A NOTE ON GENERATORS FOR ARITHMETIC SUBGROUPS OF ALGEBRAIC GROUPS

M. S. RAGHUNATHAN

In this paper we construct systems of generators for arithmetic subgroups of algebraic groups.

1.1. Let k be a global field and G an absolutely almost simple simply connected (connected) k-algebraic group. We fix once and for all a *faithful* k-representation of G in some GL(n) and identify G with its image under this representation. In the sequel we will freely use results from Borel-Tits [1] without citing that reference repeatedly. Practically all facts about reductive algebraic groups used are to be found there. Let S be a finite set of valuations of k containing all the archimedean valuations and Λ be the ring of S-integers in $k : \Lambda =$ $\{x \in k | x \text{ an integer in the completion } k_v \text{ of } k \text{ at } v \text{ for all valuations} v \notin S\}$. For a subgroup $H \subset G$, we set $H(\Lambda) = H \cap GL(n, \Lambda)$. More generally for an ideal $a \neq 0$ in Λ , we set

$$H(\mathfrak{a}) = \{ x \in H(\Lambda) | x \equiv 1 \pmod{\mathfrak{a}} \}.$$

We fix a maximal k-split torus T in G. We assume that dim $T \ge 2$ i.e. that k-rank $G \ge 2$. Let Φ denote the root system of G with respect to T. We fix a lexicographic ordering on X(T), the character group of T and denote by Φ^+ (resp. Φ^-) the positive (resp. negative) roots with respect to this ordering. We also denote by Δ the corresponding simple system of roots. For $\phi \in \Phi$, let $U(\phi)$ denote the root group corresponding to $\phi: U(\phi)$ is the unique T-stable ksplit subgroup of G whose Lie algebra is the span of the root spaces $\{g^{r\phi}|r \text{ integer } > 0\}$ (here for $\psi \in \Phi$, $g^{\psi} = \{v \in g | \operatorname{Ad} t(v) = \psi(t)v\}$, g being the Lie algebra of G). With this notation our main result is

1.2. THEOREM. The group $\Gamma(\mathfrak{a})$ generated by $\{U(\phi)(\mathfrak{a})|\phi \in \Phi\}$ for any non-zero ideal $(\mathfrak{a}) \subset \Lambda$ has finite index in $G(\mathfrak{a})$.

Note. Tits [8] has obtained this result for Chevalley groups. However the methods of this paper are very different and make no use of Tits' results. 1.3. We denote by U^+ (resp. U^-) the group generated by $U(\phi)$, $\phi \in \Phi^+$ (resp. Φ^-). For $\phi \in \Phi$, let $G(\phi)$ denote the (k-rank 1) subgroup generated by $U(\phi)$ and $U(-\phi)$. We denote by T_{ϕ} the connected component of the identity in kernel ϕ and by $Z(T_{\phi})$ the centraliser of T_{ϕ} in G. Then $Z(T_{\phi})$ is reductive and $G(\phi)$ is its maximal normal semisimple subgroup all of whose k-simple factors are isotropic. For $\alpha \in \Delta$ let $V^+(\alpha)$ (resp. $V^-(\alpha)$) denote the subgroup of U^+ (resp. U^-) generated by the $U(\phi)$, $\phi \in \Phi^+_{\alpha}$ (resp. $\Phi^+_{\alpha}) = \{\phi \in \Phi^+$ (resp. $\Phi_-) | \phi$ not a multiple of $\alpha\}$. Then $V^+(\alpha)$ and $V^-(\alpha)$ are normalised by $Z(T_{\alpha})$. The centraliser Z(T) of T normalises all the $U(\phi)$, $\phi \in \Phi$, and hence in particular U^+ , U^- , $V^+(\alpha)$ and $V^-(\alpha)$ for all $\alpha \in \Delta$. We will establish the following

1.4. Claim. Let a be a nonzero ideal in Λ and (as in Theorem 1.2) let $\Gamma(\mathfrak{a})$ denote the subgroup of $G(\Lambda)$ generated by $\{U(\phi)(\mathfrak{a})|\phi \in \Phi\}$. Then for any $g \in G(k)$ there is a non-zero ideal \mathfrak{a}' (depending on g) in Λ such that $g\Gamma(\mathfrak{a}')g^{-1} \subset \Gamma(\mathfrak{a})$.

1.5. Let $\tilde{\Gamma} = \{g \in G(k) | \text{ for any nonzero ideal } a \subset \Lambda, \text{ there is a nonzero ideal } a' \subset \Lambda \text{ such that } g\Gamma(a')g^{-1} \text{ and } g^{-1}\Gamma(a')g \subset \Gamma(a)\}$. It is then evident that $\tilde{\Gamma}$ is a subgroup of G(k). Since Z(T) normalises $U(\phi)$ for all $\phi \in \Phi$, it is easily seen that $Z(T)(k) \subset \tilde{\Gamma}$. We will presently show that $U(\pm \alpha)(k) \subset \tilde{\Gamma}$ for all $\alpha \in \Delta$. This will prove the claim since the $\{U(\pm \alpha)(k) | \alpha \in \Delta\}$ and Z(T)(k) generate all of G(k). Suppose then that $\alpha \in \Delta$ and $u \in U(\pm \alpha)(k)$. Then u normalises $U(\phi)$, $\phi \in \Phi_{\alpha}^+$ (resp. Φ_{α}^-). It follows that we can, for any non-zero ideal $a \subset \Lambda$, find a non-zero ideal $b \subset \Lambda$ such that $uU(\phi)(b)u^{-1} \subset U(\phi)(a)$ for all $\phi \in \Phi_{\alpha}^{\pm}$. If we denote by $\Gamma_{\alpha}(b)$ the group generated by $U(\phi)(b), \phi \in \Phi_{\alpha}^+$ or Φ_{α}^- , this means that $u\Gamma_{\alpha}(b)u^{-1} (\subset \Gamma_{\alpha}(a)) \subset \Gamma(a)$. Thus to establish the claim we need only show that for any non-zero ideal b in Λ , there is a non-zero ideal c in Λ with $\Gamma(c) \subset \Gamma_{\alpha}(b)$ for all $\alpha \in \Delta$. This follows from the following stronger result.

1.6. LEMMA. Let α , $\beta \in \Delta$ be such that $\alpha + \beta \in \Phi$. Then there is an element $t = t(\alpha, \beta)$ in Λ , $t \neq 0$ such that for any ideal $a \neq 0$ in Λ , the group generated by $\{U(r\alpha + s\beta)(a)|r \cdot s \neq 0, r\alpha + s\beta \in \Phi\}$ and $U_{\beta}(a)$ (resp. $U_{\beta}(a)$) contains $U(\alpha)(ta^{3})$ (resp. $U(-\alpha)(ta^{3})$).

Proof. We treat the case of $U(\alpha)$; the other case, viz. of $U(-\alpha)$, is entirely analogous. Consider first the case when Φ is reduced i.e. $2\phi \notin \Phi$ for any $\phi \in \Phi$. Let α , β be as above then the commutator

map
$$(x, y) \to xyx^{-1}y^{-1}$$
 of $G \times G$ in G defines a k-morphism
 $c: U(-\beta) \times U(\alpha + \beta) \to U(\alpha).$

As Φ is *reduced*, $U(\phi)$ is abelian and hence k-isomorphic to a k-vector space and c is easily seen to be a k-bilinear map. Let $U_c(\alpha)$ denote the group generated by Image c. Then $U_c(\alpha)$ is a k-algebraic subgroup—in fact a k-vector subspace of $U(\alpha)$. Since c is compatible with the action of Z(T) on both sides, $U_c(\alpha)$ is Z(T)-stable as well. It is easy to see that our lemma follows if the following holds: $U_c(\alpha) = U(\alpha)$. In fact one concludes that there is a $t \in \Lambda \setminus \{0\}$ such that $U(\alpha)(ta^2)$ (resp. $U_{-\alpha}(ta^2)$) is contained in the group generated by $\{U(r\alpha + s\beta)(a) | r \cdot s \neq 0\}$ and $U_{\beta}(a)$ (resp. $U_{\beta}(a)$). Evidently this equality holds if the following two conditions are satisfied:

C1: $U(\alpha)$ as a Z(T)-module is irreducible over k.

C2: The map c is non-trivial.

By using split semisimple subgroups of G containing T (Borel-Tits [1, Theorem 7.2]) one sees easily that C2 fails only if Char $k = \langle \alpha, \alpha \rangle / \langle \beta, \beta \rangle = 2$ or 3. When C2 fails and char k = 2 we consider the k-morphism

$$c' \colon U(-\beta) \times U(\alpha + 2\beta) \to U(\alpha) \cdot U(\alpha + \beta) = U^*$$

obtained by restricting the commutator map in G. Now U^* is a direct product of $U(\alpha)$ and $U(\alpha+\beta)$ and this direct product decomposition is compatible with the action of Z(T). Thus c' may be regarded as a pair (c'_1, c'_2) where

$$c_1': U(-\beta) \times U(\alpha + 2\beta) \to U(\alpha)$$

is a k-morphism which for fixed $u \in U(\alpha + 2\beta)$ is a homogeneous quadratic polynomial on $U(-\beta)$ and for fixed x in $U(-\beta)$ is linear on $U(\alpha + 2\beta)$ while

$$c'_2: U(-\beta) \times U(\alpha + 2\beta) \to U(\alpha + \beta)$$

is bilinear. To prove the lemma once again it suffices to show that the group $U_{c'}(\alpha)$ generated by the image of c' contains all of $U(\alpha)$. Now if C1 holds, this is indeed the case. To see this observe that $U(\alpha)$ and $U(\alpha + \beta)$ are distinct isotypical *T*-submodules of U^* —as a *T*module U^* is semisimple. Thus if c'_1 is non-trivial $U_{c'}(\alpha) \cap U(\alpha)$ is a nontrivial Z(T)-stable k-vector space hence is all of $U(\alpha)$. That c'_1 is non-trivial is checked using the Chevalley commutation relations in a Chevalley group containing *T* and contained in *H*. Finally

M. S. RAGHUNATHAN

if characteristic of k = 3, C2 fails and C1 holds, we consider the commutator map restricted to $U(-(\alpha + 3\beta)) \times U(2\alpha + 3\beta)$ as a k-morphism of this variety into $U(\alpha)$. One sees easily that it is bilinear and non-trivial. This leaves us to deal with the situation when C1 fails. From the classification of Tits [6] of groups over global fields, it is easy to conclude that if C1 fails one has necessarily char k = 2 and G is a group of Type C_n with Tits index as below

$$|-\circ-|-\circ-|\dots|-\overset{\beta}{\circ}-|\overset{\alpha}{=}\circ$$

(C2 also fails in this case). But in this case one has a description of G as the special unitary group of a non-degenerate hermitian form h over a quaternion algebra (over k) with respect to an involution whose fixed point set is of dimension 3 (over k) (such that h has Witt index n/2 - n is necessarily even). Explicit matrix computation leads us in this case to the conclusion that $U_{c'}(\alpha) = U^*$ (in the notation introduced above).

Consider now the case when Φ is not reduced. Let Φ_0 be the reduced system associated to Φ and Δ_0 the corresponding simple system. If α , $\beta \in \Delta_0$ we are reduced to the preceding case. If $2\beta \in \Delta_0$ since $U(\beta) \supset U(-2\beta)$ and $U(\beta) \supset U(2\beta)$ we are again reduced to the preceding case. Then we are left with the case $\beta \in \Delta_0$, $2\alpha \in \Delta_0$. In this case one notes that the preceding considerations show that $U(2\alpha)(t\alpha_2)$ is contained in the group generated by $\{U(r\alpha + s\beta)(\alpha)|r, s \neq 0, r\alpha + s\beta \in \Phi\}$ and $U(-\beta)$. This reduces the lemma to proving that the map $c: U(-\beta) \times U(\alpha + \beta) \rightarrow U(\alpha)/U(2\alpha)$ obtained from the commutator map is such that Image c generates all of $U(\alpha)/U(2\alpha)$. This is easily checked. Hence the lemma.

1.7. Let $\mathfrak{a} \subset \Lambda$ be a non-zero ideal. Then $G(\alpha)(\Lambda)$ normalises $V(\alpha)(\mathfrak{a})$. Consequently $G(\alpha)(\Lambda)$ normalises $\Gamma_{\alpha}(\mathfrak{a})$ and hence also $\Psi_{\alpha} \stackrel{\text{def}}{=} \Gamma_{\alpha}(\mathfrak{a}) \cap G(\alpha)(k)$. We also set $\Psi_{\alpha} = \Psi_{\alpha}(\Lambda)$. Observe that for any $g \in G(\alpha)(k)$, and a non-zero ideal $\mathfrak{a} \subset \Lambda$, there is an ideal \mathfrak{b} (depending on \mathfrak{a} and g) such that $g\Psi_{\alpha}(\mathfrak{b})g^{-1}$ is contained in $\Psi_{\alpha}(\mathfrak{a})$: this follows from Claim 1.4 combined with Lemma 1.6, which shows that $\Gamma(t\mathfrak{a}^3)$ is contained in $\Gamma_{\alpha}(\mathfrak{a})$. It is easy to see from this that the following collection T of subsets of $G(\alpha)(k)$ is the family of open sets for a topology on $G(\alpha)(k) : T = \{\Omega \subset G(\alpha)(k)| \text{ for every } x \in \Omega$, there is a non-zero ideal $\mathfrak{a}(x)$ in Λ such that $x\Psi_{\alpha}(\mathfrak{a}(x))$ is contained in $\Omega\}$. (That T constitutes a topology is seen easily from the fact that $\Psi_{\alpha}(\mathfrak{a}) \cap \Psi_{\alpha}(\mathfrak{b})$ contains $\Psi_{\alpha}(\mathfrak{ab})$ and that if $\mathfrak{a} \neq 0$, $\mathfrak{b} \neq 0$, then

 $ab \neq 0$.) Let L and R denote respectively the left and right uniform structures on $G(\alpha)(k)$ for the topology T. Then we assert that a sequence $x_n \in G(\alpha)(k)$ is Cauchy for L if and only if it is Cauchy for R. Assume that x_n is Cauchy for L. Let $l \ge 0$ be an integer such that $x_n^{-1}x_m \in \Psi_{\alpha}(\mathfrak{a})$ for all $m, n \ge l$. Let $t \in \Lambda \setminus \{0\}$ be as in Lemma 1.6. For an ideal $a \neq 0$ let $a' \neq 0$ be an ideal such that $x_l \Psi_{\alpha}(\mathfrak{a}') x_l^{-1}$ is contained in $\Psi_{\alpha}(\mathfrak{a})$. Since x_n is Cauchy for L there is an integer $l(\mathfrak{a}') > 0$ such that $x_n^{-1}x_m \in \Psi_{\alpha}(\mathfrak{a}')$ for $m, n \ge l(\mathfrak{a}')$. Then for $m, n \ne \max(l, l(\mathfrak{a}'))$ we have $x_m x_n^{-1} = x_n x_n^{-1} x_m x_n^{-1} = x_l \cdot x_l^{-1} x_n \cdot x_n^{-1} x_m (x_l^{-1} x_n)^{-1} \cdot x_l^{-1} \in \Psi_{\alpha}(\mathfrak{a})$. Thus x_n is Cauchy for R as well. The converse is proved analogously. It follows that there is a canonical identification of the completions of $G(\alpha)(k)$ with respect to R and L and we denote this common completion by $\widehat{G}(\alpha)(k)$. Then $\widehat{G}(\alpha)(k)$ is a topological group in a natural fashion. The closure of $U(\alpha)(k)$ (resp. $U(-\alpha)(k)$) in $\widehat{G}(\alpha)(k)$ is obviously the same as the completion $\overline{U}(\alpha)(k)$ (resp. $\overline{U}(\alpha)(k)$) of $U(\alpha)(k)$ (resp. $U(-\alpha)(k)$) in the congruence subgroup topology. If $\overline{G}(\alpha)(k)$ denotes the completion $G(\alpha)(k)$ with respect to the congruence subgroup topology we have natural commutative diagrams as follows:

Since $\overline{U}(\pm \alpha)(k)$ generate $\overline{G}(\alpha)(k)$ (as an abstract group) (Raghunathan [5]) one sees that π is surjective. We will now prove the following result.

1.8. PROPOSITION. Let $G(\alpha)(k)^+$ denote the normal subgroup of G(k) generated by $U^+(\alpha)(k)$. Then $G(\alpha)(k)^+$ centralises the kernel of π (= C).

Proof. One knows from the work of Tits [7] that any noncentral normal subgroup of $G(\alpha)(k)$ contains $G(\alpha)(k)^+$. Thus it suffices to show that C (= kernel π) is centralised by an element x in $G(k)^+$ which is not central in $G(\alpha)$ —the centraliser of C in $G(\alpha)$ is a normal subgroup of $G(\alpha)$. We know that Ψ_{α} contains a non-trivial element of $U(\alpha)(\Lambda)$ (Lemma 1.6). Let u be such an element; then u can be

written as a product:

$$u=x_rx_{r-1}\cdots x_1,$$

where for $1 \le i \le r$, $x_i \in U(\phi_i)(\Lambda)$ with $\phi_{\varepsilon} \Psi_{\alpha}^{\pm}$. Let

$$u_i = x_i x_{i-1} \cdots x_2 x_1.$$

Let A_i be the following assertion: for any ideal $\mathfrak{a} \subset \Lambda$, $\mathfrak{a} \neq 0$, there is a nonzero ideal $f_i(\mathfrak{a}) \subset \Lambda$ such that $\rho u_i \rho^{-1} u_i^{-1} \in \Gamma_{\alpha}(\mathfrak{a})$ for all $\rho \in G(\alpha)(f_i(\mathfrak{a}))$. Then A_0 holds if we set $f_0(\mathfrak{a}) = \mathfrak{a}$. Assume that A_l holds for some l with $1 \leq l < r$ and we will show then that A_{l+1} holds as well. Let $\mathfrak{a}' \subset \mathfrak{a}$ be a non-zero ideal such that $x_{l+1}\Gamma_{\alpha}(\mathfrak{a}')x_{l+1}^{-1} \subset \Gamma_{\alpha}(\mathfrak{a})$ (Claim 1.4 and Lemma 1.6). Let $f_{l+1}(\mathfrak{a}) =$ $f_l(\mathfrak{a}')\cap\mathfrak{a}$. Then for $\rho \in G_{\alpha}(\mathfrak{b})\mathfrak{b} = f_{l+1}(\mathfrak{a})$, we have $\rho x_{l+1}\rho^{-1}x_{l+1}^{-1} \in \Gamma_{\alpha}$ while $x_{l+1}\rho u_l\rho^{-1}u_l^{-1}x_{l+1}^{-1} \in x_{l+1}\Gamma_{\alpha}(\mathfrak{a}')x_{l+1}^{-1} \subset \Gamma_{\alpha}(\mathfrak{a})$. But one has

$$\rho u_{l+1} \rho^{-1} u_{l+1}^{-1} = \rho x_{l+1} u_l \rho^{-1} u_l^{-1} x_{l+1}^{-1}$$

= $(\rho x_{l+1} \rho^{-1} x_{l+1}^{-1}) \cdot x_{l+1} (u_l \rho^{-1} u_l^{-1}) x_{l+1}^{-1}$

so that $\rho u_{l+1} \rho^{-1} u_{l+1}^{-1}$ belongs to $\Gamma_{\alpha}(\mathfrak{a})$. We conclude that for each ideal $\mathfrak{a} \subset \Lambda$, $\mathfrak{a} \neq 0$, there is an ideal $\mathfrak{a}' \neq 0$ such that $[u, G(\alpha)(a')] \subset \Psi_{\alpha}(a)$. Passing to the completions it is now clear that this means that u centralises C in $\widehat{G}(\alpha)(k)$ proving Proposition 1.8.

1.9. Let $\widehat{G}(\alpha)(k)^+$ denote the closure of $G(\alpha)(k)^+$ in $\widehat{G}(\alpha)(k)$. Then $\widehat{G}(\alpha)(k)^+ \xrightarrow{\pi_0} \overline{G}(\alpha)(k)$ is a central extension where π_0 is the restriction of π to $\widehat{G}(\alpha)(k)^+$. Let C_0 denote the kernel of π_0 . Then C_0 is a closed subgroup of C; and since C is the projective limit of the family $\{G(\alpha)(\mathfrak{a})/\Psi_{\alpha}(\mathfrak{a})|\mathfrak{a}$ a nonzero ideal in $\Lambda\}$ of *discrete* groups, it follows that C_0 is the projective limit of a family of *discrete* abelian groups

$$C_0\simeq \operatorname{Lim} C_i$$
.

We have for i > j a map $f_{ij} : C_i \to C_j$ which may be assumed to be surjective as also the natural map $f_i : C_0 \to C_i$. Now for every *i* the central extension $\widehat{G}(\alpha)(k)^+/(\text{kernel } f_i)$ of $\overline{G}(\alpha)(k)$ is a *locally compact* central extension *split over* $G(k)^+$. But from Prasad-Raghunathan [3] one knows that the universal locally compact central extension $\widetilde{G}(k)(k)^+ \to \overline{G}(\alpha)(k)$ split over $G(k)^+$ has ker ϕ a subgroup of the group μ_k of roots unity in k. It is now easy to deduce from this that C_0 is a finite cyclic group of order at most $|\mu_k|$. Since $G(k)/G(k)^+$ is finite (Margulis [2]) one concludes that C is finite. The following result is immediate from the finiteness of C.

1.10. PROPOSITION. For any non-zero ideal \mathfrak{a} , Ψ_{α} is an S-arithmetic subgroup of $G(\alpha)$.

Proof. If $U \subset \widehat{G}(\alpha)(k)^+$ is any open subgroup, then $U \cap G(k)^+$ is an S arithmetic subgroup, since C is finite and (hence) π maps $\widehat{G}(\alpha)(k)$ onto $\overline{G}(k)$. Since for any $a \neq 0$, $\Psi_{\alpha}(a)$ contains a subgroup of the form $U \cap G(k)$ with U open in $\widehat{G}(\alpha)(k)$ our contention follows.

1.11. COROLLARY. If $P(\alpha) = Z(T) \cdot U(\alpha)$ then for any ideal $a \neq 0$ in Λ , there is a finite subset $\Sigma_{\alpha}(a)$ in $G(\alpha)(k)$ such that

$$Z(T_{\alpha})(k) = \Psi_{\alpha}(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) \cdot P(\alpha)(k)$$

(this is a theorem due to Borel; for a proof see Raghunathan [4, Chapter XIII]).

1.12. THEOREM. Let a be a nonzero ideal in Λ . Then there is a finite set $\Sigma(\mathfrak{a}) \subset G(k)$ such that $G(k) = \Gamma(\mathfrak{a}) \cdot \Sigma(\mathfrak{a}) \cdot P(k)$ where $P = Z(T) \cdot U$.

Proof. Let N(T) be the normaliser of T in G and W = N(T)/Z(T)the k-Weyl group of G. Then W is generated by reflection σ_{α} corresponding to the simple roots α in Δ and each σ_{α} has a representative s_{α} in $(N(T) \cap G(\alpha))(k)$. One has G(k) = U(k)WP(k), where W is identified with a set of representatives of its elements in N(T)(k). Let l be an integer ≥ 0 and W(l) the set of elements of W of length l with respect to the set $\{s_{\alpha} | \alpha \in \Delta\}$ of generators. We will prove the following statement by induction on l. For any ideal $a \neq 0$ in A, there is a *finite* set $\Sigma_l(a)$ such that U(k)W(l)P(k) is contained in $\Gamma(\mathfrak{a}) \cdot \Sigma_l(\mathfrak{a})(k)$. When l = 1, this is simply Corollary 1.12. Assume that the assertion holds for l < r. Let g = uwp in G(k) be such that length w = r, $u \in U^+(k)$ and $p \in P(k)$. Then $w = s_{\alpha}w'$ for some w' of length r-1and $\alpha \in \Delta$. Also one can write $u = u' \cdot u''$ with $u' \in U(\alpha)(k)$ and $u'' \in V(\alpha)(k)$. Since $G(\alpha)$ normalises $V(\alpha)(k)$ we see that g = xyw'p where $x \in G(\alpha)(k)$ and $y \in V(\alpha)(k)$. Let $\Sigma_{\alpha}(a)$ be as in Corollary 1.1. Clearly then $g \in \Psi_{\alpha}(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) U(k)W(r-1)P(k)$. Now let $\mathfrak{b}(\alpha) = \mathfrak{b} \neq 0$ an ideal such that $x\Gamma(\mathfrak{b})x^{-1} \subset \Gamma(\mathfrak{a})$ for

all x in the finite set $\Sigma_{\alpha}(\mathfrak{a})$. By the induction hypothesis we can find a finite set $\Sigma_{r-1}(\mathfrak{b}) \cdot G(k)$ such that $\Gamma(\mathfrak{b}) \cdot \Sigma_{r-1}(\mathfrak{b})P(k)$ contains $U(k)W(r-1) \cdot P(k)$. Thus $g \in \Psi_l(\mathfrak{a}) \cdot \Sigma_{\alpha}(\mathfrak{a}) \cdot \Gamma(\mathfrak{b}) \cdot \Sigma_{r-1}(\mathfrak{b}) \cdot P(k)$; and this last set is contained in $\Psi_{\alpha}(\mathfrak{a})\Gamma(\mathfrak{a})\Sigma_{\alpha}(\mathfrak{a})\Sigma_{r-1}(b) \cdot P(k)$. Since $\Psi_{\alpha}(\mathfrak{a}) \subset \Gamma(\mathfrak{a})$ and $\Sigma_{\alpha}(\mathfrak{a})\Sigma_{r-1}(\mathfrak{b})$ is finite, our claim for r follows if we set $\Sigma_r(\mathfrak{a})$ to be $\bigcup_{\alpha \in \Delta} \Sigma_{\alpha}(\mathfrak{a}) \cdot \Sigma_{r-1}(\mathfrak{b}(\alpha))$ ($\mathfrak{b}(\alpha)$) also depends on \mathfrak{a}). This proves the theorem.

1.14. COROLLARY. For a non-zero ideal \mathfrak{a} in Λ , $\Gamma(\mathfrak{a})$ is an arithmetic subgroup of G.

Proof. Let $\Sigma \subset G(k)$ be a finite set such that $\Gamma(\mathfrak{a}) \cdot \Sigma P(k) = G(k)$. Then if $g \in G(\Lambda)$ we have $g = x\zeta p$ with $p \in P(k)x \in \Gamma(\mathfrak{a})$ and $\zeta \in$ Σ . Since Σ is a *finite* set we conclude that there is a $\lambda \in \Lambda \setminus \{0\}$ such that the following holds: if $p = z \cdot u$, $z \in Z(T)(k)$, $u \in U(k)$, and ξ is any matrix entry of z, u, z^{-1} or u^{-1} , then $\lambda \xi \in \Lambda$. It is also easy to see that if B is any k-simple component of Z(T), $B \subset G(\alpha)$ for some $\alpha \in \Delta$. Thus $B \cap \Gamma(\mathfrak{a})$ is an S-arithmetic subgroup of B so that $Z(T) \cap \Gamma(\mathfrak{a})$ is an arithmetic subgroup of Z(T). Hence $P \cap \Gamma(\mathfrak{a})$ is an S-arithmetic subgroup of P. In particular $\prod_{v \in S} {}^{\circ}P(k_v) / {}^{\circ}P \cap \Gamma(\mathfrak{a})$ is compact where ${}^{\circ}P = \{ \ker \chi | \chi \text{ a character on } P \text{ defined over } k \}$. From the fact that z and z^{-1} have both entries of the form ξ/λ with $\xi \in \Lambda$, one easily deduces that z belongs to a finite set modulo °P. From the compactness of $^{\circ}P/^{\circ}P \cap \Gamma(\mathfrak{b})$ for any $\mathfrak{b} \neq 0$ and the discreteness of the set $\{p \in {}^{\circ}P |$ the entries of p and p^{-1} belong to λ^{-1} , one sees easily now that there is a finite set Σ' such that $p \in P(k) \cap \Gamma(\mathfrak{b}) \cdot \Sigma'$ for all $g \in G(k)$. Now choose \mathfrak{b} such that $x\Gamma(\mathfrak{b})x^{-1} \subset \Gamma(\mathfrak{a})$ for all $x \in \Sigma$. Then one has clearly

$$g\in\Gamma(\mathfrak{a})\cdot\Sigma\cdot\Sigma$$
.

Since $\Sigma \cdot \Sigma'$ is finite we have shown that $\Gamma(\mathfrak{a})$ has finite index in $G(\Lambda)$. Hence the corollary.

Added in proof. T. N. Venkataramana recently drew my attention to two papers of G. A. Margulis (Arithmetic Properties of Discrete Groups, Russian Mathematical Surveys, **29:1** (1974), 107–156 and Arithmeticity of non-uniform lattices in weakly non compact groups, Functional Analysis and its Applications, Vol. 9 (1975), 31–38), which contain results that imply our main theorem. The methods of the present paper are however very different, and I believe, more transparent.

References

- [1] A. Borel, and J. Tits, *Groupes reductifs*, Publ. Math. Inst. Haut. Etud. Sci., 27 (1965), 55-150.
- [2] G. A. Margulis, Finiteness of quotient groups of discrete groups (Russian), Funktsional. Anal. i Prilozhen., 13 (1979), 28-39.
- [3] G. Prasad and M. S. Raghunathan, On the congruence subgroup problem: determination of the mletaplectic kernel, Invent. Math., 71 (1983), 21-42.
- [4] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer Verlag, 1972.
- [5] ____, On the congruence subgroup problem II, Invent. Math., 85 (1986), 73–117.
- [6] J. Tits, Classification of algebraic semisimple groups, Proc. Symp. Pure Math., Amer. Math. Soc., 9 (1969), 33-62.
- [7] ____, Algebraic and abstract simple groups, Ann. of Math., 80 (1964), 313–329.
- [8] ____, Systems générateurs de groupes de congruence, C. R. Acad. Sci. Paris, 283 (1976), Serie A, 693-695.

Received January 5, 1989 and in revised form June 23, 1989.

Tata Institute of Fundamental Research Homi Bhabha Road Bombay 400 005, India