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In this work we will study the polarizations of both leptons (τ ) in the decay channel B → K∗τ−τ+.

In the case of the dileptonic inclusive decay B → K∗ℓ−ℓ+, where apart from the polarization

asymmetries of a single lepton ℓ, one can also observe the polarization asymmetries of both leptons

simultaneously. If this sort of measurement is possible then we can have, apart from decay rate,

forward backward asymmetry and the six single lepton polarization asymmetries (three each for ℓ−

and ℓ+), nine more double polarization asymmetries. This will give us a very useful tool in more

strict testing of the SM and the physics beyond. We discuss the double polarization asymmetries

of the τ leptons in the decay mode B → K∗τ−τ+within the standard model (SM) and the minimal

supersymmetric extension of it.

PACS numbers: 13.20He,12.60,-i,13.88+e

I. INTRODUCTION

Flavor changing neutral currents (FCNC) in weak decays provide a fertile ground for testing the structure of

weak interactions. Since these decays are forbidden in the tree approximation, they go through higher order loop

effects. Consequently they are sensitive to finer details of the basic interactions responsible for the process and as

such provide a natural testing ground for any theories beyond the standard model as an example. In the context of

B-decays, processes involving a dileptonic pair in the final state through the basic quark process b→ sℓ−ℓ+provides a

wealth of possible experimental data, accessible in the near future, that can be confronted with theoretical predictions.

Processes involving this basic quark transition fall into two broad categories, namely the inclusive ones and specific

exclusive processes. In both these there have been theoretical investigations involving total cross-sections, differential

cross sections and polarization studies. The last of these, namely polarization studies of the final state particles is

a particularly useful parameter, since the most popular extension of the standard model (SM) predicts considerable

modification of their values from SM results [1, 2, 3, 4, 5]. Polarizations involving a single lepton have been studied

extensively in B → Xsℓ
−ℓ+[2, 6], B → K∗ℓ−ℓ+[1, 7, 8], B → Kℓ−ℓ+ [3], B → (π, ρ)ℓ−ℓ+ [4], Bs → ℓ+ℓ−γ [5]

but recently Bensalam et al.[9] have pointed out that the study of simultaneous polarizations of the leptons in the

final state provides another observable that can be experimentally measured and provides yet another parameter in

testing models involving physics beyond the standard model. They have, in their, work carried out detailed analysis
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of the exclusive process B → Xsℓ
−ℓ+. On similar double polarization asymmetries of both the leptons this process

(B → Xsℓ
−ℓ+) should also get major corrections if we consider extension of SM [10].

In Ref. [9] they have confined themselves to the standard model. But as has been emphasized in many works

[11, 12, 13] that the supersymmetric extension of the SM gives major corrections to the processes based on the quark

level transitions b → sℓ−ℓ+. Supersymmetry (SUSY) extends the SM list of terms in the effective Hamiltonian and

associated Wilson coefficients; for the quark level process b→ sℓ−ℓ+it predicts the presence of two new quark bilinears

in the effective Hamiltonian, namely a scalar and a pseudo-scalar one. These new Wilsons come because of the extra

Neutral Higgs bosons (NHBs) spectrum of SUSY (and two Higgs doublet model) theories [11, 12, 14]. The effects of

these new Wilsons on various kinematical variables like branching ratios, lepton pair forward backward asymmetries

and lepton polarization asymmetries in various inclusive (B → Xsℓ
−ℓ+, B → Xdℓ

−ℓ+) [2, 11, 15] and exclusive

(B → Kℓ−ℓ+,B → K∗ℓ−ℓ+, B → ℓ−ℓ+γ, B → πℓ−ℓ+, B → ρℓ−ℓ+etc.) [1, 2, 3, 13, 16, 17] semi-leptonic and

pure leptonic (B → ℓ−ℓ+) [11] decays of B mesons have been studied in great detail. The new Wilson coefficients

(CQ1
and CQ2

) are proportional to mℓmbtan
3β and hence can be substantial when the lepton is τ and tanβ is

sufficiently high. We would like to include the effect of NHBs but at the same time focus on an exclusive process

B → K∗ℓ−ℓ+. Experimentally exclusive processes are easier to study but theoretically involve more uncertainties.

However for processes like B → K∗ℓ−ℓ+the theoretical uncertainties are somewhat in control since the unknown

hadronic matrix element involved can be related to charged current decay mode of the B meson. The analysis of these

has been subject to a lot of theoretical attention and one can use the results there as input to theoretical estimates

for the FCNC process. In this paper we take up the study of this exclusive process for determination of all the three

polarization parameters, longitudinal, transverse and normal for both the leptons simultaneously. This exclusive

process is amongst the more important contribution to the inclusive cross-section B → Xsℓ
−ℓ+and hopefully will

be amongst the first of the processes for which data will become available. Analysis of this process in the SM and

in the minimal extension of the standard model have been done by many authors. Lepton polarization asymmetry

in B → K∗ℓ−ℓ+was first discussed by Geng and Kao [7]. In their later work they also studied SUSY effects in this

particular decay mode [8], which as we have already mentioned is important because it is the highest SM branching

ratio in all the semi-leptonic decay modes. In particular Aliev et al.[1] have given the complete helicity structure of

the amplitudes and have focused on asymmetries related to the polarization of the K∗ meson. Our study is more in

the context of the simultaneous lepton polarization asymmetries and their sensitivities to various input parameters of

the MSSM (minimal supersymmetric standard model).

The paper is organized as follows. In the Sec. II we will present the effective Hamiltonian for the process we are

considering, and we will write down the matrix element in terms of form factors of the B → K∗ transition and then

will give results of the partial decay rate for B → K∗ℓ−ℓ+. In Sec. III we will give the analytical results of various

polarization asymmetries. The last Sec. IV is devoted to the numerical analysis, discussion and conclusions.

II. EFFECTIVE HAMILTONIAN

The process in which we are interested (B → K∗ℓ−ℓ+) originates from the quark level transition b → sℓ−ℓ+. By

integrating out the heavy degrees of freedom from the theory (MSSM here), we get the effective Hamiltonian of the

quark level transition b→ sℓ−ℓ+[1, 3, 11, 12, 14, 18]:

Heff =
4GF√

2
VtbV

∗
ts

[

10
∑

i=1

Ci(µ)Oi(µ) +

10
∑

i=1

CQi
(µ)Qi(µ)

]

(2.1)

where Oi are current-current (i = 1, 2), penguin (i = 3, . . . , 6), magnetic penguin (i = 7, 8) and semi-leptonic

(i = 9, 10) operators, and Ci(µ) are the corresponding Wilson coefficients renormalized at scale µ. They have been

given in [21, 24]. The additional operators Qi (i = 1, . . . 10), and their Wilson coefficients are due to NHB exchange

diagrams and are given in [11, 12].
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Neglecting the mass of the s-quark, the above effective Hamiltonian gives us the following matrix element:

M =
αGF√

2π
VtbV

∗
ts

{

−2Ceff7

mb

q2
(s̄iσµνq

νPRb)(ℓ̄γ
µℓ) + Ceff9 (s̄γµPLb)(ℓ̄γ

µℓ) + C10(s̄γµPLb)(ℓ̄γ
µγ5ℓ)

+CQ1
(s̄PRb)(ℓ̄ℓ) + CQ2

(s̄PRb)(ℓ̄γ5ℓ)
}

(2.2)

where q is the momentum transfer to the lepton pair and is given as q = p− + p+, where p− and p+ are the momenta

of ℓ− and ℓ+ respectively. VtbV
∗
ts are the Cabibbo-Kobayashi-Maskawa (CKM) factors and PL,R = (1∓ γ5)/2. In our

analysis we will assume that we can factorize B → K∗ℓ−ℓ+decay into pure leptonic and hadronic parts.1

Ceff9 has a perturbative part and a part which comes from the long-distance effects due to conversion of the real

cc̄ into the lepton pair ℓ−ℓ+ [6, 18, 26]:

Ceff9 = Cper9 + Cres9 (2.3)

where

Cper9 = C9 +
2

9
(3C3 + C4 + 3C5 + C6) + g(m̂c, ŝ)[3C1 + C2 + 3C3 + C4 + 3C5 + C6]

−1

2
g(1, ŝ)[4C3 + 4C4 + 3C5 + C6] −

1

2
g(0, ŝ)[C3 + 3C4]. (2.4)

The functions g(m̂i, ŝ) arise from the one loop contributions of the four quark operators O1, . . . , O6 and have the form

g(m̂i, ŝ) = −8

9
ln(m̂i) +

8

27
+

4

9
yi −

2

9
(2 + yi)

√

|1 − yi| ×
{

[ln
(

1+
√

1−yi

1−
√

1−yi

)

− iπ] , 4m̂2
i < ŝ

2 arctan 1√
yi−1

, 4m̂2
i > ŝ

(2.5)

where yi = 4m̂2
i /ŝ. The non-perturbative contribution to Ceff9 is associated with the real c̄c resonances in the

intermediate states and can be parameterized by using a Breit-Wigner shape, as given in [6, 18, 26]:

Cres9 = −3π

α2
κ[3C1 + C2 + 3C3 + C4 + 3C5 + C6]

∑

V=ψ

m̂VBr(V → ℓ−ℓ+)Γ̂Vtotal
ŝ− m̂2

V + im̂V Γ̂Vtotal
(2.6)

The phenomenological parameter κ in the above will be taken to be 2.3 so as to reproduce the correct branching ratio

of Br(B → J/ψK∗ → K∗ℓℓ) = Br(B → J/ψK∗)Br(J/ψ → ℓℓ).

Using the definition of the form factors given in Eqs. (A1),(A2) and (A4) we can get the amplitude governing the

decay B → K∗ℓ−ℓ+as2

MB→K∗

=
αGF

2
√

2π
VtbV

∗
ts

[

{

ǫµναβǫ
∗νqαpβKA− iǫ∗µB + i(pK)µ(ǫ

∗.q)C
}

(ℓ̄γµℓ)

{

ǫµναβǫ
∗νqαpβKD − iǫ∗µE + i(ǫ∗.q)(pK)µF

}

(ℓ̄γµγ5ℓ)

−iG(ǫ∗.q)(ℓ̄ℓ) − iH(ǫ∗.q)(ℓ̄γ5ℓ)

]

(2.7)

where the coefficients are

A =
4m̂b

ŝ
Ceff7 T1(ŝ) +

2A2(s)

1 + m̂K∗

Ceff9

B =
2m̂b

ŝ
(1 − m̂K∗) Ceff7 T2(ŝ) +A1(ŝ)(1 + m̂K∗) Ceff9

1 There have been attempts in the literature to go beyond a “naive” factorization [25].
2 In writing this we have used qµ(ℓ̄γµℓ) = 0 and qµ(ℓ̄γµγ5ℓ) = 2mℓ(ℓ̄γ5ℓ).
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C =
4m̂bC

eff
7

ŝ

[

T2(ŝ) +
ŝ

1 − m̂K∗

T3(ŝ)

]

+
2A2(ŝ)

1 + m̂K∗

Ceff9

D =
2V (ŝ)

1 + m̂K∗

C10

E = A1(ŝ)(1 + m̂K∗)C10

F =
2A2(ŝ)

1 + m̂K∗

C10

G =
2m̂K∗

m̂b
A0(ŝ)CQ1

H =
2m̂K∗

m̂b
A0(ŝ)CQ2

− 2m̂ℓC10

(

A2(ŝ)

1 + m̂K∗

+
2m̂K∗

ŝ
(A3(ŝ) −A0(ŝ))

)

(2.8)

where ŝ = s/m2
B, m̂K∗ = mK∗/mB and m̂ℓ = mℓ/mB. From the above expression of the matrix element given in Eq.

(2.7) we can get the expression of the dilepton invariant mass spectra as

dΓ(B → K∗ℓ+ℓ−)

ds
=
G2
Fα

2m3
B

210π5
|VtbV ∗

ts|2λ1/2

√

1 − 4m̂2
ℓ

ŝ
△ (2.9)

where

△ =
4

3
λ(ŝ+ 4m̂2

ℓ)|A|2 +
2

3

(ŝ+ 2m̂2
ℓ)

m̂2
K∗ ŝ

(λ+ 12m̂2
K∗ ŝ)|B|2 +

1

6

(ŝ+ 2m̂2
ℓ)

m̂2
K∗ ŝ

λ2|C|2

−2

3
λ

(1 − m̂2
K∗ − ŝ)

m̂2
K∗ ŝ

(ŝ+ 2m̂2
ℓ)Re(B∗C) +

4

3
(ŝ− 4m̂2

ℓ)λ|D|2

+
2

3

[λ(ŝ + 2m̂2
ℓ) + 12m̂2

K∗ ŝ(ŝ− 4m̂2
ℓ)]

m̂2
K∗ ŝ

|E|2 +
1

6

λ

m̂2
K∗ ŝ

[λ(ŝ+ 2m̂2
ℓ) + 24m̂2

K∗m̂2
ℓ ŝ]|F |2

−2

3
λ

(1 − m̂2
K∗ − ŝ)

m̂2
K∗ ŝ

(ŝ+ 2m̂2
ℓ)Re(E∗F ) +

(ŝ− 4m̂2
ℓ)

m̂2
K∗

λ|G|2 +
ŝ

m̂2
K∗

ŝ|H |2

+2
m̂ℓ

m̂2
K∗

λ[2Re(E∗H) − (1 − m̂2
K∗ − ŝ)Re(F ∗H)] (2.10)

and where λ = λ(1, ŝ, m̂2
K∗) = 1 + ŝ2 + m̂4

K∗ − 2ŝ− 2m̂2
K∗ − 2ŝ m̂K∗ .

III. LEPTON POLARIZATION ASYMMETRIES

Now we compute the lepton polarization asymmetries of both the leptons defined in the effective four fermion

interaction of Eq. (2.2). For this we define the orthogonal vectors S in the rest frame of ℓ− and W in the rest frame

of ℓ+, for the polarization of the leptons. L, N and T correspond to the lepton being polarized along the longitudinal,

normal and transverse directions respectively [1, 2, 3, 5, 9].

SµL ≡ (0, eL) =

(

0,
p−
|p−|

)

SµN ≡ (0, eN ) =

(

0,
pK∗ × p−
|pK∗ × p−|

)

SµT ≡ (0, eT ) = (0, eN × eL) (3.1)

Wµ
L ≡ (0,wL) =

(

0,
p+

|p+|

)

Wµ
N ≡ (0,wN ) =

(

0,
pK∗ × p+

|pK∗ × p+|

)

Wµ
T ≡ (0,wT ) = (0,wN × wL) (3.2)
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where p+, p− and pK∗ are three momenta of ℓ+, ℓ− and K∗ respectively in the c.m. frame of ℓ−ℓ+ system. On

boosting the above vectors defined by Eqs. (3.1), (3.2) to the c.m. frame of ℓ−ℓ+ system, only the longitudinal vector

will be boosted while the other two will remain unchanged. The longitudinal vectors after the boost will become

SµL =

( |p−|
mℓ

,
E1p−
mℓ|p−|

)

Wµ
L =

( |p−|
mℓ

,− E1p−
mℓ|p−|

)

. (3.3)

The polarization asymmetries can now be calculated using the spin projector 1
2 (1+γ56S) for ℓ− and the spin projector

1
2 (1 + γ5 6W ) for ℓ+.

Equipped with the above we can now define various single lepton and double lepton polarization asymmetries. The

single lepton polarization asymmetries are defined as [1, 2, 3, 5, 9]

P−
x ≡

(

dΓ(Sx,Wx)
dŝ + dΓ(Sx,−Wx)

dŝ

)

−
(

dΓ(−Sx,Wx)
dŝ + dΓ(−Sx,−Wx)

dŝ

)

(

dΓ(Sx,Wx)
dŝ + dΓ(Sx,−Wx)

dŝ

)

+
(

dΓ(−Sx,Wx)
dŝ + dΓ(−Sx,−Wx)

dŝ

) ,

P+
x ≡

(

dΓ(Sx,Wx)
dŝ + dΓ(−Sx,Wx)

dŝ

)

−
(

dΓ(Sx,−Wx)
dŝ + dΓ(−Sx,−Wx)

dŝ

)

(

dΓ(Sx,Wx)
dŝ + dΓ(Sx,−Wx)

dŝ

)

+
(

dΓ(−Sx,Wx)
dŝ + dΓ(−Sx,−Wx)

dŝ

) (3.4)

where the subindex x is L,N or T . P± denotes the polarization asymmetry of the charged lepton ℓ±. Along the same

lines we can also define the double spin polarization asymmetries as [9]

Pxy ≡

(

dΓ(Sx,Wy)
dŝ − dΓ(−Sx,Wy)

dŝ

)

−
(

dΓ(Sx,−Wy)
dŝ − dΓ(−Sx,−Wy)

dŝ

)

(

dΓ(Sx,Wy)
dŝ +

dΓ(−Sx,Wy)
dŝ

)

+
(

dΓ(Sx,−Wy)
dŝ +

dΓ(−Sx,−Wy)
dŝ

) (3.5)

where the subindex x, y are L,N or T .

The expressions of the double polarization asymmetries are

PLL =

[

4

3
λ(2m̂2

ℓ − ŝ)|A|2 +
2

3
(2m̂2

ℓ − ŝ)(λ + 12m̂2
K∗ ŝ)|B|2 +

1

6
λ2 (2m̂2

ℓ − ŝ)

m̂2
K∗ ŝ

|C|2

−2

3
λ

(ŝ− 4m̂2
ℓ)

m̂2
K∗ ŝ

(1 − m̂2
K∗ − ŝ)Re(B∗C) +

4

3
λ(4m̂2

ℓ − ŝ)|D|2 +
2

3

[λ(10m̂2
ℓ − ŝ) + 12ŝm̂2

K∗(4m̂2
ℓ − ŝ)]

m̂2
K∗ ŝ

|E|2

+
1

6

λ

m̂2
K∗ ŝ

[λ(10m̂2
ℓ − ŝ) + 24ŝm̂2

K∗m̂2
ℓ ]|F |2 −

2

3

λ

m̂2
K∗ ŝ

(1 − m̂2
K∗ − ŝ)(10m̂2

ℓ − ŝ)Re(E∗F )

+
λ

m̂2
K∗

(ŝ− 4m̂2
ℓ)|G|2 +

λ

m̂2
K∗

ŝ|H |2 + 4m̂ℓ
λ

m̂2
K∗

[2Re(E∗H) − (1 − m̂2
K∗ − ŝ)Re(F ∗H)]

]

/△ (3.6)

PLN =
1

2

πm̂ℓ

m̂2
K∗

√

λ

ŝ

[

λ

{

Im(C∗E) − (ŝ− 4m̂2
ℓ)

2m̂ℓ
Im(F ∗G) +

ŝ

2m̂ℓ
Im(C∗H)

}

− (1 − m̂2
K∗ − ŝ) {Im(B∗E)

+(1 − m̂2
K∗ − ŝ)Im(B∗F ) +

λ

2
Im(C∗F ) +

ŝ

m̂ℓ
Im(B∗H) − (ŝ− 4m̂2

ℓ)

m̂ℓ
Im(E∗G)

}

]

/△ (3.7)

PLT = −m̂ℓπ
√

λ(ŝ− 4m̂2
ℓ)

m̂2
K∗ ŝ

[

(1 − m̂2
K∗ − ŝ)

{

|E|2 +
λ

4
|F |2 +

ŝ

2m̂ℓ
(Re(E∗H) − Re(B∗G))

}

−(λ+ 2m̂2
K∗ ŝ)Re(E∗F ) − 2ŝm̂2

K∗ {Re(B∗D) + Re(A∗E)} +
ŝ

4m̂ℓ
λ {Re(C∗G) − Re(F ∗H)}

]

/△ (3.8)

PNL = −PLN (3.9)

PNN =
2

3

λ

m̂2
K∗

[

m̂2
K∗(ŝ− 4m̂2

ℓ)(|A|2 − |D|2) −
{(

1 +
2m̂2

ℓ

ŝ

)

+ 24
m̂2
K∗m̂2

ℓ

λ

}(

|B|2 − 1

4
|F |2

)
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+

(

1 +
2m̂2

ℓ

ŝ

) {

|E|2 − λ

4
|C|2

}

+ (1 − m̂2
K∗ − sh)

(

1 +
2m̂2

ℓ

ŝ

)

{Re(B∗C) − Re(E∗F )}

−3

2
(ŝ− 4m̂2

ℓ)|G|2 +
3

2
ŝ|H |2 + 6m̂ℓ

{

2Re(E∗H) − (1 − m̂2
K∗ − ŝ)Re(F ∗H)

}

]

/△ (3.10)

PNT =
2

3

λ

m̂2
K∗

√

1 − 4m̂2
ℓ

ŝ

[

2ŝm̂2
K∗Im(A∗D) − (1 − m̂2

K∗ − ŝ) {Im(F ∗B) + Im(E∗C) + 3m̂ℓIm(G∗F )}

+
λ

2
Im(F ∗C) + 2Im(E∗B) + 6m̂ℓIm(G∗E) − 3ŝIm(G∗H)

]

/△ (3.11)

PTL = − πm̂ℓ

m̂2
K∗ ŝ

√

λ(ŝ− 4m̂2
ℓ)

[

(1 − m̂2
K∗ − ŝ)

{

|E|2 +
1

4
|F |2 +

ŝ

2m̂ℓ
(Re(B∗G) + Re(E∗H))

}

− λRe(E∗F )

+2m̂2
K∗ ŝ {Re(B∗D) + Re(A∗E)} − ŝλ

{

Re(G∗C) − 1

2
Re(H∗F )

}

]

/△ (3.12)

PTN = −PNT (3.13)

PTT =
2

3

λ

ŝm̂2
K∗

[

m̂2
K∗ ŝ

{

(ŝ+ 4m̂2
ℓ)|A|2 − (ŝ− 4m̂2

ℓ)|D|2
}

−
{

λ(ŝ− 2m̂2
ℓ) − 24ŝm̂2

ℓm̂
2
K∗

}

|B|2 − 1

4
λ(ŝ− 4m̂2

ℓ)|C|2

+(1 − m̂2
K∗ − ŝ)(ŝ− 2m̂2

ℓ)Re(C∗B) − (10m̂2
ℓ − ŝ)|E|2 − 1

4

{

(10m̂2
ℓ − ŝ)λ− 24ŝm̂2

K∗m̂2
ℓ

}

|F |2

+(1 − m̂2
K∗ − ŝ)(10m̂2

ℓ − ŝ)Re(E∗F ) +
3

2
ŝ(ŝ− 4m̂2

ℓ)|G|2 −
3

2
|H |2

+3m̂ℓŝ
{

2Re(E∗H) − (1 − m̂2
K∗ − sh)Re(H∗F )

}

]

/△ (3.14)

where △ is given in Eq. (2.10).

From their definitions, Eqs. (3.1)-(3.5), polarization asymmetries relating the longitudinal (L) and transverse (T)

spin orientations are parity odd wheras the normal one (N) is parity even. Consequently of the various double

polarization asymmetries, Eqs. (3.6)-(3.14), only PLN and PTN are parity odd. However, the basic weak interaction

Hamiltonian is not invariant under parity transformation so that from parity symmetry considerations alone, no

conclusion can be drawn about the vanishing or otherwise of these asymmetries.

Since we are dealing with local Lorentz invariant theories, time reversal invariance is synonymous with CP invariance.

In the decay process B0 → K∗ℓ+ℓ−, neither the initial nor the final state is an eigenstate of CP so that CP invariance

or otherwise of the theory relate amplitudes of this process with its conjugate process B̄ → K̄∗ℓ+ℓ−. It should be

noted that there are terms in our matrix element which involve a triple product and thus naively have the appearance

of a T-odd interaction. This is not correct since we are dealing with an effective Hamiltonian which includes the effect

of strong phases which gives fake CP-violation signals even when the basic Hamiltonians are all CP-conserving.

For the charge conjugate process the corresponding amplitudes will have their CKM factor conjugated. For b→ s

type of transition like the one considered here, the CKM phase becomes an overall phase factor since we can neglect

the very small b→ u couplings. Possible CP violating phases in the CKM factor thus will not show up in any decay

rate. Other possible sources of CP violation, for example, can come from the supersymmetry breaking parameter µ

becoming complex. The present calculation however takes all supersymmetric breaking soft terms in the Lagrangian

to be real so that we have effective CP-invariance of our results. The implications of these for possible measurements

of double polarization asymmetries are remarked upon at the end of Sec. IV.

IV. NUMERICAL ANALYSIS, RESULTS AND DISCUSSION

We have performed the numerical analysis of all the kinematical variables which we have presented in Sec. III. The

parameters which we have used in our numerical analysis are listed in Appendix B. We have quoted our averaged
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Standard Model values of all these variables in Table I.

TABLE I: Our standard model predictions of the averaged value of the observables.

Br(B → K∗τ−τ+) PLL PLN PLT PNL PNN PNT PTL PTN PTT

1.29 × 10−7 - 0.299 - 0.09 - 0.329 0.09 -0.036 - 0.0016 -0.037 0.0016 -0.011

We have also analyzed the effects of supersymmetry on the observables. For the numerical analysis we have

considered MSSM, this is the simplest of the SUSY models with the least number of parameters. One of the major

parameters of MSSM is tanβ which is the ratio of the vev (vacuum expectation value) of the two Higgs doublets

of MSSM. We will focus on the MSSM parameter space at large tanβ. The reason for this being that in the large

tanβ region of MSSM parameter space the contributions of NHB exchange becomes very important for quark level

semi-leptonic transitions b → sℓ−ℓ+especially when final state lepton is either a muon µ or tau τ . This point has

been noted in many FCNC semi-leptonic [12, 13] and pure dileptonic transitions [11, 14]. Actually if we consider

MSSM then we have to extend the set of SM Wilson coefficients, for semi-leptonic transitions we have to introduce

two new Wilsons, namely, CQ1
and CQ2

. These coefficients come from the exchange of NHBs and are proportional to

mbmℓ tan3 β/mh, where mℓ, mb and mh are lepton, b-quark and Higgs boson mass respectively. So as we can see that

if lepton is either µ or τ and the Higgs mass is suitable then the new Wilsons (CQ1
and CQ2

) can have fairly large

values. The values of CQ1
and CQ2

also depend on other MSSM parameters like chargino masses and splittings, stop

masses and splittings etc. But as is well known these masses and splittings are constrained by the process B → Xsγ

[27]. In our numerical analysis we will take a 95% C.L. bound [28]:

2 × 10−4 < Br(B → Xsγ) < 4.5 × 10−4 (4.1)

which is agreement with CLEO and ALEPH results.

We shall now discuss the models used in our numerical analysis. The MSSM is defined on the basis of four basic

assumptions (for a review of the MSSM refer to [29]): (i) Minimal gauge group, which is SU(3)c × SU(2)L × U(1)Y
which is the SM group also, (ii) minimal particle content, (iii) R-parity conservation, (iv) minimal set of soft SUSY

breaking terms. If we use only these conditions then the model which is constructed is called the unconstrained MSSM

(also called the phenomenological MSSM as one can readily study the phenomenology of it). But this sort of model

gives rise to many phenomenological problems like FCNC, unusually large CP violation, incorrect value of Z mass etc.

But these sorts of problems can be resolved once we make some assumptions such as all SUSY breaking parameters

are real and hence no new source of CP violation, matrices for sfermion masses and trilinear couplings are diagonal

which prevents tree level FCNC processes, first and second generation sfermion universality which helps us in getting

away with the K0 − K̄0 mixing problem.

But there is another way of solving all the problems of the unconstrained MSSM model, which is to require all the

soft SUSY breaking parameters have a universal value at some GUT (grand unified theory) scale. If we make the

universal values of these parameters real then even the CP violation problem is solved. This is the case in case of

constrained MSSM and minimal supergravity (mSUGRA) models.

Aside from the universality of all the gauge coupling constants in mSUGRA models the other conditions are:

universality of all the scalar masses, unification of all the gaugino masses and universality of all the trilinear couplings

at the GUT scale. With all these constraints if we impose the condition of correct electroweak symmetry breaking

then we have another parameter which is sgn(µ)3 and tanβ which is the ratio of the vev of the Higgs doublets. So in

all the mSUGRA frameworks have five parameters

m, M, A, tanβ, sgn(µ).

3 µ is the SUSY Higgs mass parameter.
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But it is interesting to study the departure of these sorts of models. By departure we mean what would happen if

we relax some of the above mentioned conditions of mSUGRA model. With this sort of relaxing of conditions we

effectively introduce additional parameters in the model. One can study such relaxed models also and have reasonable

predictions of such SUSY models if the number of new parameters introduced is not large.4 There can be many options

available; such as relaxation of universality of gaugino masses at GUT, relaxation of universality of scalar masses at

GUT etc.

In our analysis we will choose to relax the condition of univarsality of the scalar masses at GUT. We will assume

non-universality of sfermionic and Higgs masses, i.e. the sfermions and Higgs have different universal masses at GUT

scale. This sort of model we will call the rSUGRA model. With this sort of relaxation we have to introduce another

parameter, this parameter we will take to be the mass of pseudo-scalar Higgs boson mass mA.

We shall now discuss the constraints put on the parameters of our models. We will consider only that region of

parameter space which satisfies the B → Xsγ constraints given in Eq. (4.1). Within the SM this decay is mediated by

loops containing the charge 2/3 quarks and W bosons. For the set of parameters given in Appendix B our SM value

of Br(B → Xsγ) turns out to be 3.4 × 10−4. In SUSY theories there are additional contributions to b → sγ which

come from the chargino-stop loop, top quark and charged Higgs loop and loops involving gluino and neutralinos.5

Also this branching ratio constrains only the magnitude of Ceff7 . For sgn(µ) > 0 the chargino-stop contribution

interferes destructively with SM and charged Higgs contribution.6 The chargino stop contributions grows with tanβ

and because of its destructive interference with the SM and charged Higgs contributions can give us a region of allowed

parameter space. Recently there have been calculations about the NLO QCD corrections to the b→ sγ decay rate in

SUSY [31] but for our work we will use the LO calculations as far as the SUSY corrections are concerned [27, 30].

As has been emphasized in many works [2, 32] the universality of scalar masses is not a constraint in SUGRA. To

suppress large K0 − K̄0 mixing, the requirement is that all squarks should have universal mass at GUT scale. So

that one can relax the condition of universality of scalar masses at GUT scale. This sort of model we have called

rSUGRA. The advantage of this model arises as here we can have some handle on the Higgs boson mass and as has

been emphasized earlier in many works the new Wilson coefficients CQ1
and CQ2

are very sensitive to Higgs masses.

So in this sort of model one can more easily see the dependence of various observables on the new Wilson coefficients.

We also present the results of the average polarization asymmetries. The averaging is defined as

〈P〉 ≡

∫ (mB−mK∗ )2/m2

B

(3.646+0.02)2/m2

B

P dΓ
dŝ
dŝ

∫ (mB−mK∗ )2/m2

B

(3.646+0.02)2/m2

B

dΓ

dŝ
dŝ

. (4.2)

Although we have given the expected values of all the double polarization asymmetries with the SM in Table I, but

in the graphs we have shown only those polarization asymmetries whose integrated values exceeds 0.1 either in the

SM or in the various SUGRA models we have considered.

In Fig. 1 we have plotted the variation of differential decay rate with the scaled invariant mass of the dileptons. In

Figs. 2-7 we have plotted the various double polarization asymmetries. In Fig. 8 we have shown the variation of the

branching ratio of B → K∗τ−τ+as a functions of the pseudo-scalar Higgs mass in the rSUGRA model. In Fig. 9 we

have shown the variation of branching ratio as a function of tanβ in the mSUGRA model. Similarly in Fig.s 10-15

we have shown the variation of the various integrated double polarization asymmetries as a function of the mass of

the pseudo-scalar Higgs boson mass mA in the rSUGRA model for various values of tanβ. In Figures 16-21 we have

shown the variation of various integrated double polarization asymmetries as a function of tanβ in the mSUGRA

model for various values of m (the unified mass of sleptons and squarks at GUT scale).

4 Effectively this sort of model lies somewhere in between the unconstrained MSSM and the mSUGRA model.
5 The contribution due to the loops involving gluino and neutralinos are small as shown in [27, 30].
6 In our sign convention for µ it appears in the chargino mass matrix with a positive sign.
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It is clear from the figures that several of these polarization asymmetries are sizable and that they are sensitive

to the inclusion of the supersymmetric contributions both in regards to the magnitude and sometimes with regard

to the sign also. The SM predictions are quite definitive; the only parameter not yet totally fixed is the mass mb,

however, varying this within the acceptable limits does not change the values of the various asymmetries appreciably.

Experimental observations of these polarization asymmetries will provide useful confirmatory verification of the validity

of MSSM in rare decays of the B meson together with other experimental signatures such as single lepton polarization,

forward-backward asymmetry etc.

In presenting our results we have omitted showing the values of the polarization asymmetry parameters PNT and

PTN , since their values are less than 0.01 and thus would be nearly impossible for observation with or without SUSY

contributions. However, if future experiments arise with values for these which are much larger than that, it will be a

clear indication of physics not only beyond the SM but also beyond the MSSM within the range of parameters allowed

by other experimental constraints.

Finally, our results pertain to the decay B → K∗(pk)ℓ
+(p+)ℓ−(p−). As discussed in the last section, for the charge

conjugate process with the momenta unchanged, i.e. B̄ → K̄∗(pk)ℓ
−(p+)ℓ+(p−) the polarization asymmetries (Pij)

will be given by ±Pji, with the negative sign for PLN and PNT and the positive sign for the others. Observations

of these asymmetries for B and B̄ decays would obviously need tagging of the B mesons. Observations without

tagging with an equal number of B and B̄ mesons would clearly produce a null value for PLN and PNT but would

yield value of PLL, PNN , PTT and (PLT + PTL). The situation will change in the CKM-suppressed related process

B → ρl+l− where because of the presence of two terms in the effective Hamiltonian with different CKM factors,

the CKM phase would show up in the interference term and would change sign in going from this process to its

conjugate one. Observations of asymmetries in such a process with mixtures of B and B̄, as and when they become

experimentally accessible, would provide another way of studying the CP violation through CKM phases.

Acknowledgments

The work of S.R.C. and N.G. was supported under the SERC scheme of the Department of Science and Technology

(DST), India. A.S.C. would like to acknowledge the Department of Physics and Astrophysics, University of Delhi

and the SERC project of the DST, India for partial financial support during his visit to India where this work was

initiated.

APPENDIX A: FORM FACTORS

The exclusive decay B → K∗ℓ−ℓ+can be described in terms of matrix elements of the quark operators in Eq. (2.2)

over meson states, which can be parameterized in terms of form factors. For B → K∗ℓ−ℓ+the matrix elements in

terms of form factors of the B → K∗ transition are [18, 33]

〈K∗(pK)|(V −A)µ|B(pB)〉 = −iǫ∗µ(mB +mK∗)A1(s) + i(pB + pK)µ(ǫ
∗.pB)

A2(s)

mB +mK∗

+iqµ(ǫ
∗.pB)

2mK∗

s
(A3(s) −A0(s)) + ǫµναβǫ

∗νpαBp
β
K

2V (s)

mB +mK∗

(A1)

and

〈K∗(pK)|s̄σµνqν(1 + γ5)b|B(pB)〉 = iǫµναβǫ
∗
νp
α
Bp

β
K2T1(s) + T2(s){ǫ∗µ(m2

B −m2
K) − (ǫ∗.pB)(pB + pK)µ}

T3(s)(ǫ
∗.pB)

{

qµ − s

m2
B −m2

K∗

(pB + pK)µ

}

(A2)

where in the above equations pK and ǫµ are the four momentum and polarization vector of the K∗ meson respectively.

By using the equations of motion we can get a relationship between the form factors as

A3(s) =
mB +mK∗

2mK∗

A1(s) −
mB −mK∗

2mK∗

A2(s). (A3)
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TABLE II: Form Factors for B → K∗ transition

F(0) c1 c2

A1(s) 0.337 0.602 0.258

A2(s) 0.282 1.172 0.567

A0(s) 0.471 1.505 0.710

V (s) 0.457 1.482 1.015

T1(s) 0.379 1.519 1.030

T2(s) 0.399 0.517 0.426

T3(s) 0.260 1.129 1.128

To get the matrix element of the scalar and pseudo-scalar currents are arrived at by multiplying Eq. (A1) by qµ on

both the sides:

〈K∗(pK)|s̄(1 ± γ5)b|B(pB)〉 = −2i
mK∗

mb
(ǫ∗.q)A0(s). (A4)

For the form factors we use the results given in [33] where we parameterize the form factors as

F (ŝ) = F (0) exp(c1ŝ+ c2ŝ
2). (A5)

The related parameters (c1 and c2) are given in Table II.

APPENDIX B: INPUT PARAMETERS

mB = 5.26 GeV, mb = 4.8 GeV, mc = 1.4 GeV,

mµ = 0.106 GeV, mτ = 1.77 GeV,

mw = 80.4 GeV, mz = 91.19 GeV,

VtbV
∗
ts = 0.0385, α = 1

129 , mK∗ = 0.892 GeV,

ΓB = 4.22 × 10−13 GeV,

GF = 1.17 × 10−5 GeV−2.
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FIG. 1: Branching ratio of B → K∗τ−τ+variation with scaled invariant mass of dileptons. Parameters of mSUGRA are

m = 200 GeV, M = 600 GeV, A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the

mass of pseudo-scalar Higgs boson) is taken to be mA = 270 GeV.
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FIG. 2: PLL variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.
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FIG. 3: PLN variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.
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FIG. 4: PLT variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.
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FIG. 5: PNN variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.
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FIG. 6: PTL variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.



16

0.45 0.5 0.55 0.6 0.65 0.7
s  ^

-0.8

-0.6

-0.4

-0.2

0

0.2

P
T

T

SM
mSUGRA
rSUGRA

FIG. 7: PTT variation with scaled invariant mass of dileptons. Parameters of mSUGRA are m = 200 GeV, M = 600 GeV,

A = 0, tan β = 45 and sgn(µ) being positive. The additional parameter in rSUGRA model (the mass of pseudo-scalar Higgs

boson) is taken to be mA = 270 GeV.
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FIG. 8: Total branching ratio of B → K∗τ−τ+variation with mA (in GeV) for various values of tanβ in rSUGRA model other

model parameters are m = 200 GeV, M = 450 GeV, A = 0.
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FIG. 9: Total branching ratio of B → K∗τ−τ+variation with tan β for various sets of m in mSUGRA model. Other model

parameters are M = 500 GeV, A = 0.
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FIG. 10: 〈PLL〉 variation with mA (in GeV) for various values of tan β in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 11: 〈PLN〉 variation with mA (in GeV) for various values of tanβ in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 12: 〈PLT 〉 variation with mA (in GeV) for various values of tan β in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 13: 〈PNN 〉 variation with mA (in GeV) for various values of tan β in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 14: 〈PTL〉 variation with mA (in GeV) for various values of tan β in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 15: 〈PTT 〉 variation with mA (in GeV) for various values of tanβ in rSUGRA model other model parameters are m = 200

GeV, M = 450 GeV, A = 0.
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FIG. 16: 〈PLL〉 variation with tan β for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.
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FIG. 17: 〈PLN 〉 variation with tanβ for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.
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FIG. 18: 〈PLT 〉 variation with tanβ for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.



22

30 35 40 45 50
tanβ

-0.1

0

0.1

0.2

0.3

0.4

0.5

<
 P

N
N

>

SM
m = 300
m = 500
m = 700

FIG. 19: 〈PNN 〉 variation with tan β for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.
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FIG. 20: 〈PTL〉 variation with tanβ for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.
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FIG. 21: 〈PTT 〉 variation with tanβ for various sets of m in mSUGRA model. Other model parameters are M = 500 GeV,

A = 0.
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