A Note on Quotients of Real Algebraic Groups by Arithmetic Subgroups

M. S. Raghunathan* (Bombay)

Introduction

Let G be a connected semi-simple algebraic group defined over \boldsymbol{Q}. Let Γ be an arithmetic subgroup of G, i.e., a subgroup of G such that for some (and therefore any) faithful rational representation $\rho: G \rightarrow$ $G L(N, C)$ defined over $\boldsymbol{Q}, \Gamma \cap \rho^{-1}(S L(N, \boldsymbol{Z}))$ is of finite index in both Γ and $\rho^{-1}(S L(N, Z))$. Let $K \subset G$ be a maximal compact subgroup of G_{R}, the set of real points of G. With this notation, we can state the main result of this note.

Theorem. Let $\Gamma \subset G_{\boldsymbol{R}}$. There exists a smooth function $f: G_{\boldsymbol{R}} / \Gamma \rightarrow \boldsymbol{R}^{+}$ such that
i) $f^{-1}(0, r]$ is compact for all $r>0$.
ii) There exists $r_{0}>0$ such that f has no critical points outsidef $f^{-1}\left(0, r_{0}\right]$ and
iii) f is invariant under the action of K on the left.

If in addition Γ has no non-trivial elements of finite order, $K \backslash G_{\boldsymbol{R}} / \Gamma$ is a smooth manifold and f defines a smooth function f_{1} on this manifold satisfying (i) and (ii) with f replaced by f_{1}.

Corollary 1. $G_{\mathbf{R}} / \Gamma$ is homeomorphic to the interior of a smooth compact manifold with boundary; if Γ contains no element of finite order other than the identity, $K \backslash G_{\mathbf{R}} / \Gamma$ is homeomorphic to the interior of a compact smooth manifold with boundary.

We now drop the hypothesis that $\Gamma \subset G_{\boldsymbol{R}}$.
Corollary 2. Γ is finitely presentable.
Corollary 3. If M is any Γ-module finitely generated over $Z, H^{*}(\Gamma, M)$ is finitely generated.

Corollary 4. The functor $M \leadsto \rightarrow H^{*}(\Gamma, M)$ on the category of Γ modules commutes with the formation of inductive limits.

We now deduce the corollaries from the main theorem.
Corollary 1 is a consequence of elementary facts from Morse theory. For $\Gamma \subset G_{R}$ Corollary 2 follows from the fact that Γ is the quotient by

[^0]a finitely generated central subgroup H of the fundamental group Γ^{\prime} of $G_{\mathbf{R}} / \Gamma$ which is finitely presented since the space $G_{\mathbf{R}} / \Gamma$ is of the same homotopy type as a finite simplicial complex. The general case follows from the fact that $\Gamma / \Gamma \cap G_{R}$ is finite. Corollary 1 implies that it $\Gamma \subset G_{R}$ has no non-trivial elements of finite order the trivial Γ-module \boldsymbol{Z} admits a free resolution
$$
0 \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \cdots \rightarrow C_{1} \rightarrow C_{0} \rightarrow Z
$$
where each C_{i} is a finitely generated free-module over Γ; in fact, in this case, $K \backslash G_{R} / \Gamma$ has the homotopy type of a finite complex L and its universal covering \tilde{L} being of the homotopy type of $K \backslash G_{R}$ is contractible. If we then take the induced triangulation of \tilde{L}, the associated chaincomplex gives the resolution we are looking for. Corollaries 3 and 4 are then immediate consequences of this fact (when $\Gamma \subset G_{\boldsymbol{R}}$ and has no elements of finite order other than identity). The general case then follows from the Hochschild-Serre spectral sequence and the following fact due to Selberg [4]. Any arithmetic group Γ admits a subgroup Γ^{\prime} of finite index contained in G_{R} and such that no element of Γ^{\prime} other than the identity has finite order.

§1. A Lemma on Root Systems

By a root system we mean as usual a set $\alpha_{1}, \ldots, \alpha_{l}$ of l linearly independent vectors in R^{l} (with the usual scalar product) such that (i) $\left\langle\alpha_{i}, \alpha_{j}\right\rangle \leqq 0$ for $i \neq j$ and (ii) $2\left\langle\alpha_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle$ is an integer. (In the sequel we make no use of (ii).) Let λ_{i} be the unique vector in R^{l} such that $\left\langle\lambda_{i}, \alpha_{j}\right\rangle=\delta_{i j}$. We have then

Lemma 1.1. If we set

$$
\lambda_{k}=\sum_{i \in I} a_{i}^{I k} \alpha_{i}+\sum_{i \notin I} b_{j}^{I k} \lambda_{j}
$$

where I is any subset of $[1, \ldots, l]$, then $b_{j}^{I k}, a_{i}^{I k}$ are all greater than or equal to zero.

Proof. Clearly, if $k \notin I, a_{i}^{I k}=0$ for all $i \in I$ and $b_{j}^{I k}=\delta_{j k}$. Hence we can assume that $k \in I$. Let then λ_{k}^{\prime} be the unique vector in the subspace generated by $\left\{\alpha_{i}\right\}_{i \in I}$ such that $\left\langle\lambda_{k}^{\prime}, \alpha_{j}\right\rangle=\delta_{k j}$ for all $j \in I$. We then assert that

$$
\lambda_{k}^{\prime}=\sum_{i \in I} m_{i} \alpha_{i} \quad \text { with } \quad m_{i} \geqq 0
$$

If not, in fact, let

$$
\lambda_{k}^{\prime}=\sum_{i \in I_{1}} m_{i} \alpha_{i}-\sum_{y \in I-I_{1}} n_{j} \alpha_{j}
$$

with $n_{j}>0$ for all $j \in I-I_{1}$ and $m_{i} \geqq 0$ for all $i \in I_{1}$. We then have,

$$
0 \leqq \sum n_{j}\left\langle\lambda_{k}^{\prime}, \alpha_{j}\right\rangle=\sum_{i j} m_{i} n_{j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle-\left\|\sum n_{j} \alpha_{j}\right\|^{2}
$$

a contradiction, since $m_{i} n_{j} \geqq 0$ and $\left\langle\alpha_{i}, \alpha_{j}\right\rangle \leqq 0$ for $i \neq j$. Hence

$$
\lambda_{k}^{\prime}=\sum_{i \in I} m_{i} \alpha_{i} \quad \text { with } \quad m_{i} \geqq 0
$$

Now consider $\lambda_{k}-\lambda_{k}^{\prime}$. Clearly $\left\langle\lambda_{k}-\lambda_{k}^{\prime}, \alpha_{i}\right\rangle=0$ if $i \in I$ and for $i \notin I$,

$$
\left\langle\lambda_{k}-\lambda_{k}^{\prime}, \alpha_{i}\right\rangle=\left\langle-\lambda_{k}^{\prime}, \alpha_{i}\right\rangle=-\left\langle\sum_{j \in I} m_{j} \alpha_{j}, \alpha_{i}\right\rangle \geqq 0 .
$$

Since if $i \notin I, i \neq j$ for any $j \in I$, in particular for $j=k$. It follows that

$$
\lambda_{k}-\lambda_{k}^{\prime}=\sum_{i \notin I} b_{j} \lambda_{j} \quad \text { where } \quad b_{j}=\left\langle\lambda_{k}-\lambda_{k}^{\prime}, \alpha_{j}\right\rangle \geqq 0
$$

It follows that

$$
\lambda_{k}=\sum_{i \in I} m_{i} \alpha_{i}+\sum_{i \notin I} b_{j} \lambda_{j}
$$

where $m_{i} \geqq 0, b_{j} \geqq 0$. Hence the lemma.

§2. A Lemma on Siegel Domains

Let G be a connected semisimple algebraic group defined over Q. Let T be a maximal Q split torus of G. For a subgroup H of G we denote by H_{R}, the group $H \cap G_{R}$ where G_{R} is the set of real points of G. Let A be the connected component of the identity of T_{R}. Let $X(T)$ denote the lattice of rational characters on T. Then for $a \in A$ and $\chi \in X(T)$, $\chi(a)>0$. Let \mathfrak{g} be the Lie algebra G and for $\chi \in X(T)$, let

$$
\mathfrak{g}^{\chi}=\{v / v \in g, \operatorname{Ad} t(v)=\chi(t) v \text { for all } t \in T\}
$$

and let Φ be the system of roots of G with respect to T i.e. $\Phi=\{\chi \mid \chi \in X(T)$, $\left.\chi \neq 0, g^{x} \neq 0\right\}$. We introduce a lexicographic order on $X(T)$ and denote by Φ^{+}, Φ^{-}and Δ the system of positive negative and simple roots of G with respect to this order. Let

$$
\mathrm{n}=\coprod_{\alpha \in \Phi^{+}} \mathfrak{g}^{\alpha} ;
$$

then \mathfrak{n} is a Lie subalgebra and the Lie subgroup N corresponding to it is a unipotent algebraic subgroup of G defined over \boldsymbol{Q} (it is moreover maximal with respect to this property). Let $Z(T)$ be the centralizer of T; then $Z(T)$ is reductive and can be written in the form $M \cdot T$ where M is a reductive algebraic group defined and anisotropic over \boldsymbol{Q}. Moreover M normalizes N so that $M N=P^{0}$ is a subgroup of G. Finally let K be a maximal compact subgroup of G_{R} so chosen that its Lie algebra
\mathcal{F} is orthogonal to that of A with respect to the Killing form on \mathfrak{g}. (Lie algebras of Lie subgroups of G are identified with the corresponding Lie subalgebras.)

Definition 2.1. For a relatively compact open subset $\eta \subset P_{\boldsymbol{R}}^{0}$ and a map $t: \Delta \rightarrow \boldsymbol{R}^{+}$(following Borel [2]), we call the set

$$
S_{\underline{t_{\eta}}}=K \cdot A_{\underline{t}} \cdot \eta
$$

where $A_{\underline{t}}=\{a \mid a \in A, \alpha(a) \leqq t(\alpha)$ for all $\alpha \in \Delta\}$ a Siegel-domain.
The following fundamental theorem is due to Borel [1] (see also [2]).
For a subgroup H of G we denote by $H_{\boldsymbol{Q}}$ its intersection with $G_{\boldsymbol{Q}}$ the set of \boldsymbol{Q}-rational points of G. Then we have

Theorem (Borel). (i) The set of double coset classes $P_{\mathbf{Q}} \backslash G_{\mathbf{Q}} / \Gamma$ is finite.
(ii) For any relatively compact set η in $P_{\boldsymbol{R}}$ and t: $\Delta \rightarrow \boldsymbol{R}^{+}$and any pair $q, q^{\prime} \in G_{Q}$, the set

$$
\left\{\gamma \mid K A_{\underline{t}} \eta q \gamma \cap K A_{\underline{t}} \eta q^{\prime} \neq \emptyset \text { and } \gamma \in \Gamma\right\}
$$

is finite.
(iii) If q_{1}, \ldots, q_{m} are representatives in $G_{\mathbf{Q}}$ for the double coset classes $P_{\mathbf{Q}} \backslash G_{\mathbf{Q}} / \Gamma$, then there exists a relatively compact open subset $\eta_{1} \subset P_{\mathbf{R}}^{0}$ and a map $t_{1}: \Delta \rightarrow \boldsymbol{R}^{+}$such that if $\eta \subset P_{\boldsymbol{R}}^{0}$ contains η_{1} and $t: \Delta \rightarrow \boldsymbol{R}^{+}$is such that $\underline{t}(\bar{\alpha}) \geqq \underline{t}_{1}(\alpha)$ for all $\alpha \in \Delta$,

$$
\bigcup_{i=1}^{m} K A_{\underline{t}} \eta q_{i} \Gamma=G
$$

Now it is known that the Lie algebra \mathfrak{g} of G admits a basis e_{1}, \ldots, e_{N} such that
a) the structural constants of \mathfrak{g} with respect to this basis are rational
b) each $\mathfrak{g}^{a}, \alpha \in \Phi$, as also 3 the Lie subalgebra corresponding to $Z(T)$ is spanned by those elements of the basis which belong to it
c) Γ is commensurable with the subgroup of G which under the adjoint action fixes the lattice \mathscr{L} generated by e_{1}, \ldots, e_{N} in \mathfrak{g}.

In the sequel when we speak of the entries of Ad g (or simply g) we mean the entries of the matrix of Ad g referred to the basis e_{1}, \ldots, e_{N}. We note then that the denominators of the entries of $\gamma \in \Gamma$ when reduced to the minimal form remain bounded.

For $\alpha \in \Delta$, we denote by Φ_{α} the set

$$
\left\{\beta \mid \beta \in \Phi^{+}, \beta=\sum_{\theta \in \Delta} m_{\beta}(\theta) \theta, m_{\beta}(\alpha)>0\right\}
$$

Then

$$
\mathbf{u}_{\alpha}=\coprod_{\beta \in \Phi_{\alpha}} \mathbf{g}^{\beta}
$$

is a Lie subalgebra of G. Its normalizer \mathfrak{p}_{α} in \mathfrak{g} is easily seen to be

$$
\mathfrak{n} \oplus \mathfrak{j} \oplus \prod_{\beta \in \Phi^{+}-\Phi_{\alpha}} \mathfrak{g}^{-\beta} .
$$

We denote the corresponding Lie subgroup by P_{α}. Then P_{α} is a parabolic subgroup of G defined over \boldsymbol{Q} and is maximal with respect to this property.

With this notation, we have the following crucial
Lemma 2.1. Let $\eta \subset P_{R}^{0}$ be any relatively compact open subset, t : $\Delta \rightarrow \boldsymbol{R}^{+}$any map and p be any integer. We fix a root $\alpha \in \Delta$. Then there exists $s>0$ such that the following holds: let $\underline{t}^{\prime}: \Delta \rightarrow R^{+}$be the map $\underline{t}^{\prime}(\beta)=$ $t(\beta)$ for $\beta \neq \alpha t^{\prime}(\alpha)=s$; let $g \in G_{\boldsymbol{Q}}$ be any element all of whose entries as well as those of g^{-1} when reduced to the simplest form have denominators which divide p; then

$$
K A_{\underline{t}^{\prime}} \eta g \cap K A_{\underline{t}} \eta \neq \emptyset
$$

only if $g \in P_{\alpha}$. Moreover if $\varepsilon>0$ is any given number, such that $t(\alpha)-\varepsilon>0$, then we can choose s to satisfy further the following: if $x=k \cdot a \cdot \theta, k \in K$, $a \in A_{\underline{t^{\prime}}}, \theta \in \eta$ and $x g=k^{\prime} \cdot a^{\prime} \cdot \theta^{\prime}, k^{\prime} \in K, a^{\prime} \in A_{\underline{t}} \theta^{\prime} \in \eta$, then $\alpha\left(a^{\prime}\right)<t(\alpha)-\varepsilon$.

Remark. The first part of the lemma is due to Borel [2]. The proof below however is different from that of Borel and is included because the same technique yields both results.

Proof of Lemma 2.1. We first remark that

$$
\eta^{\prime}=\left\{a \theta a^{-1} \mid a \in A_{\underline{t}}, \theta \in \eta\right\}
$$

is again a relatively compact subset of $P_{\mathbf{R}}$ (for a proof, see [2]). Clearly, we have

$$
K A_{\underline{t}} \eta \subset K \eta^{\prime} A_{t} \quad \text { and } \quad K A_{\underline{t^{\prime}}} \eta \subset K \eta^{\prime} A_{\underline{t}^{\prime}} .
$$

Now $K \eta^{\prime}$ being a relatively compact subset of G, there exist constants m, $M>0$ such that for any $v \in V$ and $Y \in K \eta^{\prime}$, we have, denoting $\operatorname{Ad} g$ (for $g \in G$) simply g,

$$
\begin{equation*}
m_{1}\|v\|^{2} \leqq\|Y v\|^{2} \leqq M_{1}\|v\|^{2} \tag{I}
\end{equation*}
$$

where $\|\|$ denotes the norm on g defined by the hermitian scalar product with respect to which $\left\{e_{i}\right\}_{1 \leqq i \leqq N}$ is an orthonormal basis. Suppose now that $X \in K A_{\underline{t}}, \eta$ and $X^{\prime} \in K \bar{A}_{\underline{i}} \eta$. Consider now any $e_{i} \in \mathfrak{g}^{\beta}, \beta \in \Phi_{a}$. Now X may be written as $Y a$ where $a \in A_{\underline{t}^{\prime}}$, and $Y \in K \eta^{\prime}$. In view of (I), then we have

$$
\left\|X e_{i}\right\|^{2} \leqq M_{1}\left\|a e_{i}\right\|^{2} \leqq M_{1} \beta(a)^{2}\left\|e_{i}\right\|^{2} .
$$

Now since $\beta \in \Phi_{\alpha}$ we have

$$
\beta=\alpha+\sum_{\theta \in A} m_{\beta^{\prime}}(\theta) \cdot \theta
$$

where $m_{\beta}^{\prime}(\theta) \geqq 0$. Now, since $a \in A_{\underline{t}}$,

$$
\beta(a)^{2}=\alpha(a)^{2} \prod_{\theta \in \Lambda} \theta(a)^{2 m_{\beta}^{\prime}(\theta)} \leqq t^{\prime}(\alpha)^{2} \prod_{\theta \in \Lambda} t^{\prime}(\theta)^{2 m_{\beta}^{\prime}(\theta)}
$$

It follows that if we have $t^{\prime}(\theta) \leqq t(\theta)$ for all $\theta \in \Delta$, then

$$
\left\|X e_{i}\right\|^{2} \leqq M_{1} t^{\prime}(\alpha)^{2} \prod_{\theta \in \Delta} t(\theta)^{2 m_{\beta}^{\prime},(\theta)}
$$

so that if

$$
M_{2}=\sup _{\beta \in \Phi_{\alpha}}\left\{\prod_{\theta \in \Delta} t(\theta)^{2 m_{\beta} \cdot(\theta)}\right\}
$$

we have for any $e_{i} \in \mathcal{u}_{\alpha}$,

$$
\begin{equation*}
\left\|X e_{i}\right\|^{2} \leqq M_{1} M_{2} t^{\prime}(\alpha)^{2} \tag{II}
\end{equation*}
$$

On the other hand let v be any vector in the lattice \mathscr{L} such that the component of v in $\mathcal{Z} \oplus \mathrm{n}^{-}$is non-zero. Then v has a non-zero component either in z or in one at least of the $\mathfrak{g}^{-\beta}$ for some $\beta \in \Phi^{+}$. We fix one such non-zero component and denote it by v_{1}. Clearly $v_{1} \in \mathscr{L}$. Now for any $X^{\prime} \in K A_{\underline{t}} \eta$, we have $X^{\prime}=Y^{\prime} a^{\prime}$ where $Y^{\prime} \in K \eta^{\prime}$ and $a^{\prime} \in A_{\underline{t}}$ so that

$$
\left\|X^{\prime} v\right\|^{2}=\left\|Y^{\prime} a^{\prime} v\right\|^{2} \geqq m\left\|a^{\prime} v\right\|^{2}
$$

in view of (I). Also since the $\left\{\mathrm{g}^{\alpha}\right\}_{\alpha \in \Phi-}$ and z are mutually orthogonal subspaces each stable under A, it follows that

$$
\left\|X^{\prime} v\right\|^{2} \geqq m_{1}\left\|a^{\prime} v_{1}\right\|^{2}
$$

Now if $v_{1} \in \mathfrak{g}^{-\beta}$ for some $\beta \in \Phi^{+}$, we have

$$
\left\|a^{\prime} v_{1}\right\|^{2}=\beta\left(a^{\prime}\right)^{-2}\left\|v_{1}\right\|^{2}
$$

Now $a^{\prime} \in A_{t}$; on the other hand,

$$
\beta=\sum_{\theta \in \Delta} m_{\beta}(\theta) \theta
$$

with $m_{\beta} \geqq 0$ so that

$$
\beta\left(a^{\prime}\right)=\prod_{\theta \in \Delta} \theta\left(a^{\prime}\right)^{m_{\beta}(\theta)} \leqq \prod_{\theta \in \Lambda^{-}} t(\theta)^{m_{\beta}(\theta)}
$$

It follows that

$$
\left\|X^{\prime} v_{1}\right\|^{2} \geqq m_{1} \prod_{\theta \in A^{-}} t(\theta)^{-2 m_{\beta}(\theta)} \cdot\left\|v_{1}\right\|^{2}
$$

On the other hand if $v_{1} \in \mathcal{Z}$ then

$$
\left\|a^{\prime} v_{1}\right\|^{2}=\left\|v_{1}\right\|^{2}
$$

so that $\left\|X^{\prime} v_{1}\right\|^{2} \geqq m_{1}\left\|v_{1}\right\|^{2}$. It follows that if we set

$$
m_{2}=\operatorname{Inf}\left(1, \operatorname{Inf}_{\beta \in \Phi^{+}} \prod_{\theta \in d^{-}} t(\theta)^{-2 m_{\beta}(\theta)}\right)
$$

we have for any v in \mathscr{L} which has a non-zero component in $3 \oplus \mathfrak{n}^{-}$and $X^{\prime} \in K A_{\underline{t}} \eta$,

$$
\begin{equation*}
\left\|X^{\prime} v\right\|^{2} \geqq m_{1} m_{2}\left\|v_{1}\right\|^{2} \geqq m_{1} m_{2} \tag{III}
\end{equation*}
$$

(Since $v_{1} \in \mathscr{L},\left\|v_{1}\right\|^{2} \geqq 1$.) Note that m_{2}, M_{2} depend only on t. Also m_{1} and M_{1} are determined by η and \underline{t} since η^{\prime} is determined by them. Now let $c>0$ be any positive constant such that

$$
c^{2}<\frac{m_{1} m_{2}}{M_{1} M_{2} p^{2}}
$$

(p as in the statement of the lemma). We then claim then for any choice of $s<c$, the first assertion of the lemma holds. Suppose then that $X \in K A_{\underline{t}^{\prime}} \eta$ and $X^{\prime} \in K A_{t} \eta$ and that $X g=X^{\prime}$ for some $g \in G_{\boldsymbol{Q}}$ satisfying the conditions stated in the lemma. Now for $e_{i} \in \mathfrak{u}_{\alpha}$, we have in view of (II),

$$
\left\|X e_{i}\right\|^{2} \leqq M_{1} M_{2} t_{1}(\alpha)^{2}<M_{1} M_{2} c^{2}
$$

On the other hand if $g^{-1} e_{i}$ is not contained in \mathfrak{n}, it has a non-zero component in $\mathcal{3} \oplus \mathrm{n}^{-}$and since $p \cdot g^{-1} e_{i} \in \mathscr{L}$, we have in view of (III)

$$
\begin{aligned}
\left\|X e_{i}\right\|^{2} & =\left\|X^{\prime} g^{-1} e_{i}\right\|^{2}=\frac{1}{p^{2}}\left\|X^{\prime} p g^{-1} e_{i}\right\|^{2} \\
& \geqq \frac{m_{1} m_{2}}{p^{2}}>M_{1} M_{2} c^{2}
\end{aligned}
$$

Thus we see that for $e_{i} \in \mathfrak{u}_{\alpha}, g^{-1} e_{i} \in \mathfrak{n}$. In other words $g^{-1}\left(\mathfrak{u}_{\alpha}\right) \subset n$. Taking orthogonal complements with respect to the Killing form, this means

$$
\mathrm{g}^{-1}\left(\mathfrak{p}_{\alpha}\right) \supset \mathfrak{n} \oplus \mathfrak{z}
$$

i.e. $\mathfrak{p}_{\alpha} \supset g(\mathfrak{n} \oplus \mathfrak{z})$. On the other hand $\mathfrak{p}_{\alpha} \supset \mathfrak{n} \oplus \mathfrak{z}$ or going over to the corresponding groups, P_{α} contains both P and $g P g^{-1}$. Now $g P g^{-1}$ is a minimal parabolic subgroup of G defined over Q so that $G /\left(g P g^{-1}\right)$ is compact. It follows that $P_{\alpha} /\left(g_{a g}{ }^{-1}\right)$ is compact and hence that $g \mathrm{Pg}^{-1}$ is a parabolic subgroup of P_{α} defined over Q as well. But now P is a minimal parabolic subgroup defined over \boldsymbol{Q} of P_{α} as well so that there exists $u \in P_{a}$ such that $u P u^{-1}=g P g^{-1}$. But then $u^{-1} g$ normalizes P; but P is its own normalizer. Hence $u^{-1} g \in P \subset P_{\alpha}$. It follows that $g \in P_{\alpha}$. Thus the first assertion of the lemma is proved. We note further that since $g \in P_{\alpha}, g^{-1}\left(u_{\alpha}\right)=u_{\alpha}$.

To prove the second part of the lemma, we first observe that if $v \in \mathscr{L}$ is any vector such that it has a non-zero component v_{1} in g^{α}, we have for $X^{\prime}=k^{\prime} a^{\prime} \theta^{\prime}, k^{\prime} \in K, a^{\prime} \in A_{\underline{t}}, \theta^{\prime} \in \eta$, with $\alpha\left(a^{\prime}\right) \geqq \underline{t}(\alpha)-\varepsilon$

$$
\begin{equation*}
\left\|X^{\prime} v\right\|^{2} \geqq m_{1}\left\|a^{\prime} v\right\|^{2}=\alpha\left(a^{\prime}\right)^{2}\|v\|^{2} \geqq(t(\alpha)-\varepsilon)^{2} m_{1} \tag{IV}
\end{equation*}
$$

(Since $v_{1} \in \mathscr{L},\left\|v_{1}\right\| \geqq 1$.) Choose $c_{1}>0$ such that

$$
c_{1}^{2}=\operatorname{Inf}\left(\frac{m_{1} m_{2}}{M_{1} M_{2} p^{2}}, \frac{(t(\alpha)-\varepsilon)^{2} m}{M_{1} M_{2} p^{2}}\right)
$$

Then for $s<c_{1}$, we see from the preceding that

$$
K A_{t^{\prime}} \eta g \cap K A_{\underline{t}} \eta \neq \emptyset
$$

only if $g \in P_{\alpha}$. Suppose now that $X \in K A_{t^{\prime}} \eta$ and $X^{\prime}=X g=k^{\prime} \cdot a^{\prime} \cdot \theta$ with $k^{\prime} \in K, a^{\prime} \in A_{\underline{t}}, \theta \in \eta$ and $\alpha\left(a^{\prime}\right) \geqq t(\alpha)-\varepsilon$. Then if for some $e_{i} \in \mathfrak{u}_{\alpha}, g^{-1} e_{i}$ has a non-zero component in \mathfrak{g}^{α}, we have in view of (II) and (IV),

$$
\frac{(t(\alpha)-\varepsilon)^{2} m_{1}}{p^{2}} \leqq\left\|X^{\prime} g^{-1} e_{i}\right\|^{2}=\left\|X e_{i}\right\|^{2} \leqq M_{1} M_{2} t^{\prime}(\alpha)^{2} \leqq M_{1} M_{2} c_{1}^{2}
$$

since $s<c_{1}$ (once again note that $p g^{-1} e_{i}$ belongs to the lattice). It follows that $g^{-1}\left(\mathfrak{u}_{\alpha}\right)$ is orthogonal to \mathfrak{g}^{α}. But we have seen that $g^{-1}\left(\mathfrak{u}_{\alpha}\right)=u_{\alpha}$ and $\mathfrak{g}^{\alpha} \subset \mathfrak{u}_{\alpha}$, a contradiction. It follows that for any $X \in K A_{\underline{t}}, \eta$ if $X g \in K A_{\underline{t}} \eta$, $X g=k^{\prime} \cdot a^{\prime} \theta^{\prime}, k^{\prime} \in K, a^{\prime} \in A_{\underline{t}}, \theta^{\prime} \in \eta$ then $\alpha\left(a^{\prime}\right)<t(\alpha)-\varepsilon$.

Remark. The denominator of the entries of $\gamma \in \Gamma$ when reduced to the simplest form remain bounded and so there is a common integer p divisible by all of them. The same remark applies to the set of matrices

$$
\bigcup_{j=1}^{m} \bigcup_{i=1}^{m} q_{i} \Gamma q_{j}^{-1} \quad \text { where } q_{1}, \ldots, q_{m} \in \mathrm{G}_{\boldsymbol{Q}}
$$

§3. Construction of the Function

An element $g \in G_{R}$ can be written in the form $g=k_{g} a_{g} \theta_{g}, k \in K$, $a \in A, \theta \in P^{0}$; here a_{g} is unique and the map $g \leadsto \rightarrow a_{g}$ is a smooth function on G_{R} which we denote by H. We let $\alpha \in \Delta$ also stand for the smooth function $\alpha \circ H$ on $G_{\boldsymbol{R}}$ with values in \boldsymbol{R}^{+}. If

$$
\lambda=\sum_{\alpha \in \Delta} m_{\alpha} \cdot \alpha
$$

is any real linear combination of simple roots we let λ also stand for the (smooth) function

$$
\prod_{a \in A} \alpha(g)^{m_{\alpha}}
$$

We fix a set of representatives $q_{1}, \ldots, q_{m} \in G_{\boldsymbol{Q}}$ for the set of double coset classes with $1=q_{j}$ for some j. Then we can find real constants r, t, ε with $r>t+\varepsilon>t>0$ and a relatively compact open subset η of $P_{\mathbf{R}}$ such that the following conditions are satisfied (see Borel's Theorem and Lemma $2.1(\S 2)$): Let $\underline{r}: \Delta \rightarrow R^{+}, \underline{r}^{\prime}: \Delta \rightarrow R^{+}$and for $\alpha \in \Delta,{ }_{a} r_{-}^{\prime}: \Delta \rightarrow R^{+}$
be the functions defined as follows: $r(\theta)=r$ for all $\theta \in \Delta, \underline{r}^{\prime}(\theta)=r+2 \varepsilon=r^{\prime}$ for $\theta \in \Delta$ and ${ }_{\alpha} r_{-}^{\prime}(\theta)=r+2 \varepsilon=r^{\prime}$ for $\theta \neq \alpha$ while $\alpha_{-}^{r^{\prime}(\alpha)}=t+\bar{\varepsilon}$; then we have (i) $\bigcup_{i=1}^{m} K A_{\underline{r}} \eta q_{i}\left(\right.$ hence $\left.\bigcup_{i=1}^{m} K A_{\underline{r}} \eta q_{i}\right)$ is a fundamental domain for Γ.
(ii) $K A_{\alpha \underline{\underline{r}}^{\prime}} \eta q_{i} \gamma \cap K A_{\boldsymbol{r}^{\prime}} \eta q_{j} \neq \emptyset$ for $\gamma \in \Gamma$ only if $q_{i} \gamma q_{j}^{-1} \in P_{\alpha}$.
(iii) If $k, k^{\prime} \in K, \theta, \theta^{\prime} \in \eta, a \in A_{\alpha \underline{r}^{\prime}}, a^{\prime} \in A_{r^{\prime}}$ and $k a \theta q_{i} \gamma=k^{\prime} a^{\prime} \theta^{\prime} q_{j}$ for some $\gamma \in \Gamma$ then $\alpha\left(a^{\prime}\right)<r$.
(iv) For $i=1, \ldots, m,\left(q_{i}^{-1} \eta q_{i}\right)\left(\Gamma \cap q_{i}^{-1} P_{\mathbf{R}}^{0} q_{i}\right)=q_{j}^{-1} P_{R}^{0} q_{i}$.

In view of (iv), (ii) is equivalent to
(ii') $K A_{\alpha \underline{r^{\prime}}} P_{R}^{0} q_{i} \gamma \cap K A_{\underline{r}^{\prime}}, P_{R}^{0} q_{j} \neq \emptyset$ for $\gamma \in \Gamma$ only if $q_{i} \gamma q_{j}^{-1} \in P_{\alpha}$.
Remark 3.1. The choice of t and ε in the above is very wide. We could replace them once chosen by anything smaller. Thus, we might at any stage demand that they be smaller than any positive constant depending upon r.

That we can choose a η relatively compact in $P_{\boldsymbol{R}}$ and satisfying (iv) follows from the fact that

$$
q_{i}^{-1} P_{\mathbf{R}}^{0} q_{i} /\left(q_{i}^{-1} P_{\mathbf{R}}^{0} q_{i} \cap \Gamma\right)
$$

is compact. By enlarging it if necessary we can choose an $r>0$ such that (i) holds (this is the theorem of Boret). Then we can take $\varepsilon>0$ any constant such that $r-\varepsilon>0$ and by appealing to Lemma 2.1 select a t so that (ii) and (iii) are satisfied. (Note that the entries of all the elements in

$$
\bigcup_{\gamma \in \Gamma} q_{i} \gamma q_{j}^{-1}
$$

when reduced to the simplest form have denominators which remain bounded and so we can find an integer p which is divisible by all of them.)

In the sequel we fix $q_{1}, \ldots, q_{m}, \eta, r, t, \varepsilon$ chosen as above. Let $\varphi: \boldsymbol{R}^{+} \rightarrow I$ (the unit interval) be a smooth function such that
i) $\varphi(x)=1$ for $x \leqq t$,
ii) $\varphi(x)=0$ for $x \geqq t+\varepsilon$ and
iii) $\varphi^{\prime}(x) \leqq 0$.

Also let ψ be the C^{∞} function on \boldsymbol{R}^{+}into the unit interval defined by

$$
\begin{array}{ll}
\psi(x)=1-\varphi(x) & \text { for } x \leqq r \\
\psi(x)=\varphi(x-r+t) & \text { for } x \geqq r .
\end{array}
$$

For a subset $I \subset \Delta$, we define $\Phi_{I}: G_{R} \rightarrow I$ by

$$
\Phi_{I}(g)=\prod_{\alpha \in I} \varphi(\alpha(g)) \prod_{\alpha \in \Delta-I} \psi(\alpha(g))
$$

Then the function $\Phi_{I}(g)$ is invariant under the action P_{R}^{0} on the right. Let

$$
\Lambda=\sum_{\alpha \in \Delta} m_{\alpha} \lambda_{\alpha}
$$

be any real linear combination of the fundamental weights (λ_{α} is defined by $\left\langle\lambda_{\alpha}, \beta\right\rangle=\delta_{\alpha \beta}$ for $\beta \in \Delta$), such that $m_{\alpha}>0$ for all $\alpha \in A$. Then for any subset $I \subset A$, we have

$$
\Lambda=\sum_{\alpha \in I} m_{I \alpha} \lambda_{\alpha}+\sum_{\alpha \in \Delta-I} n_{I \alpha} \alpha
$$

where $m_{I \alpha}>0$ (in fact $m_{I \alpha} \geqq m_{\alpha}$) and $n_{I \alpha} \geqq 0$. (See Lemma 1.1.) We set

$$
A_{I}=\sum_{\alpha \in I} m_{I \alpha} \lambda_{\alpha}
$$

We denote again by Λ_{I} as before the function it defines on G_{R}. For later use we state the above facts as

Lemma 3.1.

$$
\Lambda_{I}=\sum_{\alpha \in I} m_{I \alpha} \lambda_{\alpha} \quad \text { with } m_{I \alpha}>0
$$

Also, for $\beta \in \Delta \Lambda_{I \cup \beta}-\Lambda_{I}$ is a non-negative linear combination of the simple roots; moreover the coefficient $C_{I \beta \beta}$ of β in this expression is non-zero if $\beta \notin I$.

Proof. The first assertion is already proved. To prove the second assertion we need only consider the case $\beta \notin I$. Let $I^{\prime}=I \cup \beta$ and

$$
\Lambda=\sum_{\alpha \in I^{\prime}} m_{I^{\prime} \alpha} \lambda_{\alpha}+\sum_{\alpha \in \Delta-I^{\prime}} n_{I^{\prime} \alpha} \cdot \alpha
$$

where $m_{I^{\prime} \alpha}, n_{I^{\prime} \alpha} \geqq 0$ (Lemma 1.1). On the other hand by Lemma 1.1, we have,

$$
\lambda_{\beta}=\sum_{\alpha \in I} a_{\beta \alpha} \lambda_{\alpha}+\sum_{\alpha \in \Lambda-I} b_{\beta \alpha} \alpha
$$

where $a_{\beta \alpha}, b_{\beta a} \geqq 0$. It follows that

$$
\Lambda=\sum_{\alpha \in I}\left(m_{I^{\prime} \alpha}+m_{I^{\prime} \beta} \cdot a_{\beta \alpha}\right) \lambda_{\alpha}+\sum_{\alpha \in \Delta-I^{\prime}}\left(n_{I^{\prime} \alpha}+m_{I^{\prime} \beta} b_{\beta \alpha}\right) \alpha+m_{r^{\prime} \beta} b_{\beta \beta} \cdot \beta
$$

It follows that

$$
\Lambda_{I^{\prime}}-\Lambda_{I}=m_{I^{\prime} \beta} \sum_{\alpha \in \Delta-I} b_{\beta \alpha} \cdot \alpha
$$

and since $m_{I^{\prime} \beta}>0$, and $b_{\beta \alpha} \geqq 0$ for all $\alpha \in \Delta-I$, to conclude the proof of the lemma we need only show that $b_{\beta \beta}>0$. To see this, we have, since $\beta \notin I$,

$$
1=\left\langle\lambda_{\beta}, \beta\right\rangle=\sum_{\alpha \in A-I} b_{\beta \alpha}\langle\alpha, \beta\rangle
$$

since $b_{\beta \alpha} \geqq 0$ and $\langle\alpha, \beta\rangle \leqq 0$ for $\alpha \neq \beta$, we must necessarily have $b_{\beta \beta}>0$. Hence the lemma.

Consider now for each $k, 1 \leqq k \leqq m$, the function f_{k} on G defined by the following series:

$$
f_{k}(g)=\sum_{\gamma \in\left(T / q_{k}^{-1} P^{0} q_{k} \cap \Gamma\right)} \sum_{I \subset d} \Phi_{I}\left(g \gamma q_{k}^{-1}\right) \log \Lambda_{I}\left(g \gamma q_{k}^{-1}\right) .
$$

This requires some justification. Firstly the functions $g \mapsto \Phi_{I}(g)$ and $g \mapsto \Lambda_{I}(g)$ are invariant under the right action of $P_{\mathbf{R}}^{0}$. It follows that if $\gamma^{\prime}, \gamma^{\prime \prime} \in \Gamma$ are two elements such that $\gamma^{\prime \prime}=\gamma^{\prime} \cdot \gamma$ with $\gamma \in q_{k}^{-1} P^{0} q_{k} \cap \Gamma$ we have

$$
\Phi_{I}\left(g \gamma^{\prime \prime} q_{k}^{-1}\right)=\Phi_{I}\left(g \gamma^{\prime \prime} q_{k}^{-1} q_{k} \gamma^{-1} q_{k}^{-1}\right)=\Phi_{I}\left(g \gamma^{\prime} q_{k}^{-1}\right)
$$

similarly for A_{I}. Hence formally the series makes sense. Next we assert for fixed $g \in G_{R}$, all but a finite number of terms of the series vanish identically in a neighborhood of g. To see this first notice that the support of Φ_{I} is contained in the interior of the domain $K A_{\mathbf{r}}, P_{\boldsymbol{R}}^{0}$; on the other hand we may assume that g is contained in some Siegel domain $S_{t_{1} \eta_{1}}$. Now the set

$$
\left\{\gamma \mid \gamma \in \Gamma, S_{\underline{t}_{1} \eta_{1}} \gamma q_{k}^{-1} \cap K A_{\underline{r}^{\prime}} P_{R}^{0} \neq \emptyset\right\}
$$

is finite $\bmod P_{\mathbf{R}}^{0} \cap \Gamma$: in fact in view of (iv) in the choice of η, we see that each element of the above set is equivalent $\bmod P^{0} \cap \Gamma$ to one of the elements in

$$
\left\{\gamma \in \Gamma \mid S_{\underline{t}_{1} \eta_{1}} \gamma \cap K A_{\underline{h}^{\prime}} \eta q_{k} \neq \emptyset\right\}
$$

(note that $q_{j}=1$ for some j) which is finite according to the theorem of Borel ($\S 2$). Hence $f_{k}(g)$ is a smooth C^{∞} function on G; it is clearly invariant under Γ. The main result in more precise form then is

Theorem. The function $\tilde{f}=-\sum f_{k}$ is a smooth function on $G_{\mathbf{R}}$ invariant under Γ. The function f on the quotient $G_{\mathbf{R}} / \Gamma$ defined by \tilde{f} maps $G_{\mathbf{R}} / \Gamma$ properly into $[c,+\infty)$ for some $c \in R$ and has no critical points outside a compact set.

Proof. To prove that f is proper into $[c,+\infty)$ it is sufficient to show the following: (i) \tilde{f} is bounded below and (ii) let $x_{n} \in K A_{\mathbf{r}} \cdot \eta q_{k}$ be any sequence such that if we write $x_{n}=k_{n} a_{n} \theta_{n} q_{k}, k_{n} \in K, a_{n} \in A_{r}, \bar{\theta}_{n} \in \eta, \alpha\left(a_{n}\right) \rightarrow 0$ for some $\alpha \in \Delta$, then $\tilde{f}\left(x_{n}\right) \rightarrow \infty$. We will show in fact that the f_{j} remain less than a fixed constant M, while $f_{k}\left(x_{n}\right)$ tends to $-\infty$

$$
f_{j}(g)=\sum_{\gamma \in\left(\Gamma / q_{j}^{-1} p^{0} q_{j} \cap \Gamma\right)} \sum_{I \in \Delta} \Phi_{I}\left(g \gamma q_{j}^{-1}\right) \log \Lambda_{I}\left(g \gamma q_{j}^{-1}\right) .
$$

Now when $g \in K A_{r} \eta q_{k}$, the above sum reduces to a finite sum

$$
\sum_{\gamma \in S_{j k}} \sum_{I \in \Delta} \Phi_{I}\left(g \gamma q_{j}^{-1}\right) \log \Lambda_{I}\left(g \gamma q_{j}^{-1}\right)
$$

where $S_{j k}$ is the image in $\Gamma /\left(q_{j}^{-1} P^{0} q_{j} \cap \Gamma\right)$ of the set

$$
S_{j k}=\left\{\gamma \mid \gamma \in \Gamma, K A_{\underline{r}} \eta q_{k} \gamma q_{j}^{-1} \cap K A_{\underline{r}} P_{R}^{0} \neq \emptyset\right\}
$$

that is of the set

$$
\left\{\gamma \mid \gamma \in \Gamma, K A_{\underline{r}} \eta q_{k} \gamma \cap K A_{\underline{r}} P_{R}^{0} q_{j}=\emptyset\right\}
$$

Now since we have assumed η so chosen that

$$
\left(q_{j}^{-1} \eta q_{j}\right)\left(\Gamma \cap q_{j}^{-1} P_{R}^{0} q_{j}\right)=q_{j}^{-1} P_{R}^{0} q_{j}
$$

we see that for any $\gamma \in S_{j k}^{\prime}$ there exists $\gamma^{\prime} \in \Gamma \cap q_{j}^{-1} P_{R}^{0} q_{j}$ such that

$$
K A_{\underline{r}} \eta q_{k} \gamma \gamma^{\prime} \cap K A_{\underline{r}} \eta q_{j} \neq \emptyset
$$

It follows from the theorem of Borel that $S_{j k}$ is a finite set. Thus to show that $f\left(x_{n}\right)$ tends to infinity as n tends to infinity it suffices to show that each of the terms in the right hand side of (I) are bounded above and that when $j=k$, at least one of them tends to $-\infty$ (as n tends to ∞).

Now whenever $\Phi_{I}\left(g \gamma q_{j}^{-1}\right) \neq 0, g \gamma q_{j}^{-1} \in K A_{\underline{r}}, P_{R}^{0}$ so that $\theta\left(g \gamma q_{j}^{-1}\right)$ $<r^{\prime}$ for all $\theta \in \Delta$. On the other hand Λ_{I} is a non-negative linear combination

$$
\sum_{\theta \in A} m_{I \theta} \theta
$$

of the simple roots. It follows that

$$
A_{I}\left(g \gamma q_{j}^{-1}\right)=\prod_{\theta \in \Delta}\left(g \gamma q_{j}^{-1}\right)^{m_{I \theta}} \leqq \prod r^{m_{I \theta}}=r^{\Sigma m_{I \theta}}
$$

Since $0 \leqq \Phi_{I}\left(g \gamma q_{j}^{-1}\right) \leqq 1$, we see that

$$
\Phi_{I}\left(g \gamma q_{j}^{-1}\right) \log \Lambda_{I}\left(g \gamma q_{j}^{-1}\right) \leqq \sum m_{I \theta} \log r^{\prime}
$$

a constant independent of $g \in K A_{\underline{r}} \eta q_{k}$. Thus we have only to show that for a suitable choice of $\gamma \in S_{k k}$ and $I \subset \Delta$,

$$
\Phi_{I}\left(x_{n} \gamma q_{k}^{-1}\right) \log \Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right)
$$

tends to $-\infty$ as n, tends to infinity. We take γ to be the identity coset in $S_{k k}$. Now $x_{n}=k_{n} a_{n} x_{n} q_{k}$ where $k_{n} \in K, a_{n} \in A_{\underline{r}}, u_{n} \in \eta$ and $\alpha\left(a_{n}\right)$ tends to zero as n tends to infinity. We choose for I the following subset:

$$
\left\{\theta \left\lvert\, \varphi\left(\theta\left(a_{n}\right)\right)>\frac{1}{2}\right. \text { for all large } n\right\}
$$

This subset is non-empty as it clearly contains $\alpha\left(\alpha\left(a_{n}\right) \rightarrow 0\right)$. With this choice of I and γ consider $\Phi_{I}\left(x_{n} \gamma q_{k}^{-1}\right)$. We have in fact, (because of
our chice of γ)

$$
\begin{aligned}
\Phi_{I}\left(x_{n} \gamma q_{k}^{-1}\right) & =\Phi_{I}\left(x_{n} q_{k}^{-1}\right)=\Phi_{I}\left(k_{n} a_{n} u_{n}\right) \\
& =\Phi_{I}\left(a_{n}\right)=\prod_{\theta \in I} \varphi\left((\theta)\left(a_{n}\right)\right) \prod_{\theta \in A-I} \psi\left((\theta)\left(a_{n}\right)\right)
\end{aligned}
$$

Now, for $\theta \in I$ and n large $\varphi\left((\theta)\left(a_{n}\right)\right)>\frac{1}{2}$ and for $\theta \notin I, \varphi\left(\theta\left(a_{n}\right)\right) \leqq \frac{1}{2}$ so that $\psi\left(\theta\left(a_{n}\right)\right)=1-\varphi\left(\theta\left(a_{n}\right)\right) \geqq \frac{1}{2}$ (note that $\theta\left(a_{n}\right) \leqq r$ and in the range $x \leqq r, \varphi(x)+\psi(x)=1)$. It follows that for n large,

$$
\Phi_{I}\left(a_{n}\right) \geqq \frac{1}{2} l
$$

where l is the number of simple roots. Thus $\Phi_{I}\left(x_{n} \gamma q_{k}^{-1}\right) \geqq \frac{1}{2} l$ for all large n. Hence we have only to show that $\log \Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right)$ tends to $-\infty$ as n tends to infinity.

Now by Lemmas 1.1 and 3.1, we have

$$
\Lambda_{I}=b_{I}^{\alpha} \lambda_{\alpha}+\sum_{\theta \in \Delta-\alpha} a_{I \theta}^{\alpha} \theta
$$

where $a_{I \theta}^{\alpha} \geqq 0$ and $b_{I}^{\alpha}>0$ since $a \in I$ by our choice of I. Hence

$$
\begin{aligned}
\Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right) & =\Lambda_{I}\left(x_{n} q_{k}^{-1}\right)=\Lambda_{I}\left(k_{n} a_{n} u_{n}\right) \\
& =\Lambda_{I}\left(a_{n}\right)=\lambda_{\alpha}\left(a_{n}\right)^{b \alpha} \cdot \prod_{\theta \in \Delta-\alpha} \theta\left(a_{n}\right)^{a z \theta} \\
& \leqq \lambda_{\alpha}\left(a_{n}\right)^{b \alpha} \cdot r^{\sum a_{T}^{\alpha} \theta} \\
& =\lambda_{\alpha}\left(a_{n}\right)^{b \alpha} C
\end{aligned}
$$

(note that $a_{n} \in A_{r^{\prime}}$) where C is a positive constant. Once again, by Lemma 1.1,

$$
\lambda_{\alpha}=\sum_{\theta \in \Delta} C_{\alpha \theta} \theta
$$

where $C_{\alpha \theta} \geqq 0$ and $C_{\alpha \alpha}>0$ so that

$$
\lambda_{\alpha}\left(a_{n}\right)^{b \phi}=\prod_{\theta \in A} \theta^{c_{\alpha \theta}}\left(a_{n}\right) \leqq \alpha^{c_{\alpha \alpha}}\left(a_{n}\right) r^{\underbrace{\sum}_{\theta \neq \alpha} c_{\alpha \theta}} .
$$

thus

$$
\Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right) \leqq \alpha^{b \alpha} c_{\alpha \alpha}\left(a_{n}\right) \cdot M
$$

where $M>0$ is a constant independent of n.
Hence

$$
\log \Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right) \leqq \log M+b_{I}^{\alpha} C_{\alpha \alpha} \log \alpha\left(a_{n}\right)
$$

where $b_{I}^{\alpha} \cdot C_{\alpha \alpha}>0$; but $\alpha\left(a_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ so that $\log \Lambda_{I}\left(x_{n} \gamma q_{k}^{-1}\right) \rightarrow-\infty$ as $n \rightarrow \infty$.

Thus f is proper into the real line and bounded below.

§4. The Critical Points of f

In this section we complete the proof of the main theorem. Continuing with the notation of $\S 3$ we need only show the following. Let a be the Lie subalgebra of g corresponding to A. Let $H_{\lambda_{\alpha}} \in a$ be the unique element of a defined by

$$
\beta\left(\exp t H_{\lambda_{\alpha}}\right)=e^{t \delta_{\alpha \beta}} \quad(\exp \text { is the exponential map) }
$$

for $\beta \in \Delta$. Then we have fixing an $\alpha \in \Delta$, the following
Assertion. For $x \in K A_{\alpha-} \eta q_{j}$, we have for $1 \leqq k \leqq m$

$$
\left\{\frac{d}{d s} f_{k}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j}\right)\right\}_{s=0} \geqq 0
$$

and

$$
\left\{\frac{d}{d s} f_{j}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j}\right)\right\}_{s=0}>0
$$

(We recall that $A_{\alpha_{-}^{r}}=\{a \mid a \in A, \beta(a) \leqq r$ for $\beta \in \Delta$ and $\alpha(a) \leqq t\}$ where r, ε, t, η etc. are chosen as described in the beginning of $\S 3$.)
(This assertion completes the proof of the theorem in view of the fact that it implies that \bar{f} has no critical points in

$$
\Omega_{1}=\bigcup_{\alpha \in \Delta} \bigcup_{k=1}^{m} K A_{\alpha r} \eta q_{k}
$$

and that the complement of Ω_{1} in the fundamental domain

$$
\Omega=\bigcup_{k=1}^{m} K A_{\underline{r}} \eta q_{k}
$$

is relatively compact in $\boldsymbol{G}_{\boldsymbol{R}}$.)
Proof of the Assertion. We have, writing $x=k \cdot a \cdot \theta q_{j}$ where $k \in K$, $a \in A, \theta \in \eta$,

$$
\begin{aligned}
& \frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right) \\
& =\frac{d}{d s}\left\{\prod _ { \beta \in I } \varphi \left(\beta\left(k a \theta \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right) \prod_{\beta \in \Delta-I} \psi\left(\beta\left(k a \theta \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\} .\right.\right.
\end{aligned}
$$

Clearly the right hand side is non-zero at $s=0$ only if

$$
k a \theta \operatorname{exps} H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1} \in \bigcap_{\beta \in I} K A_{\beta \underline{r}} P_{R}^{0}
$$

for all small values of s; in particular only if

$$
k a \theta \cdot q_{j} \gamma q_{k}^{-1} \in \bigcap_{\beta \in I} K A_{\beta r} P_{R}^{0}
$$

On the other hand, $k a \theta \in K A_{\alpha \underline{I}} \eta$. It follows from (ii') that

$$
q_{j} \gamma q_{k}^{-1} \in \bigcap_{\beta \in I \cup \alpha} P_{\beta}
$$

Writing then $q_{j} \gamma q_{k}^{-1}$ in the form $k_{1}^{\prime} a_{1}^{\prime} \theta_{1}^{\prime}$, where $k_{1}^{\prime} \in K, a_{1}^{\prime} \in A, \theta_{1}^{\prime} \in P_{R}^{0}$, it is easily seen that k_{1} and a_{1} commute with $\exp s H_{\lambda_{\alpha}}$. It follows that

$$
\begin{aligned}
k a \theta \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1} & =k a \theta k_{1}^{\prime} a_{1}^{\prime} \exp s H_{\lambda_{\alpha}} \theta_{1}^{\prime} \\
& =k_{1} a_{1} \exp s H_{\lambda_{\alpha}} \theta_{s}^{\prime}
\end{aligned}
$$

where $k_{1} \in K, a_{1} \in A$ are independent of s and $\theta_{s}^{\prime} \in P_{\boldsymbol{R}}^{0}$. Now if

$$
\frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)
$$

is to be non-zero at $s=0$ we have necessarily, for all $\beta \in I$, for small s,

$$
\beta\left(k_{1} a_{1} \exp s H_{\lambda_{\alpha}} \theta_{s}^{\prime}\right)=\beta\left(a_{1}\right) \cdot \beta\left(\exp s H_{\lambda_{\alpha}}\right) \leqq t+\varepsilon
$$

and for all $\beta \notin I$,

$$
\beta\left(a_{1}\right) \beta\left(\operatorname{exps} H_{\lambda_{\alpha}}\right) \leqq r+\varepsilon
$$

Also in view of (iii) since we have assumed that $x \in K A_{\alpha \underline{I}} \eta q_{j}$, we have necessarily $\alpha\left(a_{1}\right)<r$. Now for $\beta \neq \alpha$, we have,

$$
\frac{d}{d s} \beta\left(k_{1} a_{1} \exp s H_{\lambda_{\alpha}} \theta_{s}^{\prime}\right)=\frac{d}{d s} \beta\left(a_{1}\right)=0
$$

Also,

$$
\frac{d}{d s} \alpha\left(k_{1} a_{1} \exp s H_{\lambda_{\alpha}} \theta_{s^{\prime}}\right)=\frac{d}{d s} \alpha\left(a_{1}\right) e^{s}=\alpha\left(a_{1}\right) e^{s}
$$

It follows that we have if $\alpha \in I$

$$
\begin{aligned}
\left\{\frac{d}{d s}\right. & \left.\Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0} \\
& =\prod_{\beta \in I-\alpha} \varphi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \prod_{\beta \in \Delta-I} \psi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \varphi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right) \cdot \alpha\left(a_{1}\right)
\end{aligned}
$$

where a_{1} is defined by

$$
x \gamma q_{k}^{-1}=k_{1} a_{1} \theta, \quad k_{1} \in K, a_{1} \in A, \theta_{1} \in P_{\mathbf{R}}^{0}
$$

Similarly if $\alpha \notin I$, with the same notation

$$
\begin{aligned}
& \left\{\frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0} \\
& \quad=\prod_{\beta \in I} \varphi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \prod_{\beta \in I-I-\alpha} \psi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \psi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right) \cdot \alpha\left(a_{1}\right)
\end{aligned}
$$

Also as already noted, for any γ such that the above derivative is nonzero, we have necessarily

$$
\alpha\left(x \gamma q_{k}^{-1}\right)<r
$$

so that $\varphi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right)=-\psi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right.$; since in the domain $\{y \mid y \in \boldsymbol{R}$, $y \leqq r\}$, we have

$$
\varphi(y)+\psi(y)=1) .
$$

Thus we see that we have

$$
\begin{aligned}
& \left\{\frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0} \\
& \quad= \pm \alpha\left(a_{1}\right) \prod_{\beta \in I-\alpha} \varphi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \prod_{\beta \in \Delta-I-\alpha} \psi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \varphi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right)
\end{aligned}
$$

according as $\alpha \in I$ or $\alpha \in \Delta-I$. Once again,

$$
\varphi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right)=0
$$

if $\alpha\left(x \gamma q_{k}^{-1}\right) \notin[t, t+\varepsilon]$. Consider now, when $t \leqq \alpha\left(x \gamma q_{j}^{-1}\right) \leqq t+\varepsilon$, the sum

$$
\sum_{I}\left\{\frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0} \log \Lambda_{I}\left(x \gamma q_{k}^{-1}\right)
$$

We divide the set of subsets of Δ into two parts: those which do not contain α denoted \mathscr{E} and the rest; then the sum can be written as

$$
\begin{aligned}
& \alpha\left(a_{1}\right) \varphi^{\prime}\left(\alpha\left(x \gamma q_{k}^{-1}\right)\right) \sum_{I \in \mathscr{\&}} \prod_{\beta \in I} \varphi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \prod_{\beta \in \Delta-I-\alpha} \psi\left(\beta\left(x \gamma q_{k}^{-1}\right)\right) \\
& \cdot\left\{\log \Lambda_{I \cup \alpha}\left(x \gamma q_{k}^{-1}\right)-\log \Lambda_{I}\left(x \gamma q_{k}^{-1}\right)\right\} .
\end{aligned}
$$

Now by Lemma 3.1, we see that

$$
\log \Lambda_{I \cup a}\left(x \gamma q_{k}^{-1}\right)-\log \Lambda_{I}\left(x \gamma q_{k}^{-1}\right)=\log \left(\prod_{\beta \in \Delta} \beta^{c_{\tau \alpha} \beta}\left(x \gamma q_{k}^{-1}\right)\right)
$$

where $c_{I \alpha \beta} \geqq 0$ and $c_{I \alpha \alpha}>0$. Hence

$$
\begin{aligned}
& \log A_{I \cup \alpha}\left(x \gamma q_{k}^{-1}\right)-\log A_{I}\left(x \gamma q_{k}^{-1}\right) \\
&=\sum_{\beta \in \Delta} c_{I \alpha \beta} \log \beta\left(x \gamma q_{k}^{-1}\right) \\
& \leqq \sum_{\beta \in \Delta-\alpha} c_{I \alpha \beta} \log (r+2 \varepsilon)+c_{I \alpha \alpha} \log (t+\varepsilon)
\end{aligned}
$$

Now, as remarked in the beginning of $\S 3$ (Remark 3.1) we could have assumed t so small that

$$
\sum_{\beta \in \Delta-\alpha} c_{I \alpha \beta} \log (r+2 \varepsilon)+c_{I \alpha \alpha} \log (t+\varepsilon)<0
$$

We assume that t and ε were chosen to satisfy this inequality for all $\alpha \in \Lambda$ (in addition to our earlier assumptions). We then see that

$$
\sum_{I} \sum_{\gamma \in \Gamma /\left(\Gamma \cap q_{k}^{-1} P^{0} q_{k}\right)}\left\{\frac{d}{d s} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0} \log \Lambda_{I}\left(x \gamma q_{k}^{-1}\right)
$$

is greater than or equal to zero for any $x \in K A_{\alpha \underline{I}} \eta q_{j}$: in fact φ and ψ are non-negative functions while φ^{\prime} is non-positive in the domain $\{y \mid y \in R, y<r\} ;$ also $\log \Lambda_{I \cup a}-\log \Lambda_{I}$ is non-positive whenever,

$$
t \leqq \alpha\left(x \gamma q_{k}^{-1}\right) \leqq t+\varepsilon
$$

Finally writing as before $x \gamma q_{k}^{-1}=k_{1} a_{1} \theta_{1}$, we see that

$$
\begin{aligned}
\frac{d}{d s} & \log \Lambda_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right) \\
& =\frac{d}{d s} \log \left\{\Lambda_{I}\left(a_{1}\right) \cdot \Lambda_{I}\left(\exp s H_{\lambda_{\alpha}}\right)\right\} \\
& =A_{I}\left(H_{\lambda_{\alpha}}\right)
\end{aligned}
$$

where $\Lambda_{I}\left(H_{\lambda_{\alpha}}\right)$ denotes the evaluation of Λ_{I} considered as a linear form on \mathfrak{a} on $H_{\lambda_{\alpha}}$. Now by Lemmas 1.1 and $3.1 \Lambda_{I}\left(H_{\lambda_{\alpha}}\right) \geqq 0$ and is >0 if $\alpha \in I$. We thus see that

$$
\begin{aligned}
& \left\{\frac{d}{d s} f_{k}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j}\right)\right\}_{s=0} \\
& =\left\{\frac{d}{d s} \sum_{I, \gamma} \Phi_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right) \log \Lambda_{I}\left(x q_{j}^{-1} \exp s H_{\lambda_{\alpha}} q_{j} \gamma q_{k}^{-1}\right)\right\}_{s=0}
\end{aligned}
$$

is greater than or equal to zero. Moreover, since $\Phi_{I}\left(x \cdot q_{j}^{-1}\right) \neq 0$ for some $I \subset \Delta$ with $\alpha \in I$ (note that $\alpha\left(x q_{j}^{-1}\right) \leqq t$) we see that for $k=j$, the above is greater than zero. Thus the proof of the theorem is complete.

References

1. Borel, A.: Groupes arithmétiques (to be published).
2. - Ensembles fondamentaux pour les groupes arithmétiques. Colloque sur la theorie des groupes algebriques (Bruxelles, 1962). Paris: Gauthier Villars 1962.
3. -, and J. Tirs: Groupes réductifs. Publications Mathematiques, No. 27 (1965), I.H.E.S.
4. Selberg, A.: On discontinuous groups in higher dimensional symmetric spaces. Contributions to function theory, Tata Institute of Fundamental Research, Bombay (1960).

M. S. Raghunathan
Tata Institute of Fundamental Research
School of Mathematics
Homi Bhabha Road Colaba
Bombay 5, India
and
The Institute for Advanced Study
Princeton, N. J. 08540/USA

(Received July 31/October 16, 1967)

[^0]: * Supported by National Science Foundation grant GP 5803.

