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A Note on Quotients of Real Algebraic Groups 
by Arithmetic Subgroups 

M. S. RAGHUNATHAN* (Bombay) 

Introduction 

Let G be a connected semi-simple algebraic group defined over Q. 
Let F be an arithmetic subgroup of G, i.e., a subgroup of G such that  
for some (and therefore any) faithful rational representation p: G--, 
GL(N, C) defined over Q, Fc~p-I(SL(N, Z)) is of finite index in both 
F and p-a(SL(N, Z)). Let K c  G be a maximal compact subgroup of Ga, 
the set of real points of G. With this notation, we can state the main 
result of this note. 

Theorem. Let FcGR. There exists a smooth function f :  GR/F~R + 
such that 

i) f - l ( 0 ,  r] is compact for all r > 0 .  

ii) There exists r o > 0 such that f has no critical points outsider- 1(0, to] 

and 

iii) f is invariant under the action of K on the left. 

f f  in addition F has no non-trivial elements of finite order, K\GR/F is a 
smooth manifold and f defines a smooth function f l  on this manifold 
satisfying O) and (ii) with f replaced by f x. 

Corollary 1. Gs/F is homeomorphic to the interior of a smooth com- 
pact manifold with boundary; if F contains no element of finite order other 
than the identity, K\GR/F is homeomorphic to the interior of a compact 
smooth manifold with boundary. 

We now drop the hypothesis that F c G R. 

Corollary 2. F is finitely presentable. 

Corollary 3. If M is any F-module finitely generated over Z, H* (F, M) 
is finitely generated. 

Corollary 4. The functor M ~ , H * ( F ,  M) on the category of F- 
modules commutes with the formation of inductive limits. 

We now deduce the corollaries from the main theorem. 

Corollary 1 is a consequence of elementary facts from Morse theory. 
For  F ~ GR Corollary 2 follows from the fact that F is the quotient by 
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a finitely generated central subgroup H of the fundamental group F' 
of Gs/F which is finitely presented since the space Gn/F is of the same 
homotopy type as a finite simplicial complex. The general case follows 
from the fact that F/F n Gs is finite. Corollary 1 implies that it F ~  G~ 
has no non-trivial elements of finite order the trivial F-module Z admits 
a free resolution 

0 ~  C,-~ C,-1 ~ "'" --* Cl ~ Co --*Z 

where each Ci is a finitely generated free-module over F;  in fact, in 
this case, K\GR/F has the homotopy type of a finite complex L and its 
universal covering L being of the homotopy type of K\GR is contractible. 
If we then take the induced triangulation of L, the associated chain- 
complex gives the resolution we are looking for. Corollaries 3 and 4 
are then immediate consequences of this fact (when F c G~ and has no 
elements of finite order other than identity). The general case then 
follows from the Hochschild-Serre spectral sequence and the following 
fact due to SELBERG [4]. Any arithmetic group F admits a subgroup F' 
of finite index contained in G a and such that no element of F' other than 
the identity has finite order. 

w 1. A Lemma on Root Systems 

By a root system we mean as usual a set ~ . . . . .  cq of l linearly in- 
dependent vectors in R / (with the usual scalar product) such that (i) 
(cq, ct]> < 0  for i # j  and (ii) 2<cti, ~j>/(c~i, c~i> is an integer. (In the sequel 
we make no use of (ii).) Let 2i be the unique vector in R / such that 
<2i, ~] )=~/ j .  We have then 

Lemma 1.1. I f  we set 

2k= Z a~ko~,+ E b~k2] 
i E l  ir 

I k  where I is any subset of [1, . . . ,  1], then b~ k, aj are all greater than or 
equal to zero. 

l~I k t~ Ik=o for all i e I  and ,,j = jk" Hence we Proof. Clearly, if k 6 L  a/ 
can assume that k~l .  Let then 2~ be the unique vector in the subspace 
generated by {c~i}i~ I such that (2~, c9> =3kj for all j e L  We then assert 
that 

2'k = ~ mi ~i with m i>>. O. 
i e l  

If not, in fact, let 
Y Z nj j 

i ~ I I  V e I - I t  
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with n j>0  for all j~[-I1 and mi>=0 for all i~I1. We then have, 

0< ~". nj(2~, otj> = ~. . m i nj<~i, ~j> -- 1[~ nj ~jll 2 
tJ 

a contradiction, since m~nj>O and <~i, ~j>=<0 for i#j. Hence 

2~=~mi~i with ms>0.  
i~.l  

Now consider ~k--2~. Clearly <2k--2~, ~i> =0  if i~I and for ir 

j z I  

Since if ir i# j  for any jzI ,  in particular for j=k.  It follows that 

2k--2~,= ~, bj2j where bj=<2k--2'k,~j>>O. 
jCz 

It follows that 
2k= Z mio~i+ Z bj2j 

i ~ l  i r  

where ml>O, by>=O. Hence the lemma. 

w 2. A Lemma on Siegel Domains 

Let G be a connected semisimple algebraic group defined over Q. 
Let T be a maximal Q split torus of G. For  a subgroup H of G we denote 
by Ha ,  the group Hc~Ga where Gn is the set of real points of G. Let A 
be the connected component of the identity of TR. Let X(T) denote 
the lattice of rational characters on T. Then for aEA and x~X(T), 
x(a)>0.  Let g be the Lie algebra G and for xeX(T), let 

gx= {v/v ~ g, Ad t (v) = X (t) v for all t ~ T} 

and let �9 be the system of roots of G with respect to Ti.e. �9 ={ZIx~X(T), 
Z#0,  gX#0}. We introduce a lexicographic order on X(T) and denote 
by ~+,  r  and A the system of positive negative and simple roots of G 
with respect to this order. Let 

n =  LI g~; 

then n is a Lie subalgebra and the Lie subgroup N corresponding to 
it is a unipotent algebraic subgroup of G defined over Q (it is moreover 
maximal with respect to this property). Let Z(T) be the centralizer of T; 
then Z(T) is reductive and can be written in the form M .  T where M 
is a reductive algebraic group defined and anisotropic over Q. More- 
over M normalizes N so that M N = P  ~ is a subgroup of G. Finally let 
K be a maximal compact subgroup of G a so chosen that its Lie algebra 
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f is orthogonal to that of A with respect to the Killing form on g. (Lie 
algebras of Lie subgroups of G are identified with the corresponding 
Lie subalgebras.) 

Definition2.1. For a relatively compact open subset ~ l cP  ~ and a 
map t: A ~ R  + (following BOREL [2]), we call the set 

St_.= K . At .  tl 

where A ! = { a l a e A  , o~(a)<=t(s) for all seA} a Siegel-domain. 

The following fundamental theorem is due to BOREL [1] (see also [2]). 

For a subgroup H of G we denote by H e its intersection with G e 
the set of Q-rational points of G. Then we have 

Theorem (BOREL). (i) The set of double coset classes Pe\Gt~/F is finite. 

(ii) For any relatively compact set tl in Pa and t: A--rR + and any pair 
q, q'EGQ, the set 

{ ~ ] K A t t l q ~ c ~ K A t t l q '  4:0 and ~eF}  

is finite. 

(iii) I f  ql, . . . ,  qm are representatives in Gafor  the double coset classes 
PQ\Ge/F, then there exists a relatively compact open subset ~h c P ~  and 
a map t l :  A ~ R  + such that if  ~IcP ~ contains t h and t: A ~ R  + is such 
that _t(s)>tt(s) for  all s e A ,  

ra 

[3 K A t t l q i F = G .  
i = 1  

Now it is known that the Lie algebra g of G admits a basis el . . . . .  eN 
such that 

a) the structural constants of g with respect to this basis are rational 

b) each g",~e~,  as also 3 the Lie subalgebra corresponding to Z(T)  
is spanned by those elements of the basis which belong to it 

c) F is commensurable with the subgroup of G which under the 
adjoint action fixes the lattice S a generated by et . . . . .  eN in g. 

In the sequel when we speak of the entries of Ad g (or simply g) 
we mean the entries of the matrix of Adg  referred to the basis et . . . .  , eN. 
We note then that the denominators of the entries of 7 e F  when reduced 
to the minimal form remain bounded. 

For seA,  we denote by #~ the set 

{/~l/~e �9 § ~= Y. mB(O)O, m#(~)>o}. 
O e A  

Then 

U~ = LI g~ 



322 M.S.  RAGHUNATHAN" 

is a Lie subalgebra of G. Its normalizer p, in g is easily seen to be 

n~380 H g-e. 

We denote the corresponding Lie subgroup by P=. Then P= is a parabolic 
subgroup of G defined over Q and is maximal with respect to this pro- 
perty. 

With this notation, we have the following crucial 

Lemma2.1.  Let q c P  ~ be any relatively compact open subset, t: 
A-+R + any map and p be any integer. We f i x  a root c~eA. Then there 
exists s > 0  such that the following holds: let t' : A-+R + be the map t '  (fl) = 
t(fl) for fl+-~ t ' (~)=s;  let g e G  e be any element all of whose entries as 
well as those of g -1 when reduced to the simplest form have denominators 
which divide p ,  t then 

KAt ,  q g n KAt~l~O 

only if  g~P~. Moreover / f e>0  is any given number, such that t ( ~ ) - e > 0 ,  
then we can choose s to satisfy further the following: if  x = k .  a .  O, k e K ,  
a e A v ,  Oeq and x g = k '  �9 a' �9 0', k' eK, a' eA t  O' ~th then ~(a ' )<t (~) -e .  

Remark. The first part of the 1emma is due to Boreal [2]. The proof 
below however is different from that of BOREL and is included because 
the same technique yields both results. 

Proof of Lemma 2.1. We first remark that 

q'= {a Oa- l l a  ~A, ,  Oerl} 

is again a relatively compact subset of PR (for a proof, see [2]). Clearly, 
we have 

K A ,  l l ~ K q ' A  t and K A r q = K t f A , , .  

Now Kt/' being a relatively compact subset of G, there exist constants m, 
M > 0  such that for any v e V  and YeKtl ' ,  we have, denoting A d g  
(for geG) simply g, 

(I) ml I[vl[2_-__ II YvII2<M1 Ilvll ~ 

where [1 [[ denotes the norm on g defined by the hermitian scalar product 
with respect to which {ei}l ~ N  is an orthonormal basis. Suppose now 
that XeKAt_,rl and X'eKA,_tl. Consider now any ei~g p, f l e ~ .  Now 
X may be written as Ya where a~At,  and YeKq' .  In view of (I), then 
we have 

IIX eillZ < M1 Ila eillZ < M l ~ ( a )  z tleill 2. 

Now since f l ~ ,  we have 
#=~+ ~mr(O)-O 

OEA 
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where m'p(O)>>_O. Now, since a~At,  

/~(a) 2 = ~ ( a )  21-[ O(a)2""~~ t'(~) 2 I-[ t'(O) 2m"~~ 
O ~ A  O ~ A  

It  follows that if we have t'(O)<t(O) for all OeA, then 

II X e~ II 2 < M1 t,(~)z 1-I t(O) ~"'#'(~ 
O e A  

so that  if 
M 2 = sup { I-~ t(O) 2 m#,(o)} 

we have for any ei~u~, 

(II) I1X el t12 <= M1 Mz t'(~) 2. 

On the other hand let v be any vector in the lattice La such that the 
component  of v in 3 @ n -  is non-zero. Then v has a non-zero component  
either in ~ or in one at least of the g-p for some fl~O+. We fix one such 
non-zero component and denote it by Vl. Clearly v I ~La. Now for any 
X'~KAt_q, we have X ' =  Y'a'  where Y'~Kq '  and a'~At so that  

IIX'v[IZ=llY'a 'v l lZ>m [la' vii 2 

in view of (I). Also since the { ~ } ~ _  and 3 are mutually orthogonal 
subspaces each stable under A, it follows that  

I[ X'vl[Z > m~ Ila'vl[I z 

Now if vlE~ -a  for s o m e / ~ + ,  we have 

11 a '  vl [[z = f l ( a , ) -  z 11 vl[l 2. 

Now a'~At;  on the other hand, 

~= Z mA~ o 
O E A  

with m# > 0 so that 

fl(a') = [-I O(a') m"<~ < I-[ t(O) m#<~ 
O e A  O e A -  

I t  follows that 
[I X '  vl[12>=rnl ~-I t(O) -2m#(~ 1[ vii[ 2. 

O c A  - 

On the other hand if v1~3 then 

II a' ol II z = 11 ol II 2 

so that  llX' v~lle>m~[lv~ll z. It  follows that if we set 

mz =Inf (1 ,  Inf  l--[ t(O) -2m'(~ 
# t O  + Oed- 
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we have for any v in .~ which has a non-zero component in 3 O n -  and 
X" ~KAffl, 
(III) ]l X'  v II 2 > m 1 m2 [I va [12 ~> m, m2- 

(Since r i f l e ,  llvlll2>__ 1.) Note that m2, M2 depend only on t. Also m 1 
and M, are determined by 11 and t since ,/' is determined by them. Now 
let c >  0 be any positive constant such that 

ml m2 c2<  
MI M2 p2 

(iv as in the statement of the lemma). We then claim then for any choice 
of s<c, the first assertion of the lemma holds. Suppose then that 
X~KAt_,q and X'~KAt*I and that X g = X '  for some gEG e satisfying 
the conditions stated in the lemma. Now for e~eu,, we have in view 
of (II), 

[I x e~ [l 2 < M1 Ms t,(~) s < M1 M2 c s. 

On the other hand if g -  I e~ is not contained in n, it has a non-zero compo- 
nent in 3 @ n -  and since p .  g-le~s we have in view of (III) 

2 1 
Il X e, ll2=HX'g -~ e, tl = 7  llX' p g- l  e'll2 

> = - - ~  > M,  M2 c 2. 

Thus we see that for e~u~,  g-leien.  In other words g - l ( u ~ ) c n .  Taking 
orthogonal complements with respect to the Killing form, this means 

g -  l(P~)~n O~ 

i.e. p~Dg(n~3) .  On the other hand p ~ n ~ 3  or going over to the 
corresponding groups, P,  contains both P and gpg-1.  Now gPg-~ 
is a minimal parabolic subgroup of G defined over Q so that G/(gPg-~) 
is compact. It follows that PJ(gPg-1) is compact and hence that gPg-1 
is a parabolic subgroup of P~ defined over Q as well. But now P is 
a minimal parabolic subgroup defined over Q of P ,  as well so that 
there exists u~P~ such that uPu -1 =gPg-~. But then u-lg normalizes 
P;  but P is its own normalizer. Hence u-~g~P~P, .  It follows that 
gEP~. Thus the first assertion of the lemma is proved. We note further 
that since g~P~, g-~(u , )=u~.  

To prove the second part of the lemma, we first observe that if 
reLa is any vector such that it has a non-zero component vl in g~, we 
have for X' =k'a'O', k'~K, a'~A,, O'~rl, with ~ ( a ' ) > t ( ~ ) - e  

(IV) IlX'vll2>_ml Ha' v[12=~(a') 2 IlvIIs>(t(~)-e)Zml. 
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(Since yield', Ilv~ll~ 1.) Choose cl > 0  such that 

[ m~ m 2 ( t ( a ) - e )  2m c = nf MS-MSU' 

Then for s<c~, we see from the preceding that 

KAcq gc~KAtq~eO 

only if geP~. Suppose now that XeKAt_,q and X' =Xg=k '  �9 a' �9 0 with 
k'eK, a'eA~, Oe~l and ~(a')>_t(a)-e. Then if for some eiett~, g- le i  
has a non-zero component  in g~, we have in view of (II) and (IV), 

(t 
m-! < fl X '  g -  ~ e, [I 2 = II X e, [I 2 < M~ M 2 t'(~) 2 < M I M2 r 

since s<cl (once again note that p g-~  e~ belongs to the lattice). It  
follows that g -  l(u~) is orthogonal to ~ .  But we have seen that g -  l(u~) = u~ 
and g~ ~ u~, a contradiction. It  follows that for any XeKAt,rl if Xge KAt rl, 
X g = k ' .  a'O', k'eK, a'eAt,  O'erl then c~(a')<t(~)-e. 

Remark. The denominator of the entries of y e F  when reduced to 
the simplest form remain bounded and so there is a common integer p 
divisible by all of them. The same remark applies to the set of matrices 

U q iFq f  1 where qi . . . . .  qrn~Ge" 
j = l  i=1 

w 3. Construction of the Function 

An element geG~ can be written in the form g=kgagOg, keK, 
aeA, OeP~ here ag is unique and the map  g~-,ag is a smooth function 
on Gn which we denote by H. We let e t a  also stand for the smooth 
function c~ o H on G R with values in R +. If 

a~A 

is any real linear combination of simple roots we let 2 also stand for 
the (smooth) function 

1-[ 

We fix a set of representatives ql, ..., q,,eGo for the set of double 
coset classes with 1 =qi  for some j. Then we can find real constants 
r, t, e with r>t+~>t>O and a relatively compact open subset ~/ of 
Pc such that the following conditions are satisfied (see BOREL'S Theorem 
and Lemma 2.1 (w Let r:  A o R  +, r ' :  A ~ R  + and for aeA, ~r_': A ~ R  + 
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be the functions defined as follows: r(0)  = r  for  all O~A, r ' (0)  = r + 2 e  = r '  
for  O~A and , r ' ( 0 ) = r + 2 e  = r '  for  0# :a  while , r ' ( a ) = t + e ;  then we have 

- ( ?, ) (i) U K A ,  tlq i hence KAr, qq~ i s a f u n d a m e n t a l d o m a i n f o r F .  
~ = 1  - " =  - 

(ii) KA ,_, q qiTc~KA~, q qj#O for  ~eF only if ql? q21eP~. 
(iii) If k, k '~K, O, O'eq, a~A ,_,, a'eA,_, and k a  0 qi7 =k'  a'O' qj for  

some y e F  then e(a')<r. 

(iv) For  i = 1  . . . .  , m, (qi-~ qi) (r c~qi-~ P~ q i )=qf  l P~ ql. 

In  view of (iv), (ii) is equivalent  to 

(ii') K A ,, P~ qlyc~KA,  _, P~ qj#O for  y e F  only if qi? q f l e P ~  �9 

Remark 3.1. The choice of t and ~ in the above is very wide. We 
could replace them once chosen by anything smaller. Thus,  we might  
a t  any  stage demand  tha t  they be smaller than  any positive cons tant  
depending upon  r. 

Tha t  we can choose a t/ relatively compac t  in P a  and satisfying (iv) 
follows f rom the fact  tha t  

q71 pO ql/(qF1 pO ql c~ F) 

is compact .  By enlarging it if necessary we can choose an r > 0 such tha t  
(i) holds (this is the theorem of BOREL). Then we can take e > 0  any 
constant  such tha t  r -  e > 0 and by appeal ing to L e m m a  2.1 select a t so 
tha t  (ii) and (iii) are satisfied. (Note  tha t  the entries of all the elements in 

U qi?q-j 1 

when reduced to the simplest  fo rm have denomina tors  which remain  
bounded  and  so we can find an integer p which is divisible by all of them.) 

In the sequel we fix q~ . . . . .  qm, rl, r, t ,e  chosen as above.  Let  
(p: R + ~ I  (the unit  interval) be a smoo th  funct ion such tha t  

i) q~ (x) = 1 for  x_-< t, 

ii) q~ (x) = 0 for  x_-> t + e and  

iii) q~' (x) __< 0. 

Also let ~ be the C ~ funct ion on R + into the unit interval defined by 

~ ( x ) =  1 -~p (x )  for  x < r ,  

~ ( x ) = q ~ ( x - r + t )  for  x > r .  

For  a subset I = A ,  we define ~ :  G s ~ I  by 

~,(g)----- 1[-[ (p(a(g)) 1-[ ~ ( a ( g ) ) .  
r  a ~ A - I  
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Then the function ~ ( g )  is invariant under the action pO on the right. 
Let 

aELI 

be any real linear combination of the fundamental weights (2= is defined 
by (2=, fl)=6=p for fleA), such that m=>0 for all 7~A. Then for any 
subset I c  A, we have 

= e l  = e A - I  

where mx=>O (in fact mt,>m,) and n1=>O. (See Lemma 1.1.) We set 

A 1= ~, mi ,  •. 
= E l  

We denote again by A t as before the function it defines on GR. For later 
use we state the above facts as 

Lemma 3.1. 
A~= ~ m~=l~ with mr=>0.  

Also, for #cA A x u p - A l  is a non-negative linear combination qf the 
simple roots; moreover the coefficient Czpp of # in this expression is 
non-zero if #r 

Proof. The first assertion is already proved. To prove the second 
assertion we need only consider the case #r  Let I' = l u #  and 

A = Z m , ' , 2 = +  Z nv= 'a  
= e l "  = e A - l "  

where mz,~, n, ,=>0 (Lemma 1.1). On the other hand by Lemma 1.1, 
we have, 

c ~ 1  = e a - - I  

where aa=, ba=>0. It follows that 

A = ~ (mr= + m,, a �9 a a =) 2= + ~ (nz,= + m,, a b o =) ~ + mva ba a" #" 
= e l  = ~ A - I "  

It follows that 
A1,- A jr = mra ~ ba =" ~x 

= e a - I  

and since mva>O, and ba=>0 for all ~eA - L  to conclude the proof of 
the lemma we need only show that baa>0. To see this, we have, since 
#r 

1=(2 a,fl>= Z ba,(=,#>; 
= e a - I  
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since bp~>0 and (~, f l ) < 0  for ~4:fl, we must necessarily have bpa>0.  
Hence the lemma. 

Consider now for each k, 1 < k-< m, the function fk on G defined by 
the following series: 

fk(g) = ~ E~z(g~qkX)logA~(g~qkl)  " 
~, r (F/q~ apO qk ~ F) I = A 

This requires some justification. Firstly the functions g~4)~(g) and 
g~Az (g  ) are invariant under the right action of pO. It  follows that  if 
~', ~ " e F  are two elements such that y " = ~ ' -  ~ with ~eq~lP ~ qknF 
we have 

~z(gy,,qkl)=ci)1(gy,, q~l qk y-1 q~X)=~x(gy, qk~); 

similarly for At. Hence formally the series makes sense. Next we assert 
for fixed geGk, all but a finite number  of terms of the series vanish 
identically in a neighborhood of g. To see this first notice that  the 
support of ~ is contained in the interior of the domain KA,_,P~ on 
the other hand we may assume that g is contained in some Siegel domain 
~ , ,1"  Now the set 

{~ 1 ~ r .  s . . ,  r qk I n K A,'P~ *O} 

is finite rood P ~  in fact in view of (iv) in the choice of q, we see 
that each element of the above set is equivalent rood P ~  F to one of 
the elements in 

{:,~r I s_,,., ~ n KAh_,rl qk#:f~} 

(note that qj = 1 for some j )  which is finite according to the theorem of 
BOREL (w Hence f,(g) is a smooth C ~ function on G; it is clearly 
invariant under F. The main result in more precise form then is 

Theorem. The function f =  --Zfk is a smooth function on G R invariant 
under F. The function f on the quotient GR/F defined by f maps GR/F 
properly into [c, + 0o)for some ceR and has no critical points outside a 
compact set. 

Proof. To prove t h a t f  is proper into [c, + 0o) it is sufficient to show 
the following: (i) f is bounded below and (ii) let x, eKA~_. ~I qk be any 
sequence such that  if we write x. =k.a.O.qk, k.eK, a.~A~, O.e~l, c~(a.)--*O 
for some c~eA, then f (x . )~oo.  We will show in fact that t h e f j  remain 
less than a fixed constant M, while fk(x.)  tends to - o o  

f j (g )  = ~, ~ ~1(gYq71)logA,(g~q;1) �9 
y E ( F / q f  lP~  I ~ A  

Now when geKA,~I qk, the above sum reduces to a finite sum 

Z Z q~,(gYqfl) l~ ') 
~ r  I ~ A  
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where S]k is the image in F/(qTXp~ of the set 

S]k=(~lr~r,  K A, rl qk ~ q;l  n K A~_P~ ~)}  

that  is of the set 

(rlT~r,  KArrlqk~,nKa,  P~ q]=O}. 

Now since we have assumed ~/ so chosen that 

(q;t  ~1 q j) (F n q;l  pO q j) = q;1 pO q j, 

we see that for any ~ S j k  there exists ~'~Fnq71P~ such that 

K Arrl qk ~7' nKA,_rl qi~O. 

It  follows from the theorem of BOREL that Sik is a finite set. Thus to 
show thatf(x~) tends to infinity as n tends to infinity it suffices to show 
that each of the terms in the right hand side of (I) are bounded above 
and that w h e n j = k ,  at least one of them tends to - oo (as n tends to ~ ) .  

Now whenever O~(g ~ q71)~eO, g 7 qfl~KA~_ , pO so that O(g ~ qj-t) 
< r '  for all OeA. On the other hand A t is a non-negative linear combina- 
tion 

~, m, oO 
O e A  

of the simple roots. It  follows that 

Az(g~ q~l)= I-I (gr q~-~)mr~ r'"r~ 'zm,~ 
O e A  

Since 0 < ~ z ( g  r qj-~)< 1, we see that 

49,(g r q f 1) log At(g ), q;  ' ) < ~  rata log r ' ,  

a constant independent of g~KA~_ t 1 qk. Thus we have only to show that 
for a suitable choice of )'~Skk and I~A,  

q~,(Xn ~ qk 1) log Ax(X n 7 qk ~) 

tends to - o o  as n, tends to infinity. We take ~ to be the identity coset 
in Skk. Now x,=k,a.x~qk where kneK, a, eA,, u,~q and a(a~) tends 
to zero as n tends to infinity. We choose for I the following subset: 

{0I ~0(0(a.))>�89 for all large n}. 

This subset is non-empty as it clearly contains ~(ct(a.)~0). With this 
choice of I and ~ consider ~1(xn~ q~-l). We have in fact, (because of 
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our chice of ?) 

~t(Xn )' qk 1)= ~x(X n q/1)___ (/ii (k n an Un) 

= ~,  (a,) = l-I 9 ((0) (an)) I-I ~b ((0) (an))- 
O e I  O ~ A - I  

Now, for OeI and n large 9((0)(a.))>�89 and for 0r 9(0(a.))<�89 so 
that @(O(an))=l-9(O(a.))>�89 (note that O(a~)<=r and in the range 
x<r,  9 ( x ) + ~ ( x ) = l ) .  It follows that for n large, 

q~ (an) > �89 1 

where l is the number of simple roots. Thus ~i(xn? qk~)>�89 for all 
large n. Hence we have only to show that log Ax(x~)' q ~ )  tends to - 0 o  
as n tends to infinity. 

Now by Lemmas 1.1 and 3.1, we have 

Al=b~2,+ ~ a~oO 
OeA-~t  

where a~o>O and b~>0 since aeI  by our choice of L Hence 

At(xn ? qkl)= A1(Xn q;1)= A1(kn an un) 

=AI(a,,)='~.(an) b~" 1-I O(an) al~ 
O E A - - .  

< 2, (an) b~'. r' r~ ~l o 

='L(an) ~ C 

(note that aneA,_,) where C is a positive constant. Once again, by 
Lemma 1.1, 

2~= ~ C~o 0 
OEA 

where C~o>O and C~=>O so that 

E C~o 
2, (a n) b~ = I~ Oc" o (an) < o~ c~ "(an) r '~ 

8 r  

thus 
A1(xn ? qk 1) < ~bl c. ,(a,) .  M 

where M>O is a constant independent of n. 

Hence 
log AI (xn y q f  1) =_~ log M + b~ C , ,  log a (an) 

where b~. C, ,>O;  but a(an)~O as n-~oo so that log Ar(xn? q s  0o 
a s  n--~ o0. 

Thus f is proper into the real line and bounded below. 
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w 4. The Critical Points of f 

In this section we complete the proof of the main theorem. Continuing 
with the notation of w 3 we need only shew the following. Let a be the 
Lie subalgebra of g corresponding to A. Let Has e a be the unique element 
of a defined by 

(exp t Hz.) = e t ~" r (exp is the exponential map) 

for ]~A. Then we have fixing an a tA ,  the following 

Assertion. For x~KA cq qj, we have for l <k<m 

and 

{~sfJ(xq~lexpsHa~qj)}s=O >0. 

(We recall that A.r_={a[asA, fl(a)<r for flea and 0t(a)<t} where 
r, e, t, ~ etc. are chosen as described in the beginning of w 3.) 

(This assertion completes the proof of the theorem in view of the fact 
that it implies that f has no critical points in 

m 

I2~= U U KA~rqqk 
�9 ~ a  k = l  

and that the complement of O, in the fundamental domain 
/n 

~2= U KA~tlqk 
k = l  

is relatively compact in GR. ) 

Proof of the Assertion. We have, writing x =k .  a. 0 qj where keK, 
a~A, O~t~, 

d 
ds ~I (x q/1 exp s Ha~ qj 7 q[ 1) 

= d - ~ I  qg(fl(kaOexpsH~.qjYq;') I-I t~(fl(kaOexpsHz.qj~qkl)} �9 
as (gE~ ,~a-x 

Clearly the right hand side is non-zero at s = 0  only if 

24 

kaOexpsHa, qjTqkt e ~ KApr_P~ 

Inventiones math., Vol. 4 
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for all small values of s; in particular only if 

k a O. qj 7 qk 1 e ("1 K A,,_P~ 
# e l  

On the other hand, k a OeKA,_~l. It follows from (ii') that 

q . i rq ;~e  0 pp. 
#eluat  

Writing then qjy q~-i in the form k'la'lO'l, where k' lsK, a'leA, O'leP ~ 
it is easily seen that k~ and a~ commute with exp s Ha,. It follows that 

k a 0 exp s Ha. qj V qk 1 = k a 0 k~ a~ exp s H; .  0'1 

= k l  al exp s Ha. 0" 

where k leK,  a leA are independent of s and O'eP ~ Now if 

d 
d--s- 4I  (x q j- 1 exp s Ha~ q1Y qk 1) 

is to be non-zero at s = 0  we have necessarily, for all fleI, for small s, 

fl(k I a 1 exp s Hx. 0~) =f l (a l )  �9 fl(exp s Hz.) < t + 

and for all flCL 
fl(al) fl(exp s H j  <=r + e. 

Also in view of (iii) since we have assumed that xeKA,_t l  qj, we have 
necessarily ~(al )<r .  Now for fl:4=g, we have, 

Also, 

d 0's)--d ds fl(kl al exps Hx~ f l (a l )=0" 

d a(kl al exp s Ha. 0s,) =d-~ ct(al) eS=a(al) e ~. 
ds 

It follows that we have if a e l  

{ d ~  ~i(  x q j- l exp s Ha. qj 7 qk 1)ts=O 

= I-[ q~(fl(XTqkl)) 1~ ~/(fl(X?qkl))CP'(a(XTqkl)) "~(al) 
# e l - ~t p e ,~ - I 
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where a 1 is defined by 

xTq~l=kla10, k i e K ,  aieA, 01eP ~ 

Similarly if ar with the same notation 

{ff-~ ~l(xqflexpsH~ qj 7 qk- 1)}~=o 

= 1-1 q)(fl(x ~, q; 1)) 1-[ ~(fl(x 7 q~ 1)) ~'(a(x r q~ 1)). a(aa). 
p e I  flcA--l--a 

Also as already noted, for any 7 such that the above derivative is non- 
zero, we have necessarily 

a(x y q [  l) < r 

so that r 7 q~-l))= - f f ' ( a ( x  ), q~-i); since in the domain {yly~R, 
y__< r}, we have 

(y) + r (y) = 1). 
Thus we see that we have 

{ff-~ q),(x qf~ exp s H ~  qj7 qk- ~)}~=o 

= + a ( a l )  l-[ q)(fl(x~'qkl)) I-[ ~k(fl(xvq~t))q~'(a(xTq;1)) 
pel - -~  #eA--l--~t 

according as c~eI or a e A - L  Once again, 

qr (a(x 7 q; 1))=0 

if a(x ~' q~J)~[t, t+~]. Consider now, when t<a(x ~, qj-i)<t+e, the 
s u m  

~{-~,(xqf 'expsH~q~Tq~)}~=olOgA,(x~q~) �9 

We divide the set of subsets of A into two parts: those which do not 
contain a denoted ~ and the rest; then the sum can be written as 

a(al)q/(a(xTqkl)) E ~-[q)(fl(x~q~')) I-I ~k(fl(x~'qi')) 
l e d r f l e I  f l~A-- l -a  

�9 {logA I ~ ( x  7 qk- ' ) -  log A,(x 7 qk- ~)}. 

Now by Lemma 3.1, we see that 

log A~ ~ (x 7 q~- l) _ log At (x 7 qk- l) = log ( I-I fl~" ~ (x 7 qk- :)) 
#ezl 

24* 
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where c1~p>O and c i ~ > 0 .  Hence 

log A I u~(x ? qk 1)_ log AI(x ? qk 1) 

= ~ c*~l~logfl(x?q; I) 
#cA 

< ~, cr~alog(r+2e)+c,,~log(t+e). 

Now, as remarked in the beginning of w 3 (Remark 3.1) we could have 
assumed t so small that 

ci ~ p log(r + 2~) + ci ~log(t  + e) <O . 
[3 e A - ~  

We assume that t and e were chosen to satisfy this inequality for all aeA 
(in addition to our earlier assumptions). We then see that 

I" } E 2 ~-ss~,(xqf lexpsHa.  qJ?qk 1) l~ 1) 
I ) 'eF/(F c~ q,f 1 pO qk) s = 0 

is greater than or equal to zero for any xeKA,_tl qj: in fact tp and 
are non-negative functions while ~0' is non-positive in the domain 
{y lyE R, y < r} ; also log AI ,  ~ -  log A1 is non-positive whenever, 

t<~(x?q~l )<t+~.  

Finally writing as before x ? qs =k~a~O~, we see that 

d logA1(xqf lexpsH~,qjyqkl )  
ds 

d 
= ~ log {AI (a 1)" AI (exp s H J }  

= Ax ( H J  

where A I ( H J  denotes the evaluation of A I considered as a linear form 
on a on H ~ .  Now by Lemmas 1.1 and 3.1 AI(H~)>O and is > 0  if 
~eI .  We thus see that 

{ - ~ S  f k ( x  q ~  expsHx~qJ)}~= o 

is greater than or equal to zero. Moreover, since ~i (x .  q~-l) # 0 for some 
I c A  with c~eI (note that a(x q21)<=t) we see that for  k=j,  the above 
is greater than zero. Thus the proof of the theorem is complete. 
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