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A Note on Quotients of Real Algebraic Groups
by Arithmetic Subgroups

M. S. RAGHUNATHAN* (Bombay)

Introduction

Let G be a connected semi-simple algebraic group defined over Q.
Let I' be an arithmetic subgroup of G, i.e., a subgroup of G such that
for some (and therefore any) faithful rational representation p: G —
GL(N, C) defined over Q, I' np~'(SL(N, Z)) is of finite index in both
I and p~}(SL(N, Z)). Let K< G be a maximal compact subgroup of Gg,
the set of real points of G. With this notation, we can state the main
result of this note.

Theorem. Let I’ Gg. There exists a smooth function f: Gg/l —-R*
such that
i) £740, r] is compact for all r>0.
ii) There exists ry>0 such that f has no critical points outside f ~*(0,r,]
and
iii) f is invariant under the action of K on the left.

If in addition I has no non-trivial elements of finite order, K\Gg/I is a
smooth manifold and f defines a smooth function f; on this manifold
satisfying (i) and (ii) with f replaced by f.

Corollary 1. Gg/I" is homeomorphic to the interior of a smooth com-
pact manifold with boundary, if I contains no element of finite order other
than the identity, K\Gg/I" is homeomorphic to the interior of a compact
smooth manifold with boundary.

We now drop the hypothesis that I' = Gg.
Corollary 2. I' is finitely presentable.

Corollary 3. If M is any I'-module finitely generated over Z, H*(I', M)
is finitely generated.

Corollary 4. The functor M~ H*(, M) on the category of I-
modules commutes with the formation of inductive limits.
We now deduce the corollaries from the main theorem.

Corollary 1 is a consequence of elementary facts from Morse theory.
For I'c Gy Corollary 2 follows from the fact that I" is the quotient by
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a finitely generated central subgroup H of the fundamental group I'’
of Gg/I" which is finitely presented since the space Gg/l" is of the same
homotopy type as a finite simplicial complex. The general case follows
from the fact that I'/T" n Gy is finite. Corollary 1 implies that it ' = Gg
has no non-trivial elements of finite order the trivial I'-module Z admits
a free resolution

0-C,»C,.{—=>C;-5Cy>Z

where each C; is a finitely generated free-module over I'; in fact, in
this case, K\Gg/I" has the homotopy type of a finite complex L and its
universal covering L being of the homotopy type of K\Gg is contractible.
If we then take the induced triangulation of L, the associated chain-
complex gives the resolution we are looking for. Corollaries 3 and 4
are then immediate consequences of this fact (when I'<=Gg and has no
elements of finite order other than identity). The general case then
follows from the Hochschild-Serre spectral sequence and the following
fact due to SELBERG [4]. Any arithmetic group I admits a subgroup I’
of finite index contained in Gg and such that no element of I’ other than
the identity has finite order.

§1. A Lemma on Root Systems

By a root system we mean as usual a set «,, ..., a, of [ linearly in-
dependent vectors in R’ (with the usual scalar product) such that (i)
{o;, a;» 20 for i=j and (ii) 2<a;, a;>/<a;, a;) is an integer. (In the sequel
we make no use of (ii).) Let A; be the unique vector in R' such that
{4y, a;) =0;;. We have then

Lemma 1.1. If we set

b Ik Ik
Ak=2ai di+.;lbj }’J
i

iel

where I is any subset of [1, ..., 1], then b%*, al* are all greater than or
equal to zero.

Proof. Clearly, if k¢I, al*=0 for all ie] and b}*=6,;,. Hence we
can assume that kel. Let then A; be the unique vector in the subspace
generated by {a;};.; such that {4, o;> =6, for all jel. We then assert
that

A=Y m;a; with m;=0.

iel

iely yel—I

If not, in fact, let
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with #n;>0 for all je/—I; and m;=0 for all iel;. We then have,
Oéznj@ll,w“j):Z mi"j<“i,°‘j>—”2 "j"‘j”2
L¥)
a contradiction, since m; n;=0 and {a;, «;» <0 for i<j. Hence

A,,‘= Zm,-tx,- With mig().

iel
Now consider A,—2;. Clearly {A,— A, a,> =0 if iel and for i¢],
<'1k_'1/'nai>=<—2‘;w ai>= _< Z m;o;, ai>go-
jel

Since if i¢1, i%j for any jel, in particular for j=k. It follows that
j’k_}’£= ijlj Where b1=<lk—l;‘, aj>go.

i¢l

}'k= Zmidi-*- zbjij
i¢l

iel

It follows that

where m; =20, b;=0. Hence the lemma.

§2. A Lemma on Siegel Domains

Let G be a connected semisimple algebraic group defined over Q.
Let 7 be a maximal Q@ split torus of G. For a subgroup H of G we denote
by Hp, the group Hn Gg where Gg is the set of real points of G. Let A
be the connected component of the identity of Tx. Let X(T) denote
the lattice of rational characters on T. Then for aed and xeX(T),
x(a)>0. Let g be the Lie algebra G and for ye X(T), let

g*={vJveg, Adt(v)=y(t)v for all te T}

and let @ be the system of roots of G with respect to T'i.e. ¢ ={y|xe X(T),
x+0, g*$0}. We introduce a lexicographic order on X(7) and denote
by &*,®~ and 4 the system of positive negative and simple roots of G
with respect to this order. Let
n=[] %
acdt

then n is a Lie subalgebra and the Lie subgroup N corresponding to
it is a unipotent algebraic subgroup of G defined over Q (it is moreover
maximal with respect to this property). Let Z(T') be the centralizer of T;
then Z(T) is reductive and can be written in the form M - T where M
is a reductive algebraic group defined and anisotropic over Q. More-
over M normalizes N so that M N=P? is a subgroup of G. Finally let
K be a maximal compact subgroup of Gg so chosen that its Lie algebra
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f is orthogonal to that of 4 with respect to the Killing form on g. (Lie
algebras of Lie subgroups of G are identified with the corresponding
Lie subalgebras.)

Definition 2.1. For a relatively compact open subset n<P3 and a
map t: A—>R* (following BOREL [2]), we call the set

S,=K-4,-n

where A;={alacA, a(a)£t(e) for all ae 4} a Siegel-domain.

The following fundamental theorem is due to BoreL [1] (see also [2]).

For a subgroup H of G we denote by H,, its intersection with G,
the set of Q-rational points of G. Then we have

Theorem (BOREL). (i) The set of double coset classes Po\Gy/T is finite.

(ii) For any relatively compact set 1 in P and t: A—~R™ and any pair
g, q'€Gg, the set
{(7IKAngynKAnqg +0 and yeTl'}

is finite.

(ili) If qy, ..., g, are representatives in Gg for the double coset classes
Po\Gy/T', then there exists a relatively compact open subset n, <Py and

a map ti: A>R™ such that if < P} contains n, and t: A—~R* is such
that t(o)zt() for all aecd,

UKd4,nq,I'=G.

i=1 -

Now it is known that the Lie algebra g of G admits a basis e, ..., ey
such that

a) the structural constants of g with respect to this basis are rational

b) each g°,ae®, asalso 3 the Lie subalgebra corresponding to Z(T)
is spanned by those elements of the basis which belong to it

¢) I' is commensurable with the subgroup of G which under the
adjoint action fixes the lattice ¥ generated by ey, ..., ey in g.

In the sequel when we speak of the entries of Ad g (or simply g)
we mean the entries of the matrix of Adg referred to the basis ey, ..., ey.
We note then that the denominators of the entries of yeI’ when reduced
to the minimal form remain bounded.

For aed, we denote by &, the set

{BlBed”, /3=OZAm,,(e)e, mg(a)>0} .
Then

u=[[¢

B e Py
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is a Lie subalgebra of G. Its normalizer p, in g is easily seen to be

n®z;® [[ ¢

Pe®@t — Dy
We denote the corresponding Lie subgroup by P,. Then P, is a parabolic
subgroup of G defined over @ and is maximal with respect to this pro-
perty.
With this notation, we have the following crucial

Lemma 2.1. Let nc P} be any relatively compact open subset, t:
A->R* any map and p be any integer. We fix a root acA. Then there
exists s>0 such that the following holds: let t': A—>R" be the map t'(f) =
t(B) for f+at'(x)=s; let geGy be any element all of whose entries as
well as those of g~ when reduced to the simplest form have denominators
which divide p; t then

KAdmgnKAn+9

only if ge P,. Moreover if €>0 is any given number, such that t(x)—&>0,
then we can choose s to satisfy further the following: if x=k-a- 0, keKk,
acA,, 0en and xg=k'-a' - 0', k'eK, a’e 4, §'en, then a(a’)<t(x)—e.
Remark. The first part of the lemma is due to BoreL [2]. The proof
below however is different from that of BorEL and is included because
the same technique yields both results.
Proof of Lemma 2.1. We first remark that

n'={aba"'lac4,,0en}

is again a relatively compact subset of Py (for a proof, see [2]). Clearly,
we have
KAn=Kn'4, and KA.ncKn'4,.

Now K1’ being a relatively compact subset of G, there exist constants m,
M>0 such that for any veV and YeKn’, we have, denoting Adg
(for geG) simply g,

D my [lo]* S Yol* S M Jo]?

where || | denotes the norm on g defined by the hermitian scalar product
with respect to which {e;}, <;<y is an orthonormal basis. Suppose now
that XeKA,n and X'€KA4,n. Consider now any e;eg’, fed,. Now
X may be written as Ya where acA, and YeKn'. In view of (I), then
we have

IX el <M, llael* <M, B(a)” e

Now since fed, we have
B=a+ Y mg(6)-6
Ged
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where mp(0)20. Now, since ae 4,
B@)? =a(@)* [10(a)* " <t @) [T £(6) 5.
6ed fed
1t follows that if we have ¢'(0)<¢#(6) for ali feA, then

X &> <M, #'(@)* [] 1(0)> ™ ®
ged

so that if
M, = sup {[] ()™ ®}
Bed, Oc4d
we have for any e;eu,,
{mn X e 1> <M, M, 1 ().

On the other hand let v be any vector in the lattice . such that the
component of v in 3 ®n” is non-zero. Then v has a non-zero component
either in 3 or in one at least of the g~# for some fe®*. We fix one such
non-zero component and denote it by v;. Clearly v,€%. Now for any
X'eKA:n, we have X'=Y'a’ where Y'eKn' and a’e4, so that

1X'vl>= Y a'v|*zma" v]?

in view of (I). Also since the {g*},.»- and 3 are mutually orthogonal
subspaces each stable under 4, it follows that

X vl?zmlla v,|>
Now if v,€97# for some fed*, we have
lla’ o1*=B(@) "2 v, )

Now a’eA,; on the other hand,

B=Y my(0)0

fecd
with m; 20 so that
Ba)=T[]6(a"y"* @< [T t()".
Bed fed”
It follows that

llX’vd{Zznn H t(e)_ZMp(o)' [l vdlz-
8ea”
On the other hand if v,e3 then
la' o2 =lv,)?
so that || X’ v,|?=m,[lv,||%. It follows that if we set

m,=Inf(1, Inf []¢(6)"2m®)

Bed*t Ged”
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we have for any v in & which has a non-zero component in 3@®n~ and
X'eKA,m,
(1) "XIUHZE"’H m, ”171”22"11 ms.

(Since veZ, |lv,[|*=1.) Note that m,, M, depend only on t. Also m,
and M, are determined by 5 and ¢ since #’ is determined by them. Now
let ¢>0 be any positive constant such that

2 mym;

¢ <M1M2P

(p as in the statement of the lemma). We then claim then for any choice
of s<c¢, the first assertion of the lemma holds. Suppose then that
XeKA,n and X'eKA,n and that Xg=X’ for some geG, satisfying
the conditions stated in the lemma. Now for e;eu,, we have in view
of (II),

1X &[>S My My ty(2)> <My M, ¢,

On the other hand if g~ ! e, is not contained in n, it has a non-zero compo-
nent in 3@n~ and since p - g 'e;eZ, we have in view of (III)

;- 1 -
IXel =X g el =—r X' pg™ el

m:m
g——;2—2>M1M2 %

Thus we see that for e;eu,, g~ 'e;en. In other words g ~*(1,) =n. Taking
orthogonal complements with respect to the Killing form, this means

g \(p)on @3

ie. p,og(n@3). On the other hand p,on @3 or going over to the
corresponding groups, P, contains both P and gPg~'. Now gPg™!
is a minimal parabolic subgroup of G defined over Q so that G/(gPg™")
is compact. It follows that P,/(g Pg~*) is compact and hence that g Pg™*
is a parabolic subgroup of P, defined over Q as well. But now P is
a minimal parabolic subgroup defined over Q of P, as well so that
there exists ue P, such that uPu~!=gPg~!. But then u~'g normalizes
P; but P is its own normalizer. Hence u 'gePc P,. It follows that
ge P,. Thus the first assertion of the lemma is proved. We note further
that since geP,, g~ *(u,) =u,.

To prove the second part of the lemma, we first observe that if
ve? is any vector such that it has a non-zero component v; in g% we
have for X' =k'a'0', k'eK, a'ed,, 0'en, with a(a)=1(a)—¢

av 1X vl zm; a'v]?=a(@) o) z(t@—e)* my.
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(Since v,€Z, |lv;||=1.) Choose ¢; >0 such that

t(@)—e)im
c2=Inf( e mﬁz s ( ) .
! M;M,p*’ M;M,p’

Then for s<c¢,, we see from the preceding that
KAngnKAn+9

only if geP,. Suppose now that XeKA4,n and X'=Xg=k'-qa’ - 0 with
k'eK, a'eA;, Oen and a(a’)Zt(x)—e. Then if for some e;eu,, g7 te;
has a non-zero component in g% we have in view of (II) and (IV),

2
’@)—;g‘)—’r‘n_lé“X'g_lei”2=”Xei”2§M1M2t’(“)zéMlecf
since s<c, (once again note that p g~ 'e; belongs to the lattice). It
follows that g ~*(u,) is orthogonal to g*. But we have seen that g~ '(u,) =u,
and g*cu,, a contradiction. It follows thatforany Xe KA4,.nif XgeKA4,n,

Xg=k'-ad'0l, K'eK, a’ed,, 0'en then a(a)<t(x)~e.

Remark. The denominator of the entries of yelI' when reduced to
the simplest form remain bounded and so there is a common integer p
divisible by all of them. The same remark applies to the set of matrices

1

m m

U UqT'q;*  where qy,...,4,€Gg.

j=1i=1

§3. Construction of the Function

An clement geGgy can be written in the form g=k,aq,0,, kek,
ac A, 0 P?; here a, is unique and the map gw- a, is a smooth function
on Gg which we denote by H. We let ae4 also stand for the smooth
function xo H on Gg with values in R*, If

A=Y m, o

is any real linear combination of simple roots we let A4 also stand for
the (smooth) function
[Tae)™

aed

We fix a set of representatives ¢y, ..., g,€Gg for the set of double
coset classes with 1=g; for some j. Then we can find real constants
r, t, e with r>t+e>¢>0 and a relatively compact open subset 1 of
P, such that the following conditions are satisfied (see BOREL’S Theorem
and Lemma 2.1 (§2)): Let r: 4-»R*, r': A—R* and for a4, »': 4>R*
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be the functions defined as follows: r(6) =r for all 64, r'(0) =r+2¢=r'
for 0e 4 and ,r'(0)=r+2e=r’ for 8o while o (cx)—t+e then we have

@) U KA.ngq; (hence UKA,n Qi) is a fundamental domain for I'.
i=1 - i=1 -

(i) KA, nq;ynKA,. nq;+0 for yeI’ only if ¢;7 g7 ‘e P,.

(iii) If k, kK'eK, 0, O'en, acd,,, aed, and ka8 q;y=k'a’6'g; for
some yel then a(a’)<r.

@iv) For i=1,...,m, (g7 ngq;) " ngi " Prg) =47 ' PRy;.

In view of (iv), (ii) is equivalent to

(i) KA, Prq;ynKA, Pgq;=0 for yeI only if ¢,y ¢ '€P,.

Remark 3.1. The choice of ¢ and ¢ in the above is very wide. We
could replace them once chosen by anything smaller. Thus, we might
at any stage demand that they be smaller than any positive constant
depending upon r.

That we can choose a # relatively compact in Py and satisfying (iv)
follows from the fact that

a; ' PRqil(gi ' Ppg;nT)

is compact. By enlarging it if necessary we can choose an r>0 such that
(1) holds (this is the theorem of BoreL). Then we can take ¢>0 any
constant such that r—&>0 and by appealing to Lemma 2.1 select a ¢ so
that (ii) and (iii) are satisfied. (Note that the entries of all the elements in

Uaiva;’

yel

when reduced to the simplest form have denominators which remain
bounded and so we can find an integer p which is divisible by all of them.)

In the sequel we fix ¢4,...,4,, 1,7, 1, & chosen as above. Let
@: R —1I (the unit interval) be a smooth function such that

i) p(x)=1for x=<t,
ii) @(x)=0for x=t+¢ and
iii) ¢’(x)<0.
Also let y be the C* function on R* into the unit interval defined by
Y(x)=1—0¢(x) for x<r,
V()=@(x—r+t) for x=r.

For a subset Ic 4, we define &;: Gg—I by
D,(g)= H o(x(®) I1 l//(a(g))

acd—I
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Then the function ®;(g) is invariant under the action P on the right.
Let
A=Y m,2,
aed
be any real linear combination of the fundamental weights (4, is defined
by {4,, B> =d,p for fed), such that m,>0 for all aed. Then for any
subset /<4, we have

A=Y my A+ Y n,a

ael aed-1I

where m;,>0 (in fact m;,=m,) and n;,20. (See Lemma 1.1.) We set
AI: Z m[aj’a .
ael

We denote again by A; as before the function it defines on Gg. For later
use we state the above facts as

Lemma 3.1.
Ay=Y my, A, with m;,>0.
ael
Also, for fed Ay ,p—A; is a non-negative linear combination of the
simple roots; moreover the coefficient Cigzp of B in this expression is
non-zero if fél.

Proof. The first assertion is already proved. To prove the second
assertion we need only consider the case ¢l Let I'=IUf and

A= Z mIrala‘*‘ Z nlra’a

ael’ aecdA~I"

where my.,, #;.,=0 (Lemma 1.1). On the other hand by Lemma 1.1,

we have,
A=Y ag, A+ Y. bgaa

ael aed—1I

where ag,, b;,20. It follows that

A= Z (mpa-i-m”g . a‘;,) },a+ AZ: I (npa,+m1:ﬂ bﬁa)a""mpp bﬁﬁ . ﬁ.
acl aed-1I"
It follows that
AI:—AI=mI'/, Z bﬂa'a
acd—1
and since my.;>0, and by, 20 for all xed—1, to conclude the proof of
the lemma we need only show that bg,>0. To see this, we have, since
Bél,
1=C2g, = Y, bg.<a,B>;

aed—1
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since by, =0 and <{a, B> =0 for a# B, we must necessarily have b;;>0.
Hence the lemma.
Consider now for each k£, 1 £k <m, the function f; on G defined by

the following series:

fulg)= > Y @(gva; Dlog A (gyac ).

ve(/aii "PPqunT) Ic4

This requires some justification. Firstly the functions g+ &,(g) and
g+ A;(g) are invariant under the right action of Pjx. It follows that if
y', v"'eI’ are two elements such that ¢y’ =v'-y with yegqy ' P° ¢, T
we have

D8y e V=2r(gY a " @iy a N=Pr(gy a4 );

similarly for A;. Hence formally the series makes sense. Next we assert
for fixed geGyg, all but a finite number of terms of the series vanish
identically in a neighborhood of g. To see this first notice that the
support of @; is contained in the interior of the domain K A4,.P%; on
the other hand we may assume that g is contained in some Siegel domain
Sy, - Now the set

{y|yel, S_,l,“qu_lmKAz,P,g#(D}

is finite mod PR T': in fact in view of (iv) in the choice of 5, we see
that each element of the above set is equivalent mod P°n T to one of
the elements in

(el 1S, 70 K Apn g0}

(note that g;=1 for some j) which is finite according to the theorem of
BoreL (§2). Hence f,(g) is a smooth C® function on G; it is clearly
invariant under I'. The main result in more precise form then is

Theorem. The function f = =Y fi is a smooth function on 1 Gy invariant
under I'. The function f on the quotient Gg/I" defined by f maps Gg/I’
properly into {c, + o0) for some ceR and has no critical points outside a
compact set.

Proof. To prove that f is proper into [c, + o0) it is sufficient to show
the following: (i) f is bounded below and (ii) let x,cK A, - # g, be any
sequence such that if we write x, =k,a,0,49,,k,€K, a,€4,, 8,en, a(a,)—0
for some a€d, then f (x,)—00. We will show in fact that the J; remain
less than a fixed constant M, while f;(x,) tends to — o0

@)= )y Y. ®i(gva; HlogA(gya; ).
ye(I'/qy 1POqynT) I<4
Now when geK A4, 1 gi, the above sum reduces to a finite sum
Y L (gva;HlogA(gya; ")

yeSy IcA
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where S;, is the image in I'/(g; ' P°q;nT) of the set
Siu={v1vel, KA nqcyq; ' KA, Pg+0}
that is of the set
{rlvel,KAngynKA4, PRq;=0}.
Now since we have assumed 5 so chosen that
(a7 'nap(Tng; ' PRa)=4q; "' Pry;,
we see that for any yeS}, there exists y’e ng; ' PR q; such that
KA ngiyy nKAnq;+9.

It follows from the theorem of BOREL that S is a finite set. Thus to
show that f(x,) tends to infinity as n tends to infinity it suffices to show
that each of the terms in the right hand side of (I) are bounded above
and that when j=k, at least one of them tends to — oo (as n tends to c0).

Now whenever @,(g v 47 *)+0, g y gj'€K4,. P} so that 6(g y ¢; )
<t for all B 4. On the other hand 4, is a non-negative linear combina-

tion
Y my,0
Ged

of the simple roots. It follows that
Ar(gya; =1y ai mes[Irme=r'=me
Since 0<®;(g y g7 ') <1, we see that

®,(gyq; Vlog A(gyq; ISy myglogr,

a constant independent of ge K4, 1 q,. Thus we have only to show that
for a suitable choice of yeS,, and I< 4,

Dy (%y 7 qic ) 10g Ar(yy ay ")
tends to —co as n, tends to infinity. We take y to be the identity coset

in 8;,. Now x,=k,a,x,q, where k,eK, a,e4,, u,en and «(a,) tends
to zero as n tends to infinity. We choose for I the following subset:

{61 ¢(6(a,))>3 for all large n}.

This subset is non-empty as it clearly contains a(x(a,)—0). With this
choice of I and y consider @,(x,y g'). We have in fact, (because of
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our chice of y)
(pl(xn 7 qk— 1)= 45I(xn ql: 1) = (pl (kn ay un)
=P,(a,)= BHIQD Q) (a..))o U- I'/f ((0)(a,))-
Now, for el and n large ¢((6) (a,))>+% and for 6¢1, ¢(6(a,))<%} so

that ¥ (0(a,))=1—0(0(a,))=4% (note that 6(a,)<r and in the range
xEr, o(x)+¥(x)=1). It follows that for n large,

(pl(an)g% l

where / is the number of simple roots. Thus ®;(x,y gi H)=4! for all
large n. Hence we have only to show that log A4,(x,7 gi' ) tends to —co
as » tends to infinity.

Now by Lemmas 1.1 and 3.1, we have

AI=b? 2,1‘*‘ Z a;ee

Ged—a
where af,=0 and b7>0 since acl by our choice of 1. Hence
AI (xn 7 ql: 1) = Al(xn ql;— 1) = AI (kn a, un)
= AI (an) = Aa(an)b? ° H e(a")a§9

fcd-a
a b¢ _rYa%p
é'Laz(an) t-r !

=2, (a,)"tC
(note that a,ed,) where C is a positive constant. Once again, by
Lemma 1.1,
l¢= Z Cao 6
fed

where C,,=0 and C,,>0 so that

Y Ce
(@ t=[]6%(a) Sa=(a) r' %=
Bed

thus
Al(xn b4 ql: 1) é abq Ca e,‘(an) M

where M >0 is a constant independent of n.
Hence

lOg AI(xn Y ql: l)élog M+ ball Caa log a(an)

where b% - C,,>0; but a(a,)—0 as n—o0 so that log A4;(x,7 g5 )= — 0
as n—oo,
Thus f is proper into the real line and bounded below.
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§4. The Critical Points of f

In this section we complete the proof of the main theorem. Continuing
with the notation of § 3 we need only show the following. Let a be the
Lie subalgebra of g corresponding to 4. Let H, ea be the unique element
of a defined by

BlexptH,; )=¢'’*# (exp is the exponential map)

for feA. Then we have fixing an a4, the following
Assertion. For xeKA_,n q;, we have for 1Sk<m

d -
{Efk(xqjleXPSHlaqj)} 20

=0
and

d _
{Es—fj(xq" lexpsH,hqj)} >0.
(We recall that A,={alacd, Bla)<r for Ped and a(a)<t} where
r, & 1, n etc. are chosen as described in the beginning of § 3.)

(This assertion completes the proof of the theorem in view of the fact
that it implies that f has no critical points in

2=U U KA«_rﬂCIk

eed k=1
and that the complement of Q, in the fundamental domain
Q =k&_)1K A N4

is relatively compact in Gg.)

Proof of the Assertion. We have, writing x=k - a - 0 q; where keKk,
ac A, Gen,

d _ _
a“pz(xq]' 1CP‘I’SH/L,,‘IJ'Y‘M l)

d - -
= ds {Hl(p(ﬂ(kaoeXpSH;_“qj:qu l)g I’A‘[ Ilp(ﬁ(kagexpsHlaqquk 1)}‘
Be hi

Clearly the right hand side is non-zero at s=0 only if

kaOexpsH, q;74q; '€ (KA, PR
Bel -

24 Inventiones math., Vol. 4
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for all small values of s; in particular only if

ka@-qquk_le N KA',,P,?.
Bel -
On the other hand, k a 6eK A4,,n. It follows from (jii') that

4;74: ‘e ) P,.

Belva

Writing then ¢;7 g; ' in the form kia} 61, where kieK, ajed, 0, ePg,
it is easily seen that k£, and @, commute with exp s #,, . It follows that

kaBexpsH, q;7q; '=ka0kiajexpsH,_ 6]
=k1 al eXpSle 95,

where k€K, a;e A are independent of s and 6.e P3. Now if

d - _
"J‘;¢I(xqj leXPSH;,‘Ij?‘Ik 1)

is to be non-zero at s=0 we have necessarily, for all fel, for small s,

B(kyaexpsH, 0)=p(a,)- flexpsH,)St+¢

and for all f¢17,
B(ay) B(expsH, )Sr+e.

Also in view of (iii) since we have assumed that xeK 4,7 g;, we have
necessarily a(a,)<r. Now for f+a, we have,

2 pkiayexps Hy 6) =2 play)=0.

Also,
ia(k a,expsH, 0 )=ia(a Ye'=a(a,)é’
ds 1@, 6XpSii, Uy ds 1 €.

It follows that we have if ael

d _ _
{IS— ¢I(xqj lexPSHA,Qj'}"Ik 1)}

s=0

IT o(Bxyac)) TT v(Bxva D)o (a(xyqr M) - alay)
peda—-1I

pel—a
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where a, is defined by
xqu_1=k1a10, kIEK, aIEA, OIEPg.

Similarly if a¢l, with the same notation

s=0

=T1o@era™) T v(Bera Y (@G a)-ala.

d _ _
{g; O,(xq; expsH, q;v4x ‘)}

Also as already noted, for any y such that the above derivative is non-
zero, we have necessarily

alxyqe H<r

so that @' (x(x y gr 1))=—¥'(a(x y ¢i'); since in the domain {y|yeR,
y=r}, we have
e(MN+Y(»=1).

Thus we see that we have

d _ _
{g; ¢1(x‘1j ICXPSH/I, q;74qx 1)}

s=0
=ia(a1)ﬂ I;[_ <p(ﬁ(xvqk"1))ﬁ AI:II_ Y(Bxyar e (a(xyge )

according as ael or aed—1I. Once again,

o' (a(xygx H)=0

if a(xyqi?)éls, t+el. Consider now, when r<a(xyg;')<t+e, the
sum

d _ -
) {E ®;(xq; expsH, d;74x 1)}

I

OlogAz(xqu‘l)-

s=

We divide the set of subsets of 4 into two parts: those which do not
contain o denoted & and the rest; then the sum can be written as

a(a) o (a(xyay 1))128 pl—llfp(ﬂ(xv % ‘))ﬂ II v(BGva )
-{log A a(xyax ) —log A;(xy 45 )} -
Now by Lemma 3.1, we see that

log Ay ua(xyqr D—log A (xyqx 1)=10g(ﬂ]'[dl?"°“’(x D))

24%
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where ¢;,,20 and ¢;,,>0. Hence
log Ay o (xydy ") ~log A;(xyq; )
zﬁZAclaﬁ logB(xyax ')
§ﬂ EA:_ Craplog(r+2e)+c;,log(t+e).
Now, as remarked in the beginning of § 3 (Remark 3.1) we could have
assumed ¢ so small that
Y craplog(r+2e)+cp,,log(t+e)<0.

ped—a

We assume that t and € were chosen to satisfy this inequality for all aed
(in addition to our earlier assumptions). We then see that

Olog/lz(xv a ")

d _ _
{Es" O,(xq; expsH; q;74; 1)}s

I yel/(I'nqg  POgy)

is greater than or equal to zero for any xe KA, n g;: in fact ¢ and ¥
are non-negative functions while ¢’ is non-positive in the domain
{ylyeR, y<r}; also log A;,,—log A; is non-positive whenever,

t<a(xyqr DSt+e.

Finally writing as before x y g5 * =k,a,0,, we see that

d _ _
E?logA,(x q; ICXPSHA,‘IjYQk 1)

d
———log{A;(a,) - Ay (exp s Hy)

=4, (H /1,)

where A;(H, ) denotes the evaluation of A, considered as a linear form
on a on H, . Now by Lemmas 1.1 and 3.1 A;(H,;)=0 and is >0 if
ael. We thus see that

d -
{E;fk(xqj ! eXPSHA,qj)}

s=0

s=0

d - - _ _
={—d?z ‘pl(xclj leXPSHz,‘]jY‘Ik 1)108/11(?“1,' 1exp'SH}..,qquk 1)}
Iy

is greater than or equal to zero. Moreover, since @;(x - g; ') +0 for some
I=4 with ael (note that a(x gj')<¢) we see that for k =j, the above
is greater than zero. Thus the proof of the theorem is complete.
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