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A NOTE ON GENERATORS
FOR ARITHMETIC SUBGROUPS

OF ALGEBRAIC GROUPS

M. S. RAGHUNATHAN

In this paper we construct systems of generators for arithmetic
subgroups of algebraic groups.

1.1. Let k be a global field and G an absolutely almost simple
simply connected (connected) ^-algebraic group. We fix once and for
all a faithful /^-representation of G in some GL(w) and identify G
with its image under this representation. In the sequel we will freely
use results from Borel-Tits [1] without citing that reference repeatedly.
Practically all facts about reductive algebraic groups used are to be
found there. Let S be a finite set of valuations of k containing all
the archimedean valuations and Λ be the ring of S-integers in k : Λ =
{x G k\x an integer in the completion ky of k at v for all valuations
υ & S}. For a subgroup H c G, we set H(A) = HnGL(n, Λ). More
generally for an ideal α^O in Λ, we set

H{a) = {xe H(A)\x = 1 (mod α)}.

We fix a maximal Λ>split torus Γ in G. We assume that dim T > 2
i.e. that Λ>rank G > 2. Let Φ denote the root system of G with
respect to T. We fix a lexicographic ordering on X(T), the character
group of T and denote by Φ + (resp. Φ") the positive (resp. neg-
ative) roots with respect to this ordering. We also denote by Δ the
corresponding simple system of roots. For φ e Φ, let U(φ) denote
the root group corresponding to φ: U(φ) is the unique Γ-stable k-
split subgroup of G whose Lie algebra is the span of the root spaces
{grφ\r integer > 0} (here for ψ e Φ, QΨ = {υ e Q\ Adt(υ) = ψ(t)v},
0 being the Lie algebra of G). With this notation our main result is

1.2. THEOREM. The group Γ(α) generated by {U(φ)(a)\φ e Φ} for
any non-zero ideal (α) c Λ has finite index in G(a).

Note. Tits [8] has obtained this result for Chevalley groups. How-
ever the methods of this paper are very different and make no use of
Tits' results.
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1.3. We denote by ί/+ (resp. U~) the group generated by U(φ),
φ E Φ + (resp. Φ~). For φ E Φ, let G(φ) denote the (λ -rank 1)
subgroup generated by U(φ) and U(-φ). We denote by Tφ the
connected component of the identity in kernel φ and by Z(Tφ) the
centraliser of Tφ in G. Then Z(Tφ) is reductive and G(φ) is its
maximal normal semisimple subgroup all of whose Λ -simple factors
are isotropic. For a E Δ let F + (α) (resp. V~(ά)) denote the sub-
group of U+ (resp. U~) generated by the U(φ), φ E Φ+ (resp.
φ+) = {(/> G Φ + (resp. Φ-)\φ not a multiple of a}. Then V+(a)
and V~(a) are normalised by Z(Ta). The centraliser Z(T) of T
normalises all the U(φ), φ E Φ, and hence in particular C/+, U~ ,
F+(α) and F"(α) for all α e Δ. We will establish the following

1.4. Claim. Let α be a nonzero ideal in Λ and (as in Theorem 1.2)
let Γ(α) denote the subgroup of G(Λ) generated by {U(φ)(a)\φ e Φ}.
Then for any g E G(k) there is a non-zero ideal o! (depending on g)
in Λ such that gΓ(a')g~ι C Γ(α).

1.5. Let Γ = {g e G{k)\ for any nonzero ideal α c Λ, there is a
nonzero ideal α ' c Λ such that ^ ( α ' ) ^ " 1 and g~ιΓ(a!)g c Γ(α)}. It
is then evident that Γ is a subgroup of G(k). Since Z(T) normalises
U(φ) for all φ eΦ, it is easily seen that Z(T)(k) cf. We will
presently show that U(±a)(k) c Γ for all a e Δ. This will prove the
claim since the {U(±a)(k)\a G Δ } and Z(Γ)(A:) generate all of (?(&).
Suppose then that a e Δ and w e ί7(±α)(fc). Then M normalises
U(φ), 0 E ΦJ (resp. Φ~). It follows that we can, for any non-zero
ideal o c A , find a non-zero ideal b c Λ such that uU(φ)(b)u~ι c
U(φ)(a) for all φ e ΦJ . If we denote by Γα(b) the group generated
by U{φ)(b), φeΦ+ or Φ~, this means that uΓa(b)u~ι (c Γα(α)) c
Γ(α). Thus to establish the claim we need only show that for any non-
zero ideal b in Λ, there is a non-zero ideal c in Λ with Γ(c) c Γα(b)
for all a E Δ. This follows from the following stronger result.

1.6. LEMMA. Let a, β e A be such that a + β E Φ. Then there
is an element t = t(a, β) in Λ, t Φ 0 such that for any ideal α Φ 0
in Λ, ίλe grotφ generated by {U(m + sβ)(ά)\r s φθ, ra + sβ eΦ}
and Uβ(a) (resp. Uβ(a)) contains U(a)(to?) (resp. U(-a)(ta3)).

Proof. We treat the case of U(a) the other case, viz. of U(-a),
is entirely analogous. Consider first the case when Φ is reduced i.e.
2φ£Φ for any φ e Φ. Let a, β be as above then the commutator
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map (x,y) -* xyx~ιy~ι of G x G in G defines a fc-morphism

c: U(-β)x U(a + β)^U(a).

As Φ is reduced, U(φ) is abelian and hence /c-isomorphic to a
A:-vector space and c is easily seen to be a A:-bilinear map. Let Uc(a)
denote the group generated by Image c. Then Uc(a) is a /c-algebraic
subgroup—in fact a k-vector subspace of U(a). Since c is compat-
ible with the action of Z(T) on both sides, Uc(a) is Z(Γ)-stable as
well. It is easy to see that our lemma follows if the following holds:
Uc(a) = U(a). In fact one concludes that there is a t G Λ\{0} such
that U(a)(ta2) (resp. U-a(ta2)) is contained in the group generated
by {U(ra + sβ)(a)\r sφO} and Uβ(a) (resp. Uβ(a)). Evidently this
equality holds if the following two conditions are satisfied:

Cl: U(a) as a Z(Γ)-module is irreducible over k .
C2: The map c is non-trivial.
By using split semisimple subgroups of G containing T (Borel-

Tits [1, Theorem 7.2]) one sees easily that C2 fails only if Char/r =
(a, a)/(β, β) = 2 or 3. When C2 fails and char/: = 2 we consider
the /:-morphism

cf: U(-β) x U{a + 2β) -• U(a) U(a + β) = U*

obtained by restricting the commutator map in G. Now U* is a direct
product of U(a) and U(a+β) and this direct product decomposition
is compatible with the action of Z(T). Thus d may be regarded as
a pair [c\, ê ) where

c;j: C/(—jff) x U(a + 2)?) -^ U(a)

is a /c-moφhism which for fixed u e C/(α + 2̂ ff) is a homogeneous
quadratic polynomial on U(-β) and for fixed x in U(—β) is linear
on U(a + 2β) while

4 : ί/(-j8) x C/(α + 2β) - C/(α + /?)

is bilinear. To prove the lemma once again it suffices to show that
the group Uc>(a) generated by the image of d contains all of U{a) .
Now if Cl holds, this is indeed the case. To see this observe that U(a)
and U(a + β) are distinct isotypical Γ-submodules of U*—as a Γ-
module U* is semisimple. Thus if dx is non-trivial Uc>(a)nU(a) is a
nontrivial Z(Γ)-stable A:-vector space hence is all of U(a). That dx

is non-trivial is checked using the Chevalley commutation relations
in a Chevalley group containing T and contained in H. Finally
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if characteristic of k = 3, C2 fails and Cl holds, we consider the
commutator map restricted to U(-(a + 3β)) x U(2a + 3β) as a k-
morphism of this variety into U(a). One sees easily that it is bilinear
and non-trivial. This leaves us to deal with the situation when Cl
fails. From the classification of Tits [6] of groups over global fields, it
is easy to conclude that if Cl fails one has necessarily char A: = 2 and
G is a group of Type Cn with Tits index as below

(C2 also fails in this case). But in this case one has a description of
G as the special unitary group of a non-degenerate hermitian form
h over a quaternion algebra (over k) with respect to an involution
whose fixed point set is of dimension 3 (over k) (such that h has Witt
index n/2—n is necessarily even). Explicit matrix computation leads
us in this case to the conclusion that Uc>(a) = U* (in the notation
introduced above).

Consider now the case when Φ is not reduced. Let ΦQ be the
reduced system associated to Φ and Δo the corresponding simple
system. If a, β € ΔQ we are reduced to the preceding case. If 2β e ΔQ
since U(β) D U(-2β) and U(β) D U(2β) we are again reduced to
the preceding case. Then we are left with the case β G ΔQ , 2α e ΔQ .
In this case one notes that the preceding considerations show that
U(2a)(ta2) is contained in the group generated by {U{ra + sβ)(a)\r9

s Φ 0, ra+sβ eΦ} and U(—β). This reduces the lemma to proving
that the map c: U(-β) x U(a + β) -> U(a)/U(2a) obtained from the
commutator map is such that Image c generates all of U(a)/U(2a).
This is easily checked. Hence the lemma.

1.7. Let α c Λ be a non-zero ideal. Then G(a)(A) normalises
F(α)(α). Consequently G(α)(Λ) normalises Γα(α) and hence also

Ψα = f Γα(α) Π G(a)(k). We also set Ψα = Ψα(Λ). Observe that for
any g e G(a)(k), and a non-zero ideal α c Λ, there is an ideal b (de-
pending on α and g) such that gΨα(b)^"1 is contained in Ψα(α):
this follows from Claim 1.4 combined with Lemma 1.6, which shows
that Γ(ία3) is contained in Γα(α). It is easy to see from this that
the following collection T of subsets of G(a)(k) is the family of open
sets for a topology on G(a)(k) : T = { Ω c G(a)(k)\ for every x e Ω,
there is a non-zero ideal α(x) in Λ such that xΨα(α(x)) is contained
in Ω}. (That T constitutes a topology is seen easily from the fact
that Ψα(α) Π Ψα(b) contains Ψα(αb) and that if α ψ 0, b Φ 0, then
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αb Φ 0.) Let L and R denote respectively the left and right uniform
structures on G(a)(k) for the topology T. Then we assert that a se-
quence xn G G{a){k) is Cauchy for L if and only if it is Cauchy for
R. Assume that xn is Cauchy for L. Let / > 0 be an integer such
that χ-χxm e Ψα(α) for all m, n > I. Let t e Λ\{0} be as in
Lemma 1.6. For an ideal α Φ 0 let o! Φ 0 be an ideal such that
•X/ΨαtcO X/"1 i s contained in Ψα(α). Since xn is Cauchy for L there
is an integer Z(α') > 0 such that xήιXm £ Ψ«(α') for m,n> l(o!).
Then for ra, n Φ max(/, /(α')) we have xmXnl = x^x^1^:^^1 =
JC/ xfιxn Xnlχm(xflXn)~ι ' xfl € Ψα(α). Thus xn is Cauchy for R
as well. The converse is proved analogously. It follows that there is a
canonical identification of the completions of G(a)(k) with respect to
R and L and we denote this common completion by G(a)(k). Then
G(a)(k) is a topological group in a natural fashion. The closure of
U(a)(k) (resp. U(-a)(k)) in G(a)(k) is obviously the same as the
completion V{a)(k) (resp. V(a)(k)) of U_(a){k) (resp. C7(-α)(fc))
in the congruence subgroup topology. If G{a)(k) denotes the com-
pletion G(a)(k) with respect to the congruence subgroup topology we
have natural commutative diagrams as follows:

G(a)(k) Λ G(a)(k)

\ /

G(a)(k)

G(a)(k) Λ G(a)(k)

\ _ /
U(±a)(k)

Since U{±a)(k) generate G(a)(k) (as an abstract group) (Raghu-
nathan [5]) one sees that π is surjective. We will now prove the
following result.

1.8. PROPOSITION. Let G(a)(k)+ denote the normal subgroup of
G(k) generated by U+(a)(k). Then G(a)(k)+ centralises the kernel
ofπ (=C).

Proof. One knows from the work of Tits [7] that any noncentral
normal subgroup of G(a)(k) contains G{ά)(k)+ . Thus it suffices to
show that C (= kernel π) is centralised by an element x in G{k)+
which is not central in G(a)—the centraliser of C in G(a) is a normal
subgroup of G(a). We know that Ψa contains a non-trivial element
of U(a)(A) (Lemma 1.6). Let u be such an element; then u can be
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written as a product:

where for 1 < i < r, xt e U(φi)(A) with φεΨ± . Let

Ui = XiXi-i - X2X\ .

Let A\ be the following assertion: for any ideal α c Λ, α Φ 0,
there is a nonzero ideal /}(α) c Λ such that pUip~ιuJι e Γα(o) for
all /? G G(α)(//(α)). Then ^t0 holds if we set ^(a) = a. Assume
that A\ holds for some / with 1 < / < r and we will show then
that Ai+i holds as well. Let o' c o be a non-zero ideal such that
χι+\Tct(d)χJ'+\ c Γα(α) (Claim 1.4 and Lemma 1.6). Let fι+\(a) =
//(α')ίΊα. Then for p e Ga(b)b = fM(a), we have pxι+ιp~ιxj^γ € Γa

while Xι+\puιp~ιujιxj^χ e ^z+iΓαία')^ 1 ! c Γα(α). But one has

so that puι+\p~ιuj^χ belongs to Γα(α). We conclude that for each
ideal α c Λ , α ψ 0, there is an ideal a! Φ 0 such that [u, G(a)(a')] c
Ψ α (α). Passing to the completions it is now clear that this means that
u centralises C in G(a)(k) proving Proposition 1.8.

1.9. Let G(a)(k)+ denote the closure of G(a)(k)+ in G(a)(k).
Then G(a)(k)+ -4 G(a)(k) is a central extension where UQ is the
restriction of π to G(a)(k)+ . Let Q denote the kernel of UQ . Then
Co is a closed subgroup of C and since C is the projective limit of
the family {G(α)(α)/Ψα(α)|α a nonzero ideal in Λ} of discrete groups,
it follows that Q is the projective limit of a family of discrete abelian
groups

CQ ^ Lim d.

We have for i > j a map fa : Ci -» C7 which may be assumed
to be surjective as also the natural map //: Q —• Q . Now for ev-
ery i the central extension G(α)(fc)+/(kernel f{) of G(a)(k) is a
locally compact central extension split over G(k)+ . But from Prasad-
Raghunathan [3] one knows that the universal locally compact central
extension G(k)(k)+ —• G(a){k) split over G(k)Jr has ker^ a sub-
group of the group μ^ of roots unity in k. It is now easy to deduce
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from this that Q is a finite cyclic group of order at most |/z^|. Since
G(k)/G(k)+ is finite (Margulis [2]) one concludes that C is finite.
The following result is immediate from the finiteness of C.

1.10. PROPOSITION. For any non-zero ideal α, Ψa is an S-arith-
metic subgroup of G(ά).

Proof. If U c G(a)(k)+ is any open subgroup, then UnG(k)+ is an
S arithmetic subgroup, since C is finite and (hence) π maps G(a)(k)
onto G{k). Since for any α Φ 0, Ψα(α) contains a subgroup of the
form UΓ\G(k) with C/ open in (7(α)(fc) our contention follows.

1.11. COROLLARY. If P(a) = Z(T) U(a) then for any ideal aφ 0
m Λ, there is a finite subset Σα(α) m C7(α)(fc) swcΛ

w a theorem due to Borel; for a proof see Raghunathan [4, Chapter
XIII]).

1.12. THEOREM. Let a be a nonzero ideal in Λ. Then there is
a finite set Σ(α) c G(k) such that G(k) = Γ(α) Σ(α) P{k) where
P = Z(T)-U.

Proof Let N(T) be the normaliser of T in G and W = N(T)/Z(T)
the k-Weyl group of G. Then PF is generated by reflection σa cor-
responding to the simple roots a in Δ and each σa has a repre-
sentative sa in (ΛΓ(Γ)n(?(α))(fc). One has G(k) = U(k)WP(k),
where W is identified with a set of representatives of its elements
in N(T)(k). Let / be an integer > 0 and W{1) the set of el-
ements of W of length / with respect to the set {sa\oί G Δ} of
generators. We will prove the following statement by induction on
/. For any ideal α Φ 0 in Λ, there is a finite set Σ/(α) such that
U(k)W{l)P{k) is contained in Γ(α) Σ/(α)(fc). When / = 1, this is
simply Corollary 1.12. Assume that the assertion holds for / < r.
Let g = uwp in G(k) be such that length w = r, u e U+{k)
and /? G i^fc). Then K; = saw' for some tί/ of length r - 1
and a e Δ. Also one can write w = u' w" with w' e C/(α)(/c)
and w" € V(a)(k). Since G(α) normalises F(α)(fc) we see that
g = xyw'p where x e G(a)(k) and y e V(a)(k). Let Σa(a) be as
in Corollary 1.1. Clearly then g e Ψα(α) Σα(α)C/(fc)ίF(r - l)P(fc).
Now let b(α) = b Φ 0 an ideal such that J C Γ ^ ) * " 1 C Γ(α) for
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all x in the finite set Σα(α). By the induction hypothesis we can
find a finite set Σr_i(b) G(k) such that Γ(b) Σr_i(b)P(Λ;) contains
U(k)W(r - 1) P(k). Thus g e Ψ/(α) Σα(α) - Γ(b) Σ ^ b ) P(k)
and this last set is contained in Ψα(α)Γ(α)Σα(α)Σr_i(Z>) P(k). Since
Ψα(α) c Γ(α) and Σα,(α)Σr_i(b) is finite, our claim for r follows if
we set Σr(α) to be \JaeAΣa(a) Σr_ι(b(a)) (b(a)) also depends on α).
This proves the theorem.

1.14. COROLLARY. For a non-zero ideal a in Λ, Γ(α) is an arith-
metic subgroup of G.

Proof. Let Σ c G(k) be a finite set such that Γ(α) ΣP(k) = G(k).
Then if g e G(A) we have g = xζp with p e P{k)x e Γ(α) and ζ e
Σ. Since Σ is a finite set we conclude that there is a λ E Λ\{0} such
that the following holds: if p = z u, zeZ(T)(k), ue U(k), and ξ
is any matrix entry of z, u, z~ι or u~~ι, then Λ,£ e Λ. It is also easy
to see that if B is any fc-simple component of Z{T), B c G(α) for
Stfrae a e Δ. Thus ΰnΓ(α) is an S-arithmetic subgroup of B so that
Z(Γ) Π Γ(α) is an arithmetic subgroup of Z(T). Hence P Π Γ(α) is
an iS-arithmetic subgroup of P. In particular Hves°P(kv)/0P^(a)
is compact where °P = {kcvχ\χ a character on P defined over k}.
From the fact that z and z" 1 have both entries of the form ξ/λ
with ξ e A, one easily deduces that z belongs to a finite set modulo
°P. From the compactness of °P/°P Π Γ(b) for any b Φ 0 and the
discreteness of the set {p e °P| the entries of p and p~ι belong
to λ~1}, one sees easily now that there is a finite set Σ' such that
p e P(k) Π Γ(b) Σ' for all g e G(k). Now choose b such that
xΓ(b)jc"1 c Γ(α) for all xeΣ. Then one has clearly

*eΓ(α)-Σ Σ.

Since Σ Σ' is finite we have shown that Γ(α) has finite index in
G(Λ). Hence the corollary.

Added in proof. T. N. Venkataramana recently drew my attention to
two papers of G. A. Margulis {Arithmetic Properties of Discrete Groups,
Russian Mathematical Surveys, 29:1 (1974), 107-156 and Arithmetic-
ity of non-uniform lattices in weakly non compact groups, Functional
Analysis and its Applications, Vol. 9 (1975), 31-38), which contain re-
sults that imply our main theorem. The methods of the present paper
are however very different, and I believe, more transparent.
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