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ABSTRACT

There is resurgent interest in the use of probiotics to maintain gastrointestinal and systemic
health, driven by recent advances in knowledge of bacterial interactions with the epithelium
and innate immune system of the intestine. The effects of probiotic bacteria on the intestinal
epithelium and their downstream consequences are reviewed. Probiotics prevent pathogen
adherence and invasion of the epithelium, partly by blocking adherence sites but also by
upregulating gene expression of MUC2 and of antimicrobial peptides.  Metabolic effects of
probiotics on the intestinal epithelium include production of short chain fatty acids which
influence epithelial cell metabolism, turnover and apoptosis. Bacterial metabolism of
unabsorbed dietary constituents with production of free radicals and phenolic metabolites
can lead to DNA damage and cancer; probiotics restore eubiosis and potentially prevent this.
Probiotics alter expression and redistribution of tight junction proteins and reduce intestinal
permeability limiting absorption of noxious molecules from the gut lumen. Most studied are
the effects of probiotics on epithelial cells which are the first line of innate immune-capable
cells that encounter luminal flora. Probiotics, through secreted molecules, influence the
innate inflammatory response of epithelial cells to stimuli from the gut lumen, and reduce
mucosal inflammation. Through effects on dendritic, and possibly epithelial, cells they
influence naïve T cells in the lamina propria of the gut and thus influence adaptive immunity.
These varied effects of probiotics have implications for the treatment of several gastrointestinal
diseases including antibiotic-associated colitis, acute gastroenteritis, inflammatory bowel
disease, colon cancer, and irritable bowel syndrome.
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Introduction

Probiotics (probiosis = for life) are defined as living micro-
organisms which, when administered in adequate amounts,
confer health benefits on the host.1,2 Although fermented foods
containing live micro-organisms have been used for centuries,
the recent surge of interest in probiotic preparations is
attributed to our increased understanding of the innate immune
system and how it distinguishes and reacts to harmless or
beneficial bacteria as opposed to harmful bacteria. Probiotics
are ingested; they survive gastric acid and duodenal bile and
reach the small and large bowels to exert their effects. Their
first prolonged contact with the human host is with the
epithelium of the gastrointestinal tract, which thus acquires
much significance when trying to unravel the physiological
effects of probiotics.

Probiotics must be ingested regularly for any health
promoting activity to persist. It is possible to manipulate (at
least temporarily) the composition of the intestinal microflora
through dietary supplementation with probiotics. The wide
marketing of probiotics throughout the world confirms the
popularity of this concept.  Most probiotics in current use

comprise bacteria, either Lactobacilli or Bifidobacteria,
although some yeast species are also used.  Lactobacilli are
Gram-positive, non-spore forming rods or coccobacilli.3 They
are found in a variety of habitats where rich, carbohydrate-
containing substrates are available, such as human and
animal mucosal membranes, on plants or material of plant
origin, sewage and fermenting or spoilt food. Lactobacilli are
normally found in the intestine of infants in high numbers, but
decline rapidly after infancy.4 Bifidobacteria are non-motile,
non-sporulating Gram-positive rods with varying appearance.
Most strains are strictly anaerobic. They constitute a major
part of the normal intestinal microflora in humans,5 appearing
in the stools a few days after birth and increasing in number
thereafter. The number of bifidobacteria in the colon of young
children is high, but this number decreases rapidly with age.4

Probiotics may influence gastrointestinal health in a variety
of ways (Table I). This review outlines the scientific evidence
which suggests that interactions of probiotic microorganisms
with the intestinal epithelium leads to health benefits in the
gastrointestinal tract.
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Probiotics and effects on intestinal luminal
metabolism and epithelial cell function

The human gastrointestinal tract contains over 500 species
of bacteria. Some of these are harmless to the host, some are
beneficial and yet others are harmful to the host. In health
there is an optimum gut flora balance; the beneficial bacteria,
such as Lactobacilli and Bifidobacteria, predominate. It is
suggested that the balance should be such that at least 85%
of the intestinal microflora in a healthy person should be
beneficial bacteria.6 Under certain conditions this balance, or

eubiosis as it has been eloquently termed, is lost leading to
dysbiosis. A reduction in beneficial bacteria such as Lactobacilli

and Faecalibacterium prausnitzii have been implicated in the
pathogenesis of inflammatory bowel disease and to a lesser
extent in colon cancer.7-11 Such an altered bacterial balance
may potentially change fluxes through the metabolic pathways
in epithelial cells, or it may alter immune balance through
altered innate immune activation involving epithelial and
subepithelial cells. The regular ingestion of probiotics is one
possible way of restoring balance in the intestinal microbial
ecosystem.

Luminal antagonism of enteric pathogens

Probiotics can provide protection against a broad range of
pathogens, including certain forms of Clostridia, Escherichia

coli, Salmonella, Shigella, Pseudomonas, and yeasts such
as Candida albicans. They may inhibit the growth of intestinal
pathogens by competing for nutrients consumed by
pathogenic bacteria or by producing substances that directly
affect growth of pathogens. These inhibitory substances
include metabolites such as lactic acid, short chain fatty acids
and hydrogen peroxide, that are inhibitory to both gram-positive
and gram-negative bacteria.12 They also include bacteriocins
and other soluble factors that inhibit the growth of pathogenic
bacteria. Lactobacilli produce bacteriocins such as sakacin,
lactocin, amylovorin and acidophilin.13 They exert antimicrobial
activity in vitro against pathogenic E. coli, Salmonella, Bacillus

cereus, Campylobacter jejuni and H. pylori. Bifidobacteria are
also known to produce bacteriocins (eg. bifidin and bifidocin)
and have antimicrobial activity against several pathogens
including E. coli, B. cereus, and S. aureus.13-15

Blockage of epithelial adherence and invasion by pathogens

Probiotic Lactobacilli and Bifidobacteria can adhere to
intestinal epithelial cells through surface-expressed
proteins.16,17 In the case of Lactobacillus casei it has been
shown that the bacteria bind to extracellular matrix components
such as collagen, fibronectin or fibrinogen.18 It is hypothesised
that some secreted factors of probiotics may inhibit binding of
pathogenic bacteria to the appropriate receptor on the epithelial
surface in addition to inhibiting epithelial cell invasion by the
pathogen.16,17,19-21 The surface of the intestine is covered by
mucus, which contains mucins secreted by intestinal epithelial
cells as a major component. It has been shown that probiotic
Lactobacilli upregulate the MUC2 mucin protein in epithelial
cell lines22,23 and inhibit attachment of enterohemorrhagic E.

coli.23 These findings have correspondingly also been detected
in vivo in rats, where a probiotic mixture of Lactobacilli and
bifidobacteria increased the secretion of mucin and
stimulated MUC2 gene expression (with minor effects on
MUC1 and MUC3 gene expression) in the colon.24 The
Lactobacilli present in the mixture were the most potent in
stimulating colonic mucin secretion. A major stimulatory effect
of Lactobacilli on MUC3 mucin mRNA expression and
extracellular MUC3 secretion has been shown in the HT29
colonic epithelial cell line.25

Effects of probiotics on luminal metabolism

Bacteria produce a variety of metabolites, some of which are
useful and others which are harmful to the human host. The

Table 1:  Intestinal effects of probiotics that may have an
impact on gastrointestinal health

Probiotic effect Outcome Implication for disease

Production of SCFA Proliferation of Helps mucosal repair
epithelium
Maturation of Anti-carcinogenic
epithelium
Apoptosis of Anti-carcinogenic
damaged cells
Increases vascular Helps mucosal repair
supply
Innate immune Decreased inflammation
effects

Production of lactate Antagonism of Prevents gastroenteritis
and other metabolites enteric pathogens Prevents C. difficile

overgrowth
Production of Antagonism of Prevents gastroenteritis
bacteriocins enteric pathogens Prevents C. difficile

overgrowth
Secretion of protein Prevents pathogen Prevents gastroenteritis
factors adherence to

epithelium
Altered luminal Xenobiotic Reduces production of
metabolism metabolism carcinogens

Increases breakdown of
carcinogens

Diverts nitrogen Ameliorates hepatic
breakdown to encephalopathy
ammonia through
alternate pathways
Reduces sulphide Prevents premature
production epithelial cell death
Reduces free Prevents epithelial DNA
radical production damage

Upregulation of MUC Prevent pathogen Prevention of
gene expression in adherence to gastroenteritis
epithelial cells epithelium
Altered tight junction Strengthens Prevents or ameliorates
production expression intestinal barrier inflammation

Prevents translocation
from gut and cytokine
release in liver disease

Immune conditioning Oral tolerance Prevents gut inflammation
in neonatal period
(pathways unclear)

Maintain Th1-Th2 Prevents allergic diseases
balance

TLR9 stimulation Maintains Th1-Th2 Prevents gut inflammation
balance

Increased defensin Antimicrobial Prevents gut inflammation
production effect
Increased secretory Increased Prevents gut inflammation
IgA clearance of

luminal antigens
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colonic bacteria derive metabolic energy from unabsorbed
carbohydrates in the lumen of the gut, fermenting them to
various products the most important of which are short chain
fatty acids. Short chain fatty acids such as acetate and butyrate
influence colonic epithelial function in many ways; they are the
major metabolic fuel for the epithelial cells, they influence gene
expression in the epithelium, and they influence epithelial
proliferation and barrier function.26-29 Reduction in short chain
fatty acid production may play a role in the pathogenesis of a
variety of gastrointestinal illnesses including antibiotic-
associated colitis, inflammatory bowel disease, colon cancer
and hepatic encephalopathy.26 Eubacterium rectale and
Faecalibacterium prausnitzii, two of the major short chain fatty
acid-producing bacteria in the colon, are reduced in number
in patients with colon cancer.22 Short chain fatty acids help in
differentiation of the colonic epithelium as well as in inducing
apoptosis in damaged epithelial cells, an action that is likely
to be useful in prevention of colon cancer. Probiotics stimulate
the production of short chain fatty acids by bacteria in the
colon,30 and may potentially be useful in disease conditions
where deficiency of short chain fatty acids are postulated to be
involved in pathogenesis.

Bacteria in the lumen of the intestine also produce
molecules that may be toxic to the intestinal epithelium. For
instance bacterial metabolites, such as hydrogen sulphide
produced by sulphate-reducing bacteria and extracellular
superoxide produced by bacteria such as Enterococcus

faecalis, can damage DNA in the colonic epithelium.31-33 These
changes may increase the rate of occurrence of somatic
mutations, and may result in development of colon cancer in
predisposed individuals. Sulphide interferes with metabolism
of short chain fatty acids and thus may cause premature death
of epithelial cells.34 Epithelial cells in the colon are important
sites of detoxification of bacterial metabolites, especially
phenolic metabolites resulting from protein breakdown,
produced in the lumen of the colon.35,36 Alterations in the balance
of bacteria in the colon may lead to the generation of more
metabolites than the epithelium can cope with. For instance,
damage of DNA induced by bacterial superoxide may result in
somatic mutations in epithelial cells that predispose to the
development of colon cancer. The administration of probiotics
can potentially reduce the levels of sulphide and superoxide
produced by luminal bacteria and protect epithelial cell
metabolic and repair processes.

Hepatic encephalopathy is another condition in which
bacterial production of ammonia and other metabolites from
nitrogeneous substrates in the intestinal lumen contributes
to pathogenesis. Traditionally the treatment involves
administration of an antibiotic or a prebiotic (eg. Lactulose) to
alter bacterial metabolism. There is now experimental
evidence that luminal bacterial metabolism may be directed
away from ammonia into other pathways, leading to reduced
systemic blood levels of ammonia and related metabolites.37,38

Effects of probiotics on intestinal epithelial tight junctions

The intestinal mucosal barrier is composed of epithelial cells,
the tight junctions between the cells, and the mucus layer
overlying the epithelium. The tight junctions between epithelial
cells are a significant component of the intestinal barrier. They
are made up of a number of proteins including the claudins,
occludin, zona occludens (ZO) proteins, and junctional
adhesion molecules, which together determine tight junction

structure and function.  Tight junction structure and function is
affected by a number of nutrients and bacterial molecules
which affect the expression of the tight junction proteins. Tight
junction protein expression may also be influenced by genetic
factors, resulting in barrier defects in celiac disease and
ulcerative colitis. A variety of probiotic bacteria, including
Lactobacillus rhamnosus GG, Bifidobacterium infantis,

Bifidobacterium lactis and Escherichia coli Nissle 1917,
appear to increase tight junction integrity and prevent tight
junction disruption by noxious chemical influences or
secondary to microbial pathogens.39-44 There is evidence that
the effects of probiotic bacteria are mediated by soluble
peptides which are secreted into the medium. The biochemical
pathways mediating the probiotic effect on tight junction function
include protein kinase C and MAP kinase pathways, and involve
both redistribution and altered expression of the tight junction
proteins occludin, ZO-1 and ZO-2 and claudins 1, 2, 3 and 4.
39,42,43

Probiotic effects on immune conditioning via the epithelium

and sub-epithelial cells

The intestine is sterile at birth. Colonisation by bacteria begins
immediately after birth and is influenced by the route of delivery,
hygiene of the neonatal environment, and maternal bacterial
flora in the diet.  The initial exposure to intestinal bacteria is
very important in immune conditioning of the host. The
commensal bacteria in the gastrointestinal tract are the
primary stimulus for the intestinal mucosal immune system
and are necessary for normal immune development. For
instance, bacteria-free animals grew to develop a Th2
predominant immune system with excessive production of IL-
4.45 In these animals intestinal exposure to the single
bacterium Bacteroides fragilis returned the immune balance
to normal by inducing the production of interferon-γ.45 This
cytokine, which is produced by CD4+, CD8+ and natural killer
cells, is essential for successful clearance of intracellular
pathogens such as viruses, and for host defense against
malignant transformation. Using genetically modified
Bacteroides fragilis in germfree animals, it has been shown
that polysaccharides produced by the bacteria were important
in this neonatal immune conditioning. In the absence of the
relevant polysaccharide, the animals had smaller spleens
and lymphoid tissue and their immune system responded
with a Th2 type of response. There is evidence from clinical
studies that administration of probiotics to adults may also
result in production of Th1 responses and interferon-γ. For
example, administration of probiotics regularly increased
resistance to viral infections in several settings.46-48 Whilst it is
not known how these effects are mediated, increase of
interferon-γ is a likely mechanism, given its role in containing
viral infections. The intestinal epithelium and intestinal
dendritic cells are both likely to play roles in the genesis of this
effect of probiotics. Another implication of the immune effects
of probiotics is the possibility that altered immune conditioning
in the intestine in the neonatal period may predispose
individuals to develop atopic diseases in later life, by skewing
their immune responses to a Th2 nature. Probiotic exposure
at an early age may potentially prevent expression of such
diseases.

The mucosal immune system of the gastrointestinal tract
is regulated in such a manner that it causes controlled
inflammation. Unlimited immune activation in response to
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commensal bacteria could lead to the risk of inflammation.
The intestinal mucosal immune system has developed
specialised regulatory, anti-inflammatory mechanisms for
eliminating or tolerating non-antigenic food substances and
commensal micro-organisms (oral tolerance).49 At the same
time the mucosal immune system must provide local defence
mechanisms against environmental threats such as invading
pathogens.

This important feature is coordinated by strongly developed
innate defense mechanisms ensuring appropriate functioning
of the mucosal barrier,50 existence of unique types of
lymphocytes and their products, transport of polymeric
immunoglobulins through epithelial cells into secretions51 and
migration and homing of cells originating from the organised
tissues in the mucosa and exocrine glands.

Oral tolerance is the phenomenon where the oral
administration of an antigen (to which the body is already
sensitised) produces a gradual reduction in the immune or
inflammatory response to it. This phenomenon is deficient in
germ-free mice due to a failure to generate suppressor cells.
Oral tolerance can be induced in these animals by colonisation
of the bowel with Bifidobacterium infantis.52 The supernatant
of Bifidobacterium breve has been shown to induce dendritic
cell activation and maturation and to prolong dendritic cell
survival through a toll-like receptor 2 (TLR2)-dependent
pathway.53 This is characterised by increased production of
IL-10, the regulatory cytokine, which may be responsible for
amelioration of inflammation.

Effects of probiotics on innate immune and inflammatory

pathways in epithelial cells

The most prominent effects of probiotics on the intestinal
epithelium relate to innate immunity. The immune system has
two components – the innate immune system which is
conserved across species54 and provides basic but non-
specific recognition of harmful motifs in the environment, and
the adaptive immune system which recognises specific
antigens and reacts to them. The gastrointestinal mucosa,
through its folds, villi and microvilli, provides the largest surface
area in the body, in excess of 100 m2, and contains a mucosal
immune system that protects it from the external environment.

The adaptive immune system in the gut, also known as
the gastrointestinal-associated lymphoid tissue, has inductive
and effector sites.49 The inductive sites include the Peyer’s
patches in the small intestine, isolated lymphoid follicles
scattered in the lamina propria, and mesenteric lymph nodes,
which together make the gut the largest lymphoid organ in the
body. The effector sites include lymphocytes in the lamina
propria surrounding Peyer’s patches and lymphocytes
scattered throughout the epithelium. The epithelial cells that
line the gut separate the lumen from the underlying lymphoid
tissue. Specialised areas of epithelium, such as the follicle-
associated epithelium overlying the Peyer’s patches and
lymphoid follicles that contain microfold M cells, are particularly
the site of endocytosis of foreign antigens or particles. Antigens
may also gain entry to the basolateral surface of intestinal
epithelial cells by disrupting the tight junction structure.

The intestine is rich also in cells that represent the innate
immune system.50 The epithelial and dendritic cells in the
intestinal mucosa possess pattern recognition receptors
(PRR) which recognise basic microbe-associated molecular
patterns that distinguish broad classes of harmful and

harmless bacteria. The Toll-like receptors (TLRs) are the best
known of the PRRs.55 In addition to recognising and initiating
signaling cascades for taking action against harmful bacteria,
these receptors also recognise some beneficial bacteria. The
innate immune cells, exemplified here by the intestinal
epithelial cells, secrete effector molecules including cytokines
and chemokines or microbicides, in response to microbes
that are perceived as pathogenic. Cytokines or chemokines
recruit inflammatory and immune cells to the intestine. They
may also influence the development of adaptive immunity.
Antigens, taken up by the microfold cells covering lymphoid
nodules, are processed through antigen presenting cells to
influence T cell differentiation into Th1 or Th2 cells, or T
regulatory cells. Th1 activation is characterised by
overproduction of interferon-γ and tumor necrosis factor-α that,
when excessive, leads to inflammation. Th2 activation on the
other hand is characterised by the cytokines interleukin-4 and
interleukin-5 and when excessive leads to allergic diseases.
T regulatory cells maintain the balance between Th1 and Th2
polarisation. It is now considered that probiotic bacteria,
through their effect on the innate immune system, play
significant ongoing roles in modulating T cell differentiation
and polarisation of the immune response. The epithelial cells
of the intestine participate in the innate immune responses to
luminal bacteria and provide communication between luminal
stimulants and underlying lymphoid elements in the lamina
propria. In response to interaction with microbes in the lumen,
the epithelium regulates the transcription of inflammatory
cytokines for excretion into the lumen and interstitium and
upregulates surface molecules, such as class-II antigens and
the polymeric immunoglobulin-A (poly-IgA) receptor, for control
in handling foreign antigens.51 This interaction with luminal
pathogens and commensal flora with the gut is termed
microbial-epithelial ‘’cross talk’’ and represents an important
contributor to intestinal barrier function.

The cytokine and chemokine response of epithelial cells
has been examined by observing their interaction with bacterial
pathogens. A variety of bacterial and viral pathogens up-
regulate the expression of chemokines in intestinal epithelial
cells.56-60 Most prominent among these are interleukin 8 and
CXCL-5. This ability of epithelial cells to produce various
factors promoting the infiltration of neutrophils and lymphocytes
to the site of infection serves as an ‘early warning system’,
whereby the epithelium signals to the underlying immune and
inflammatory cells. Probiotics block the release of chemokines
such as IL-8 and of inflammatory cytokines from epithelial
cells in response to pathogenic bacteria or other inflammatory
stimuli,59,61 and diminish pathogen-induced epithelial cell
death.62 Pre-incubation with Lactobacillus casei protected
intestinal epithelial cells against Shigella flexneri infection.63

Blockade by probiotics of the pro-inflammatory response of
the intestinal epithelium to both Shigella and Vibrio cholerae

appears to be mediated through blockage of inhibitory κB
degradation leading to suppression of NFκB signaling.59,63

Secreted factors may also be responsible for the effect of
probiotics in preventing pathogen infection of epithelial cells,
and these have been shown to act through ERK and p38
pathways to reduce interleukin-8 secretion.64 Probiotic
Lactobacilli and bifidobacteria reduced IL-8 secretion and
increased IL-10 secretion in response to Listeria

monocytogenes in an epithelial cell line.65 LPS-induced NFκB
activation and inflammatory gene expression in HT-29 cells
were attenuated by probiotic bifidobacteria.66 B. infantis and L.
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salivarius attenuated IL-8 secretion at baseline and in
response to S. typhimurium and flagellin.67 Upregulation of
MUC2 gene expression in epithelial cell lines also constitutes
a part of the defense system activation by probiotics.68

The anti-inflammatory effects of probiotics on the intestinal
epithelium have also been shown in other experimental
situations. Bifidobacteria modulated inflammatory cytokine
secretion in biopsies from ulcerative colitis patients.69 Similarly,
probiotic bacteria down-regulated secretion of tumour
necrosis factor-α in explant organ cultures of colonic mucosa
from patients with inflammatory bowel disease or animals
with experimental colitis.70,71

On the other hand, probiotic bacteria may also induce
production of pro-inflammatory cytokines by the intestinal
epithelium. It has been reported that the probiotic micro-
organism Lactobacillus reuteri transiently induced interleukin
IL-1, IL-6, interferon-gamma-inducible protein 10, and
macrophage inflammatory protein 2, while transiently
decreasing the regulatory proteins A20 and Toll-interacting
protein, in intestinal epithelial cells in primary culture.72 It has
been hypothesised that this transient activation in the presence
of established microflora may aid mucosal homeostasis.

The Paneth cells in the intestinal epithelium secrete
antimicrobial peptides such as the defensins and cathelicidins.
α-defensins secreted by Paneth cells are processed by
matrilysin or matrix metalloprotease 7 to form microbicidal
peptides. These are regulated through the NOD2 pathway
and probiotic bacteria may be important in maintaining Paneth
cell secretion of these antimicrobial peptides.73,74

Probiotic microorganisms reduce mucosal inflammation
in a variety of animal models of inflammatory bowel
disease.71,75-80 There are several genetically determined
models of colitis, where mice spontaneously or after
appropriate stimulation develop colitis, and where probiotics
attenuate or prevent colitis. It has been shown that the anti-
inflammatory effect of probiotics in experimental colitis may
be mediated by stimulation of toll-like receptor 9 by
unmethylated CpG DNA of the probiotic bacteria.81,82

Although this review primarily deals with the intestinal
epithelium, it must be recognised that probiotics have effects
on sub-epithelial immune cells, including the dendritic cells
and T- cells,83,84 and the effects of probiotics on intestinal
immune and other responses must ideally be considered a
composite response of the epithelium and sub-epithelial cells.
Dendritic cells are antigen-presenting cells found throughout
the gut that continually sample enteric antigens and have the
ability to discriminate the different microbial strains using the
pathogen associated molecular patterns. They then influence
naive T cells in the intestine, resulting in T-cell activation and
differentiation to Th1 helper, Th2 helper or regulatory Th3 cells.85

The interaction of probiotic bacteria with dendritic cells results
in the upregulation of  IL-10 production  and decreased
production of co-stimulatory molecules and Th1
proinflammatory cytokines. The increase in IL-10 production
may have anti-inflammatory effects mediated in part by
enhanced numbers of T–regulatory cells.86 Some studies
suggest that probiotic bacteria also upregulate expression of
non-epithelial cell molecules involved in host anti-bacterial
defense. Probiotic supplementation with strains of
Lactobacillus and Bifidobacterium increased the numbers of
IgA secreting cells in milk-fed infants.87,88 Secretory IgA levels
have been shown to increase following chronic ingestion of
probiotics.89,90

Implications of probiotic effects on the epithelium for
gastrointestinal disease

Antibiotic-associated diarrhoea and Clostridium difficile

diarrhoea:

The normal commensal flora in the lumen of the colon remains
in a state of balance, as harmful or pathogenic bacteria are
not allowed to flourish in significant numbers in health. The
administration of antibiotics (notably ampicillin, amoxicillin,
cephalosporins and clindamycin) in the host diminishes or
alters the normal colonic flora and leads to antibiotic-
associated diarrhoea. The pathophysiology of this condition
is not fully understood; it has been postulated that the altered
fecal flora results in changes in colonic carbohydrate digestion,
decreased short-chain fatty acid production and diarrhoea
secondary to colonocyte energy depletion.91 In some patients,
there is overgrowth of the pathogen Clostridium difficile, which
produces toxins that cause colonic damage. Clostridium

difficile is a gram-positive anaerobic bacterium that produces
two toxins, an enterotoxin A and a cytotoxin B, which cause
colitis.92,93 Both bacteria and yeast have been studied in the
prevention of antibiotic-associated diarrhoea and Clostridium

difficile-associated diarrhoea. In a meta-analysis of 10 trials
including 1986 children,94 the per-protocol analysis of 9
showed statistically significant results favoring probiotics
(Relative risk 0.49, 95% CI 0.32-0.74) in the prevention of
antibiotic-associated diarrhoea, with the number needed to
treat to prevent 1 case of diarrhoea being 10. Lactobacillus

GG, Bacillus coagulans, and Saccharomyces boulardii were
the most effective. On the other hand, probiotics were not so
useful in the treatment of C. difficile colitis. Of 4 evaluable
studies, only one study showed a statistically significant benefit
for probiotics combined with antibiotics while no benefit was
seen in the other studies.95 Although probiotics were not useful
in treatment of C. difficile colitis yet their metabolic effects
cannot be disregarded. Production of short chain fatty acids
may be necessary to regulate colonisation by C. difficile. It
may also be important via the effects of SCFA on epithelial cell
metabolism, blood flow and differentiation. It is also known
that probiotics up-regulate MUC2 and MUC3 gene expression
which may be responsible for the reduced colonisation by C.
difficile.

Acute gastroenteritis

Probiotics have been used widely in the prevention and
treatment of acute gastroenteritis and acute infectious
diarrhoea. A meta-analysis of trials involving prevention of
diarrhoea evaluated 34 masked, randomised, controlled trials,
and concluded that probiotics reduced the incidence of
antibiotic-associated diarrhoea by 52% (95% CI 35-65%),
reduced the risk of travellers’ diarrhoea by 8% (-6 to 21%), and
that of acute diarrhoea of diverse causes by 34% (8-53%).
Probiotics were more effective in preventing acute diarrhoea
in children, reducing the risk among children by 57% (35-
71%) compared to 26% (7-49%) among adults. The protective
effect did not vary significantly among the probiotic strains
used.96 A Cochrane meta-analysis evaluated the role of
probiotics in treatment of acute diarrhoea and concluded that
mean duration of diarrhoea was shortened by 30.48 hours
(18.51-42.46) in patients receiving probiotics.97 No specific
effect of individual probiotic preparations or of diarrhoea
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aetiology was noted. The effects of probiotics on epithelial cell
responses to bacterial pathogens have already been
described above. The clinical effect of probiotics in diarrhoea
may be partly related to the epithelial effects of probiotics and
to the effects of probiotics on the intestinal barrier including
mucus and antimicrobial peptides, which together contribute
towards defense against pathogens.

Inflammatory bowel disease

Animal models of inflammatory bowel disease (IBD) clearly
demonstrate a role for endogenous and pathogenic intestinal
bacteria in driving the abnormal immune responses. Although
mice deficient in the immunoregulatory cytokine interleukin
IL-10 develop spontaneous colitis, IL-10 deficient germ-free
mice remain disease free.98 Moreover, feeding specific
‘beneficial’ bacterial strains to these animals reduces
inflammatory lesions and modifies cytokine production. The
role of endogenous intestinal flora has also been
demonstrated in transgenic HLA-B2 rats with colitis,99 and
immune-deficient SCID mice reconstituted with
immunocompetent CD45+ T cells.100 Studies indicate that
probiotics can prevent or attenuate experimental colitis in a
variety of settings and using a variety of probiotics.
Administration of Lactobacillus reuteri significantly reduced
inflammation in acetic acid- and methotrexate-induced colitis
in rats.75 Lactobacillus species prevented the development of
spontaneous colitis in IL-10 deficient mice101 while continuous
feeding with Lactobacillus plantarum was useful in therapy of
colitis in the same knockout model.76  Bifidobacterium infantis

and Lactobacillus salivarius were able to attenuate
inflammation and reduce the ability to produce Th1-type
cytokines in the IL-10 knockout model.102 Lactobacillus

salivarius reduced the rate of progression from inflammation
to dysplasia and colonic cancer in IL-10 deficient mice.103 The
probiotic mixture VSL#3 resulted in a significant attenuation of
inflammation with a decrease of myeloperoxidase and nitric
oxide synthase activity of iodoacetamide-induced colitis.77

Although there is evidence of benefit from probiotic use in
experimental inflammatory bowel disease, it has been hard
to translate this to clinical medicine. Numerous clinical trials
have been conducted with probiotics in the management of
various situations in inflammatory bowel disease. The trials
in inflammatory bowel disease have been conducted in
different styles, using different probiotic preparations and very
variable end-points that do not allow adequate conclusions
regarding the utility of probiotics in IBD. Probiotics have been
used to induce remission in ulcerative colitis and have been
compared to standard therapy or placebo. Two recent reviews
of all available studies found no definite evidence that
probiotics were effective in inducing remission in ulcerative
colitis.104,105 Formal meta-analysis was not possible due to
heterogeneity in the organisms used, the dosages used,
duration of treatment, and comparators. A number of studies
have suggested that administration of a probiotic, non-
pathogenic Escherichia coli (Nissle strain 1917), is as effective
as standard therapy with aminosalicylates in the maintenance
of remission in ulcerative colitis.106-109 The data with regard to
the use of probiotics in Crohn’s disease is even less complete.
A recent Cochrane review of the use of probiotics to induce
remission in Crohn’s disease found only one evaluable study
with 11 patients.110 4 of 5 patients in the probiotic group
achieved clinical remission compared to 5 of 6 patients in the

placebo group. There was thus insufficient evidence to confirm
or exclude a role for probiotics in induction of remission in
Crohn’s disease. Three recent reviews, one a Cochrane
review, examined the evidence for a role of probiotics in the
maintenance of remission in Crohn’s disease.111-113 All three
concluded that there was no evidence to support a role for
probiotics in the maintenance of remission in patients with
Crohn’s disease. The only place in inflammatory bowel
disease management where probiotics appear to confer
definite benefit is in preventing the onset of acute pouchitis in
patients with newly formed ileal pouches, and in maintaining
remission following antibacterial treatment of acute pouchitis
in patients with a history of refractory or recurrent pouchitis.
The benefit is confirmed by a meta-analysis that reviewed 5
trials using the probiotic VSL#3.114

Irritable bowel syndrome

The pathogenesis of irritable bowel syndrome remains
unknown, and abnormal neural activation, neural innervations,
or abnormal innate immune responses have all been
implicated. The therapy of irritable bowel syndrome has
remained largely unsatisfactory. Against this background, there
have been attempts to evaluate a role for probiotics in the
therapy of patients with irritable bowel syndrome.

Several recent meta-analyses have examined the evidence
for benefit from probiotics in irritable bowel syndrome.115-118 In
all analyses, it appeared that probiotics were associated with
a modest benefit (approximately 20-24%) compared to
placebo. These were short term studies, and since irritable
bowel syndrome requires long term therapy whether probiotics
will provide sustained clinical benefit over longer periods of
time, and whether they are useful in specific sub-groups,
needs to be evaluated.

Colon cancer

Probiotics and prebiotics alter metabolic processes within
the lumen of the gut and within the colonic epithelium, which
impact on carcinogenesis.119,120 Such processes include
biotransformation of organic compounds to carcinogens,
detoxification of carcinogens, DNA damage and repair in the
epithelium, and apoptosis of damaged cells. There is
evidence from experimental models showing that aberrant
crypt foci are reduced and apoptosis of damaged cells
increased after probiotic administration.121-123 Butyrivibrio

fibrisolvens, a butyrate-producing bacterium, has been shown
to reduce aberrant crypt foci in experimental colon cancer; this
organism is found in the feces of apparently healthy rural
residents of south India,124 which may explain a lower incidence
of colon cancer in this region. However, clinical trials of
probiotic use in the prevention and treatment of colon cancer
in humans are scarce or non-existent. This may change in the
near future with a resurgence of interest in probiotics.

Probiotics in liver disease

In recent years, it has been recognized that several of the
manifestations of chronic liver disease including
encephalopathy, endotoxemia and bacterial peritonitis have
primary origins in the gut through translocation of molecules
or bacteria past the intestinal barrier. Probiotics enhance
intestinal barrier function; they also influence innate immune
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activity and adaptive immunity. Probiotics have therefore been
tried in the therapy of chronic liver disease. Small pilot studies
or open label studies suggest that probiotics may benefit
patients with non-alcoholic steatohepatitis, alcoholic liver
disease, and minimal hepatic encephalopathy and lowers
endotoxemia in liver cirrhosis.125-129 These findings need to be
confirmed in large randomised trials before a place can be
established for the use of probiotics in chronic liver disease.

Conclusion

The interaction of bacteria with the intestinal epithelium has
been very well characterised and understood in recent years.
The role of probiotic micro-organisms in health and several
disease conditions of the gastrointestinal tract in experiments
has been detailed in this review. However, their use in clinical
medicine in the treatment of gastrointestinal disease is
considerably less well established, with clear evidence
showing benefit only in antibiotic-associated diarrhoea and
acute gastroenteritis. Large studies using standardised
protocols along with standardised bacteria types and doses
are necessary to conclusively establish a place for probiotics
in the management of other gastrointestinal diseases.
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