \cdot U$.

Proof. Let $N(T)$ be the normaliser of T in G and $W=N(T) / Z(T)$ the k-Weyl group of G. Then W is generated by reflection σ_{α} corresponding to the simple roots α in Δ and each σ_{α} has a representative s_{α} in $(N(T) \cap G(\alpha))(k)$. One has $G(k)=U(k) W P(k)$, where W is identified with a set of representatives of its elements in $N(T)(k)$. Let l be an integer ≥ 0 and $W(l)$ the set of elements of W of length l with respect to the set $\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$ of generators. We will prove the following statement by induction on l. For any ideal $\mathfrak{a} \neq 0$ in Λ, there is a finite set $\Sigma_{l}(\mathfrak{a})$ such that $U(k) W(l) P(k)$ is contained in $\Gamma(\mathfrak{a}) \cdot \Sigma_{l}(\mathfrak{a})(k)$. When $l=1$, this is simply Corollary 1.12 . Assume that the assertion holds for $l<r$. Let $g=u w p$ in $G(k)$ be such that length $w=r, u \in U^{+}(k)$ and $p \in P(k)$. Then $w=s_{\alpha} w^{\prime}$ for some w^{\prime} of length $r-1$ and $\alpha \in \Delta$. Also one can write $u=u^{\prime} \cdot u^{\prime \prime}$ with $u^{\prime} \in U(\alpha)(k)$ and $u^{\prime \prime} \in V(\alpha)(k)$. Since $G(\alpha)$ normalises $V(\alpha)(k)$ we see that $g=x y w^{\prime} p$ where $x \in G(\alpha)(k)$ and $y \in V(\alpha)(k)$. Let $\Sigma_{\alpha}(a)$ be as in Corollary 1.1. Clearly then $g \in \Psi_{\alpha}(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) U(k) W(r-1) P(k)$. Now let $\mathfrak{b}(\alpha)=\mathfrak{b} \neq 0$ an ideal such that $x \Gamma(\mathfrak{b}) x^{-1} \subset \Gamma(\mathfrak{a})$ for
all x in the finite set $\Sigma_{\alpha}(\mathfrak{a})$. By the induction hypothesis we can find a finite set $\Sigma_{r-1}(\mathfrak{b}) \cdot G(k)$ such that $\Gamma(\mathfrak{b}) \cdot \Sigma_{r-1}(\mathfrak{b}) P(k)$ contains $U(k) W(r-1) \cdot P(k)$. Thus $g \in \Psi_{l}(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) \cdot \Gamma(\mathfrak{b}) \cdot \Sigma_{r-1}(\mathfrak{b}) \cdot P(k)$; and this last set is contained in $\Psi_{\alpha}(\mathfrak{a}) \Gamma(\mathfrak{a}) \Sigma_{\alpha}(\mathfrak{a}) \Sigma_{r-1}(b) \cdot P(k)$. Since $\Psi_{\alpha}(\mathfrak{a}) \subset \Gamma(\mathfrak{a})$ and $\Sigma_{\alpha}(\mathfrak{a}) \Sigma_{r-1}(\mathfrak{b})$ is finite, our claim for r follows if we set $\Sigma_{r}(\mathfrak{a})$ to be $\bigcup_{\alpha \in \Delta} \Sigma_{\alpha}(\mathfrak{a}) \cdot \Sigma_{r-1}(\mathfrak{b}(\alpha))(\mathfrak{b}(\alpha))$ also depends on $\left.\mathfrak{a}\right)$. This proves the theorem.
1.14. Corollary. For a non-zero ideal \mathfrak{a} in $\Lambda, \Gamma(\mathfrak{a})$ is an arithmetic subgroup of G.

Proof. Let $\Sigma \subset G(k)$ be a finite set such that $\Gamma(\mathfrak{a}) \cdot \Sigma P(k)=G(k)$. Then if $g \in G(\Lambda)$ we have $g=x \zeta p$ with $p \in P(k) x \in \Gamma(\mathfrak{a})$ and $\zeta \in$ Σ. Since Σ is a finite set we conclude that there is a $\lambda \in \Lambda \backslash\{0\}$ such that the following holds: if $p=z \cdot u, z \in Z(T)(k), u \in U(k)$, and ξ is any matrix entry of z, u, z^{-1} or u^{-1}, then $\lambda \xi \in \Lambda$. It is also easy to see that if B is any k-simple component of $Z(T), B \subset G(\alpha)$ for some $\alpha \in \Delta$. Thus $B \cap \Gamma(\mathfrak{a})$ is an S-arithmetic subgroup of B so that $Z(T) \cap \Gamma(\mathfrak{a})$ is an arithmetic subgroup of $Z(T)$. Hence $P \cap \Gamma(\mathfrak{a})$ is an S-arithmetic subgroup of P. In particular $\prod_{V \in S}{ }^{\circ} P\left(k_{v}\right) /{ }^{\circ} P \cap \Gamma(\mathfrak{a})$ is compact where ${ }^{\circ} P=\{\operatorname{ker} \chi \mid \chi$ a character on P defined over $k\}$. From the fact that z and z^{-1} have both entries of the form ξ / λ with $\xi \in \Lambda$, one easily deduces that z belongs to a finite set modulo ${ }^{\circ} P$. From the compactness of ${ }^{\circ} P /{ }^{\circ} P \cap \Gamma(\mathfrak{b})$ for any $\mathfrak{b} \neq 0$ and the discreteness of the set $\left\{p \in{ }^{\circ} P \mid\right.$ the entries of p and p^{-1} belong to $\left.\lambda^{-1}\right\}$, one sees easily now that there is a finite set Σ^{\prime} such that $p \in P(k) \cap \Gamma(\mathfrak{b}) \cdot \Sigma^{\prime}$ for all $g \in G(k)$. Now choose \mathfrak{b} such that $x \Gamma(\mathfrak{b}) x^{-1} \subset \Gamma(\mathfrak{a})$ for all $x \in \Sigma$. Then one has clearly

$$
g \in \Gamma(\mathfrak{a}) \cdot \Sigma \cdot \Sigma
$$

Since $\Sigma \cdot \Sigma^{\prime}$ is finite we have shown that $\Gamma(\mathfrak{a})$ has finite index in $G(\Lambda)$. Hence the corollary.

Added in proof. T. N. Venkataramana recently drew my attention to two papers of G. A. Margulis (Arithmetic Properties of Discrete Groups, Russian Mathematical Surveys, 29:1 (1974), 107-1 56 and Arithmeticity of non-uniform lattices in weakly non compact groups, Functional Analysis and its Applications, Vol. 9 (1975), 31-38), which contain results that imply our main theorem. The methods of the present paper are however very different, and I believe, more transparent.

References

[1] A. Borel, and J. Tits, Groupes reductifs, Publ. Math. Inst. Haut. Etud. Sci., 27 (1965), 55-150.
[2] G. A. Margulis, Finiteness of quotient groups of discrete groups (Russian), Funktsional. Anal. i Prilozhen., 13 (1979), 28-39.
[3] G. Prasad and M. S. Raghunathan, On the congruence subgroup problem: determination of the mletaplectic kernel, Invent. Math., 71 (1983), 21-42.
[4] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer Verlag, 1972.
[5] _-, On the congruence subgroup problem II, Invent. Math., 85 (1986), 73-117.
[6] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure Math., Amer. Math. Soc., 9 (1969), 33-62.
[7] __, Algebraic and abstract simple groups, Ann. of Math., 80 (1964), 313-329.
[8] _, Systems générateurs de groupes de congruence, C. R. Acad. Sci. Paris, 283 (1976), Serie A, 693-695.

Received January 5, 1989 and in revised form June 23, 1989.
Tata Institute of Fundamental Research
Homi Bhabha Road
Bombay 400 005, India

