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Abstract

Little Higgs models are often endowed with a T-parity in order to satisfy electroweak
precision tests and give at the same time a stable particle which is a candidate for cold dark
matter. This type of models predicts a set of new T-odd fermions in addition to the heavy
gauge bosons of the Little Higgs models, which may show interesting signatures at colliders.
In this paper, we study the signatures of strong and electroweak pair production of the first
two generations of T-odd quarks at the LHC. We focus on the dileptonic signatures (a)
pp — (4757 Br (opposite-sign dileptons) and (b) pp — ¢*¢*jj Hr (same-sign dileptons).
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I Introduction

One of the problems affecting the Standard Model (SM) of particle physics is the hierarchy
between the electroweak scale and the Planck scale. Within the SM, the Higgs boson receives a
quadratically divergent contribution to its mass, if the model is considered an effective theory,
valid only up to some high energy scale. However, precision electroweak measurements at colliders
and at low energy clearly show that the physics behind the SM is perturbative in nature. This
means that the Higgs boson mass cannot be very large and that the scale of new physics affecting
those observables is larger than about 10 TeV, thus requiring fine-tuning between this new scale
and the electroweak scale [I]. In Little Higgs models (see [2] for two recent reviews), the Higgs
field is a Nambu-Goldstone boson (NGB) of a global symmetry, which is spontaneously broken
at some higher scale f by a vacuum expectation value. The Higgs field gets a mass through
symmetry breaking at the electroweak scale. However, since it is protected by the approximate
global symmetry, it remains light. Generic Little Higgs models predict, at a scale of the order of f,
new particles responsible for canceling the SM quadratic divergences at the one-loop level: heavy
SU(2) xU(1) gauge bosons, new heavy scalars and new fermions, in particular partners of the top
quark. The original Little Higgs models allowed tree-level couplings of the new particles to the
SM ones, inducing tree and loop level contributions to various electroweak precision observables.
Performing an analysis of the precision data for generic regions of the parameter space, a lower
bound on the symmetry breaking scale f of several TeV was derived [3], reintroducing the fine
tuning problem between the cut-off scale of the models (~ 47 f) and the electroweak scale. This
resulted in addition in new Little Higgs particles that were too heavy to be observed at the LHC.

In order to render this kind of models consistent with precision data and to address the fine
tuning problem, a new discrete parity named T-parity (similar to R-parity in Supersymmetry)
was introduced [4]. This new class of models, known as Little Higgs models with T-parity
(LHT), includes new heavy particles, which are postulated to be odd under T-parity. As a
consequence, all the T-odd particles can only be produced in pairs, so that they introduce no
tree-level contributions to electroweak observables. As the corrections to precision observables
now enter only at the loop level, they are naturally small. The introduction of T-parity therefore
allows to lower the new particle mass scale to f ~ 500 GeV. In order to consistently implement
T-parity, one has to introduce sets of T-odd fermions corresponding to each of the SM fermions.
All the heavy particles introduced (except for a vector-like heavy top quark 7', ) are odd under
T-parity. These T-odd fermions have a mass of the order of f and can thus be abundantly
produced at future colliders. LHT models also provide a possible candidate for dark matter that
is odd under T-parity, namely a heavy photon Ag.

Recently, the proton-proton Large Hadron Collider (LHC) has become operational at CERN.
One of the main focuses of this machine is the discovery of the SM Higgs boson. In addition, it can
probe various new physics models. In this work we will focus on the possibility of the production of

the first two generations of T-odd quarks at the LHC. In particular we will focus on the dileptonic



signatures. The signatures we will study are (a) pp — (<(¥jj Hp and (b) pp — (<(*jj Hp. The
former was also studied in [5], where the authors considered the pair production of T-odd quarks
in the channel pp — QuQpg. They argued that this production channel was QCD-dominated
(with ¢¢ and gg in the initial state), and they neglected the electroweak (EW) contributions
to it. In our study we will show that the EW contributions to these production channels are
substantial. As the EW contributions are not negligible, one can also have the T-odd quark pair
production via EW processes like uu — UyUyg etc., giving a signature of same-sign dileptons in
the final state. The same-sign dilepton process has very small SM backgrounds and can therefore
be very useful for observing the LHT model at the LHC. In our analysis we have used modified
couplings of T-odd fermions, which assure the correct cancellation of ultraviolet divergences in
Z-penguin diagrams in various flavour-changing decays [6].

Our paper is organized as follows: In Sec. [[Il, we present the novel aspects of our analysis.
In Sec. [II, we introduce briefly the particular LHT model that we have considered. In Sec. [V],
we discuss the production cross sections and branching fractions of the pair production of the
T-odd quarks and their dependence on the LHT model parameters. In Sec. [Vl we describe our

analysis set-up for both signal and background processes. Finally, we conclude with a summary
of our results in Sec. [V1l

IT Overview

The production and signatures of T-odd quarks at the LHC have previously been discussed in
Refs. [5, [7, 8]. In our analysis:

e we have included the v?/ f? corrections to the SM Z- and W-boson couplings to the mirror

fermions as pointed out in Ref. [6]!;

e we have performed a detailed realistic simulation by using the fast detector simulator
ATLFAST [9] for both signal and background processes;

e we have considered the electroweak (EW) contributions to the production processes that

have been neglected in Ref. [3];

e we have analyzed same-sign dilepton signatures that had not been not considered in Refs.
[, [7, 8]; note that for these signatures the SM backgrounds are very small, so that this
mode can be very useful to discover the T-odd quarks at the LHC;

e we have given the K-factors for the production of T-odd quarks via QCD and EW diagrams,

and we have included K-factors for both signal and backgrounds in our simulation results.

IThe revised CALCHEP model files that include the new corrections to the couplings of mirror quarks to Z-
and W-bosons can be downloaded from http://deandrea.home.cern.ch/deandrea/LHTmodl.tgz.



IIT The model

As an example for a typical spectrum of new particles introduced in Little Higgs models with
T-parity, we consider the Littlest Higgs model with T-parity [10, 11} [12]. We only briefly review
here the aspects of the model relevant for our analysis. The model we have considered has a
SU(5) global symmetry that is broken down to SO(5). The [SU(2) x U(1)]? subgroup of SU(5)
is gauged and is broken down to the diagonal subgroup SU(2);, x U(1)y, that is identified with
the SM electroweak gauge group. The masses of the heavy T-odd gauge bosons are

Jf
MAH =~ %7

where ¢’ and ¢ denote the hypercharge and SU(2) weak couplings, respectively. Ay is usually
the lightest T-odd particlad.

Concerning the implementation of T-parity in the fermion sector, each SM fermion doublet

MVH 2gfa (1>

is replaced by a pair of fields F; (i = 1,2), where F; is a doublet under one SU(2); and a singlet
under the other. T-parity exchanges F; and F,. The T-even combination is identified with the
SM fermion doublet, and the other (T-odd) combination is the heavy partner Fj. To generate
mass terms for these T-odd heavy fermions through Yukawa interactions, one requires additional
T-odd SU(2) singlet fermions in the theory. Assuming for simplicity a universal and flavour
diagonal Yukawa coupling k, we have for the heavy up-quark Uy and the heavy down-quark Dy

(the T-odd heavy partners of the SM quarks (u, ¢) and (d, s), respectively)
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The up- and down-type T-odd heavy quarks have nearly equal masses, as the scale f is typically
at least in the 500 GeV range or more. The Yukawa couplings x; depend in general on the fermion
species i. This can in turn generate Flavour Changing Neutral Current (FCNC) interactions in
the quark sector [14]. Similar phenomena can also occur in the lepton sector, giving rise to
Lepton Flavour Violation (LFV) in this class of models [6] [15]. For our analysis, we will assume
that the k; are flavour-blind and universal and hence do not give rise to any new sources of
flavour violation. The top sector requires typically an additional T-even fermion 7', and a T-odd
T to cancel the Higgs quadratic divergences. The cancellation of the quadratic divergence in
the Higgs boson mass is not due to the T-odd states, but it is achieved by loops involving the
SM top quark and the heavy T-even top quark. For a different implementation of the heavy top
sector in T-parity models see Ref. [16].

The LHT parameters relevant for our analysis are f and k. In our analysis we will assume
that the values of k are sufficiently smaller than the upper bound obtained from four-fermion
operators: M.y < 4.8 f2+; [12] where Mrey and frev are the T-odd fermion masses and symmetry
breaking scale, respectively, in TeV. For our analysis we have chosen three representative points
with values of kK = 0.6,1 and 1.5.

2There is a possibility of the T-odd neutrino to be a dark matter candidate; this has been explored in [13].
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IV  Production and decays of the first two generations of
T-odd quarks at the LHC

We compute the cross sections for the pair production of the first two generations of T-odd quarks
at the LHC and their branching fractions based on the model briefly defined in Sec. [[II] and using
CalcHEP 2.5.4 [17]. As described earlier, we have modified the LHT model files for CalcHEP as
proposed in Ref. [8] to include the new v?/ f? contributions to the couplings of mirror fermions to
the SM W- and Z-bosons. All the cross sections are calculated for a LHC centre-of-mass energy
of 14 TeV. We have used the leading order (LO) CTEQ6L parton densities with two-loop «, and
M0 = 926 MeV [18] and identified both the factorization scale ;1 and the renormalization

MS
scale i, with the partonic centre-of-mass energy s.

A Decays of first- and second-generation T-odd quarks

The T-odd quarks will decay into a T-odd particle and a T-even SM particle. The decay pattern
is determined by the mass spectrum of the T-odd particles. In LHT, we have typically

/
ma, ~ L 01567 mu, ~ gf ~0653F , mo, ~ VIR ~ 1414k] (3)

N
where my,, and mg,, are the T-odd W-boson, Z-boson and quark masses, respectively. We show
the branching ratios of the up-type (Uy) and down type (Dg) T-odd quarks as a function of &
in Fig. [l
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Figure 1: Branching ratios of T-odd up-type (Uy, left panel) and down-type (Dy, right panel)
heavy quarks as a function of k for a symmetry breaking scale of f = 1000 GeV.

From the spectrum of T-odd particles, we can observe that Ay is always lighter than Wy.

When k < 0.11, one obtains a mass hierarchy mq, < ma, < mw,. In this case, the T-odd



fermion would be a dark matter candidate, but as discussed in Ref. [19], the dark matter candidate
should be a neutral and colourless object. So for our analysis we will work in the parameter space
where x > 0.11. When 0.11 < x < 0.462, the mass spectrum is my, < mg, < mw,. In this
case, the dominant decay mode of the T-odd heavy quark is Qyp — Agq. If K > 0.462, we
have the mass spectrum myu, < my, < mg,, and as shown in Fig. [ the T-odd quark will
predominantly decay through the channel Qg — Wyq'. In our analysis, we will restrict ourselves
to the parameter space k > 0.462, where BR(Wy — AgW) = 100 %.

If the masses of the first two generations of T-odd quarks are not too high, they can be
produced in large numbers at the LHC. Assuming that the SM W-bosons decay leptonically, the
T-odd quarks for x > 0.46 predominately follow the decay chains

Ug — Wihd —WtAgd — (TvAgd — (1] By,
Dy — Wygu — W™ Agu — 0" vAgu — (7§ Hr,
Uy — Wgd — W~ Ayd — 0 vAyd — (7§ By,
Dy — Whu — WHAgu — (TvAgu — (1] By, (4)

whose probability is approximately 12% (taking into account the branching ratio of the Uy and
Dy decays, and the leptonic decay of the W, where the lepton is either an electron or a muon).

In our analysis we will focus on the decay chains of T-odd heavy quarks as listed above.

B Production cross sections at the LHC

The pair production of T-odd quarks at the LHC has been considered in Refs. [B, [7, 8]. A
detailed signal and background estimation of the pair production of T-odd quarks was carried
out by Choudhury et al. [5] using a parton-level Monte Carlo generator, where the authors
considered in particular the (*¢Tjj Hp signature. This signature is generated by the following

production channels:

pp — QuQun, with Qu = Uy, Dy, Cy, Sy (QCD + EW), (5)
pp — QHQ/H -+ C.C., Wlth QH = UH, CH, Q}{ = DH, SH (EW) . (6)

Choudhury et al. considered only the QCD part of the production channels given in Eq. (H),
arguing that the EW amplitudes would be much smaller than those mediated by QCD. We have
evaluated the production cross sections of both channels given in Egs. (Bl) and (@). Our results
are shown in Fig. 2l For comparison with the results in literature, we have chosen the same set
of input parameters as in Fig. 1 of Choudhury et al. [5]. As it can be seen from our figure, the
EW contribution can substantially alter the QCD results, and in some cases the full cross section
is enhanced by one order of magnitude.

The reason why the EW contribution is in this case substantial is the following: the EW

contributions are basically ¢-channel diagrams with 1/(¢# —m?) dependence, which leads to large
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Figure 2: Production cross sections for a pair of T-odd quarks at the LHC with a centre-of-mass
energy of 14 TeV. The plots include all the channels in Eqgs. (%) and (@). The label “Old result”
corresponds to pure QCD contributions [3]], while the label “Old + EW” represents the complete
set of QCD + EW diagrams. The label “Same sign leptons” marks the cross sections for the EW

channels in Eq. (@), which contribute to the same-sign lepton signature.

contributions in the near-forward region of cosf = 1. Here, ¢ is the invariant momentum transfer
squared, m is the mass of the exchanged particle, and € is the angle between the initial and final
state particles in the centre-of-mass frame. This behaviour is very different from the s-channel
diagrams, which dominate the QCD contributions and have a regular (1 + cos®#) dependence.
If the particle masses and couplings in a particular model are suitably chosen, then it is indeed
possible for s-channel diagrams to fall off more rapidly with 1/s than the t-channel diagrams.
This is exactly what is happening in the LHT model considered here, despite the suppression
due to the weak couplings.

Figure (2l clearly indicates that EW diagrams, via ¢t-channel exchange, can be comparable to



s-channel QQCD contributions. It is then interesting to consider purely weak processes like

with Qg = Uy, Cu, Q% = Dy, Su. (7)

pp — QuQ'y + c.c.,

These channels, following the decay chains in Eqs. (), give rise to same-sign dilepton signatures,
(%55 Hp, with two same-sign leptons, two light jets, and missing transverse energy Er. Same-
sign dileptons have relatively small SM backgrounds and are therefore very distinctive for physics

beyond the SM. In Fig. 2, we have also shown the production cross section for the processes given

in Eq. (@).
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Figure 3: Production cross sections at the LHC with a centre-of-mass energy of 10 TeV for

different-sign dilepton channels (left panel) and same-sign dilepton channels (right panel).

As can be seen from Fig. 2l the production cross sections for processes giving rise to opposite-
sign dileptons (¢(*¢Fjj Hr) could be of the the order of a picobarn, and those contributing to
same-sign dileptons (¢*¢*jj Hr) could be of the order of few hundred femtobarn for a reasonable
range of allowed parameter space in our LHT model. At the moment, the program for the
early LHC running consists of a first run for /s = 7 TeV at very low luminosity (< 100 pb™'),
followed by an upgrade to /s ~ 10 TeV with a luminosity of £ ~ O(100) pb~* [20]. In Fig. 3|
we therefore also show the cross sections of the two channels at the LHC with a centre-of-mass
energy of 10 TeV. It can be seen that even in very early stages and with a lower energy of 10
TeV it is possible to copiously produce large number of T-odd quarks in a reasonable range of
LHT model parameter space. However, for our simulations we will assume an LHC run at 14
TeV. Armed with the production cross sections and decay rates for the signal processes, we will

discuss in next section in detail the signal and background event rates.



V Signal and background estimates

In this section we will compute estimates for the signal and backgrounds events. We will also
study various kinematical distributions for both signal and backgrounds that can be useful in
extracting the signal from the backgrounds. In our analysis, we have chosen three LHT model

parameter space points. The mass spectra of LHT particles relevant for our study are given in
Tab. 1l

Table 1: Input parameters and masses of the LH'T' particles used for our analysis.

Model parameters — f=1000 GeV | f=1000 GeV | f =700 GeV
Particle masses (in GeV) | k=0.6 k=1 k=15
Ma, 150 150 100
My, 648 648 450
My, 842 1403 1462
Mp,, 848 1414 1484

A Framework for event generation

The set-up used for signal and background generation is the following:

e Signal event generation: We have used CalcHEP 2.5.4 [I7] to calculate cross sections
and branching ratios. As described earlier, we have modified the LHT model file given
by the authors in Ref. [8]. The original LHT model file for CalcHEP [8] does not have a
QNUMBERS block for the new particles, although the new version of CalcHEP (2.5.4) is
compatible with this block. Apart from other modifications described earlier, we have also
introduced this block and accordingly passed the Monte Carlo numbers to the new set of
particles in the revised model files. The parton level events generated by CalcHEP 2.5.4
were then passed on to PYTHIA 6.4.21 [2I] via the LHE (Les Houches Event) interface
[22] in order to include initial and final state radiation (ISR/FSR) effects.

e Background event generation: We have generated the ¢t backgrounds using PYTHIA
6.4.21, still including ISR/FSR effects. The WEWTjj, WEW=jj, ZZjj backgrounds were
generated using MADGRAPH [23] and were then passed on to PYTHIA 6.4.21 for ISR/FSR

effects.

The K-factors for both signal and background processes have been computed with MCFM
5.6 [24], using for the LO cross sections the same LO parton densities as in the full simulation,
i.e. CTEQG6L with two-loop a, and A%:S = 226 MeV [18]. For the next-to-leading order (NLO)
cross sections, we used the most recent NLO parton densities CTEQ6.6M with an improved

treatment of heavy-quark effects through a general-mass variable-flavor number scheme [25]. In



Table 2: Applied K-factors for the QCD and EW contributions to the signal process as a function

of the heavy-quark mass mq,, .

meg, /GeV 200 400 600 800 1000 1200 1400 1600 1800 2000
QCD K-factor | 1.20 1.43 1.51 1.54 1.56 1.58 1.58 152 146 1.42
EW K-factor | 1.03 1.17 129 1.41 153 1.68 184 2.01 224 239

Table 3: Applied K-factors for the considered background processes.

Final state | tt (QCD) tt (EW) W55 W—jj Zjj
K-factor 1.16 1.01 1.52 147  1.32

both cases, we identified the factorization scale py and the renormalization scale p, with the
partonic centre-of-mass energy s.

To be specific, the K-factors for the QCD signal cross section were computed from ¢t pro-
duction by increasing the top-quark mass from 175 GeV to generic heavy-quark mass values of
up to 2 TeV (see the second line in Tab. 2]). This is possible, since the QCD properties of T-odd
quarks are identical to those of the SM heavy quarks. Using the same method and similar parton
densities, but setting the scales to the heavy-quark mass, results at NLO+NLL (next-to-leading
logarithmic level) have been obtained for the LHC in Tab. 4 of Ref. [26]. Since NLL results are
not available for EW production and the background processes and in order to employ the same
scales for all signal and background processes, we do not make use of these cross sections here.
The NLO+NLL cross sections are moreover considerably higher than ours, so that our estimate
of corrected signal cross sections and consequently of the significance is quite conservative.

K-factors for the electroweak signal cross sections cannot be computed with MCFM, since
the s-channel single-top production process ¢ — tb was computed there with m;, = 0. Instead,
we take them from the t-channel process qg — qt'b’ with my = my as tabulated in Tab. 10 of
Ref. [27], averaging over opposite charges of the heavy-quark final state (see the third line in
Tab. 2). The QCD and EW K-factors as a function of the heavy-quark mass in Tab. 2] lend

themselves to quadratic and linear fits, respectively,

2
Mgy /GeV — 1200 mg,,/GeV + 1200
aep o8 ( 2000 W 1400 ’

(8)

which we have used in our full signal simulation.

The K-factors for the QCD and EW production of the SM ¢t background have been computed
for m; = 175 GeV as described above and are tabulated in the second and third columns of Tab.
Bl However, the K-factors for the WIW + 2 jet and ZZ + 2 jet backgrounds are not yet available
in the literature. We therefore computed with MCFM the W + 2 jet and Z + 2 jet K-factors
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Figure 4: Dijet invariant mass (m;) distribution (left panel) and di-lepton invariant mass (mg+ e+ )
distribution (right panel) for signal (x10) and SM background in the channel pp — QuQ’y —
jj0T0~ Er. In plotting these distributions we have assumed the LHC' luminosity to be £ = 100
b1

and assumed that the second vector boson, being uncharged under color, does not change the
K-factors significantly. For these backgrounds, we implemented all the kinematic cuts described
below. In particular, the jets were identified with the midpoint cone algorithm of radius R = 0.7
and parton separation R, = 1.3R. The Z + 2 jet background required in addition a minimum
invariant mass cut for the charged-lepton pair, which we have set to 15 GeV as in Ref. [2§]. Our
results are listed in columns four to six of Tab. Bl

In order to make realistic estimates of the signal and backgrounds, we have further processed
both the signal and background events through the fast ATLAS detector simulator ALTFAST [9].
The resulting events have been analysed within the ROOT framework. The detector simulator
ATLFAST provides a simple detector simulation and jet reconstruction using a simple cone
algorithm. It also identifies isolated leptons, photons, b and 7 jets and also reconstructs the
missing energy. In our analysis, leptons means electrons or muons i.e. £ = e, u. As stated above,
we have assumed an LHC with a centre-of-mass energy of 14 GeV and luminosity £ = 100 fb=.

B Opposite-sign dilepton signatures: (*(¥jj Fr

This signature is generated by the production processes given in Egs. (B) and () and the decay
chains given in Eqs. ().
The possible SM background sources to this signal are:
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Figure 5: Kr and Hr distributions for signal (x10) and SM background in the channel pp —
QuQy — jjlt¢~ Fr. In plotting these distributions we have assumed the LHC luminosity to
be £ =100 fb~1.

e pp — tt with each of the two top quarks decaying via t — bW (— fv) — bl Hr and the

b-jet misidentified as a light jet.

e pp — WTW =35 with both W-bosons decaying leptonically through W — (v.

e pp — ZZjj with one of the Z-bosons decaying via Z — (*¢~ and the other Z-boson

decaying to neutrinos Z — vu.

In order to study the signal and background, we have implemented the following pre-selection

cuts :

(a) exactly two opposite charge leptons (e, 1) in the event with p4 > 15 GeV and rapidity in

the range || < 2.5;

b-jet veto (reject any event having a well identified b-jet); we have considered a b-tagging

efficiency of 60%; this cut helps in reducing the tf background;

exactly two light jets with p% > 30 GeV and |n| < 2.5;

minimum missing energy threshold: Fr > 30 GeV;,

minimum threshold for the opposite-sign dilepton invariant mass mg+,- > 15 GeV; this

helps in reducing the backgrounds where the lepton pair originates from a virtual photon.
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We have shown the dijet (for lighter jets) invariant mass distribution (m;;) and the opposite-
sign dilepton invariant mass distribution (my) for signal and backgrounds in Fig. [ As it can
be observed from these distributions, we can reduce the backgrounds, where the lepton pair and
the jet pair originate from a Z- or W-boson. For this we impose the extra condition that the

invariant mass of jets and leptons are away from My and My, respectively. So we demand:

my; ¢ [65,105 GeV . my & [75,105] GeV . (9)

Tab. @ summarizes our results in the channel /£¢¥jj Fr. In this table, we have shown the
incremental effects on the cuts defined above on signal and background. As it can be seen from
the table, the signal events are not much affected by the imposition of the cuts on the dijet and
dilepton invariant masses, whereas we can substantially reduce the backgrounds arising from the
WWjj and ZZjj channels.

We can also use the Kr cut to further reduce the backgrounds. The FKr cut is very useful,
because in the SM, Fr originates from neutrinos that come from the decay of W or Z, and
hence it could be relatively soft, whereas in the LHT model, F; comes from a heavy particle, the
T-odd photon (Ap), and hence it could be relatively hard. We have shown the Fp distribution
in Fig. B where one can see that the background can be reduced by using a harder Fr cut. We
have accordingly shown the results in Tab. 4 by using cuts K > 200, 300,400 GeV

Table 4: The o numbers shown in the second row are with relevant K-factors included. The
o numbers in brackets (second row) are the cross section values, if we only include the QCD
production mechanism without K-factors as considered in Choudhury et al. [5] as given in Eq.
[3. The remaining rows indicate the number of events for the luminosity £ = 100 fb=!. For the

numbers given above, we have included both QCD and EW contributions.

Parameter set = f=1000 f =1000 f="1700 SM SM SM
Cuts | k=0.6 k=1 k=15 tt WHW =45 | ZZjj

Production o (fb) | 1039.1 (298) | 157.4 (14.8) | 412.3 (31.4)

Preselection cuts 795.7 120.7 262.6 1.54 x 10° | 2.29 x 10* | 1520.6
m;j; ¢ [65,105] 755 120.1 261.7 1.26 x 105 | 1.88 x 10* | 1227.5
mye & [75,105] 696.8 111.9 2394 9.94 x 10* | 1.5 x 10* | 64.5

Er > 100 623.8 108.8 234.5 2.5 x 10* 4946.4 19.9

Br > 200 441.2 100.5 220.3 2136.4 899.5 3.9

Hr > 300 237.3 87.5 200.1 396.1 239 1.3

Hr > 400 107.1 71.9 174.6 1141 69.5 0.7
S 7.2 4.9 11.2

In addition, one can also use Hp (the total transverse energy) as the parameter to distinguish

signal and backgrounds. The energy of the heavy particles produced (7-odd quarks for signal)
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Figure 6: Fr distribution (left panel) and same-sign dilepton invariant mass (Mmy+ ., ) distribution
(right panel) for signal (x5) and SM background in the channel pp — (*¥(*jj Hr. In plotting
these distributions we have assumed the LHC luminosity to be £ = 100 b~

is essentially given to its various products, namely jets (), leptons (¢) and Kr. Therefore one

can define the total transverse energy (Hr) as :
Hr= Y |pr|. (10)
J 4 Ef

The Hp distribution peaks around the heavy particle mass, and a cut on Hr could be helpful in
reducing the backgrounds. The Hr distribution is shown in Fig.[Bl As the Hp distribution tends

to peak around the heavy particle mass, it can also be used to estimate the T-odd quark masses.

C Same-sign dilepton signatures: ((*jj [

This signature is generated by the production mechanism given in Eq. () and the decay chains
given in Eqgs. (@l). The same sign dilepton signature has relatively less SM backgrounds and hence
could be more useful to search for the T-odd quarks in pair production at LHC.

The possible backgrounds to our signal are:

o pp — WEWTFTW=, where one of the W-bosons decays into jets and the two same sign

W-bosons decays leptonically. The production cross section for this process is 127 fb.

o pp — WEW=*jj with both W-bosons decaying leptonically. The production cross section
for this process is ~ 420 fb.
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Figure 7: 7y and Hy distribution (right panel) for signal (x5) and SM background in the channel
pp — (¥0%5j By for an LHC luminosity of £ = 100 b~

The pre-selection cuts used are:
(a) exactly two light jets with p}. > 30 GeV and || < 2.5;
(b) exactly two leptons of same sign with p% > 15 GeV and |n| < 2.5;
(¢) a minimum missing energy threshold of Fp > 30 GeV.

In Fig. 6l we have shown the dijet invariant mass (m;;) for light jets and the same-sign

dilepton invariant mass (my+,+) distributions. We impose a cut on jet invariant mass of

my; —

This cut helps reducing the background coming from W*WTW=. In Tab. [, we have shown
the effects of the pre-selection cuts and the cut on the dijet invariant mass on the signal and
backgrounds.

As previously argued, in LHT models we expect to have hard JFr, and hence one can
substantially reduce the SM backgrounds by using a hard Fr cut. This is also evident from
the Fr distribution shown in Fig. [l We have accordingly shown the number of expected events
for By > 200, 300,400 GeV.

Finally, for the signature ¢*¢*jj Fr, we have shown the total transverse energy distribution
(Hr). As previously argued, this distribution could be useful in having a estimate of the T-odd

quark masses.
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Table 5: Same-sign dilepton results in the channel pp — (*¢*jj for £ = 100 fb~!.

Parameter set = f=1000 | f =700 | f= 1000 SM SM
Cuts |} k=06 | k=15 k=1 WEW=*45 | WEWEWT
Production o (fb) 235.1 240.7 80.1
Pre-selection 180.5 140.9 58.5 747.2 59.1
|mj; — Mw| > 20 GeV | 173.9 140.6 58.5 651.2 20.3
Er > 100 155.7 138.5 56.6 236.1 5.8
S 9.1 8.2 3.5
Hr > 200 108.4 129.4 51.6 57.8 0.9
Er > 300 57.7 1174 45.1 22.2 0.3
Er > 400 24.9 103 37.5 9.6 0.1
S 6.2 18.6 8.6

VI Conclusions

In this paper, we have analyzed the signatures of the pair production of the first two generations
of T-odd quarks in the context of the LHT model. We first showed that for a reasonable range
of input parameters, these quarks can be produced in large numbers both at the low energy (10
TeV) run and the full 14 TeV run of the LHC. The T-odd quark masses depend only on x and
f. The branching fractions for the decays of these quarks crucially depend on k: for large values
(k > 0.462), the main mode is in Wy plus a light quark and it can contain a lepton coming from
the subsequent leptonic decay of the W.

In this work, we considered both same-sign and opposite-sign dilepton signatures: (a) opposite-
sign dilepton pairs, pp — (QuQu, QuQly) — (. ad)WEWg — jjt*(F Hp, and (b) same-sign
dilepton pairs, pp — QuQy — q@WiWig — jjl*(* Hp. We used CalcHEP to generate the
signal and further interfaced it with PYTHIA. For realistic estimates of signal and backgrounds,
we used the fast ATLAS detector simulator ATLFAST. We also gave the possible K-factors for
signal and background processes. As could be seen, the relevant K-factors can give substantial
enhancements in the production rates of the first two generations of T-odd quarks at LHC.

To quantify our results, we have also shown the significance of the results for three sets of
LHT model input points. As signal and background events after the cuts are smaller in number,
we have to use the Poisson statistics to estimate the significance of the results. To quantify our

results for the set of input parameters chosen, we use a significance estimator [29]

S:\/2{n0 ln(1+§)—s},

where b is the expected number of background events and ng is the number of observed events.

Accordingly, the signal is defined as s = ng — b. This estimator is based on a log-likelihood ratio

and follows very closely the Poisson significance. We used the minimum set of pre-selection cuts as
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defined in Sec. [Vl for signal and background processes. We tried to analyze various distributions
that could help in selecting secondary set of cuts to improve signal to background rates. We
found that the hard cuts on Hp could be useful in extracting the signal from the backgrounds.
Accordingly, we showed the results of signal and background events for a Fr cut of 100, 200, 300
and 400 GeV. The summary of the number of events after imposing various selection cuts were
given in Tab. @ (opposite-sign dilepton) and Tab. Bl (same-sign dileptons). As can be seen from the
summary tables of the results, the signal to background ratio can be significantly improved in the
case of same-sign dileptons and even further by using the Hp distribution. In case of opposite-
sign dileptons, the ¢t backgrounds make the Hr-distribution peak at much larger values, and
hence this distribution could be useful to improve signal to background, if the masses of T-odd
quarks are much higher as compared to the SM top-quark. In the case of same-sign leptons, the
backgrounds come from gauge bosons, and hence the Hp-distribution peaks at relatively lower
values. Hence this distribution is much more useful to suppress backgrounds. At this point we
would like to note, as is evident from Fig. [Il that the second leading decay channel of T-odd
quarks is Qg — Zyq. Although this is not the dominant decay chain, it can lead to some very
interesting signatures [5]. This issue will be addressed in a future work [30]. In Tabs. Ml and
Bl we have also given the expected significance (S) of the results for three sets of LHT input
parameters. The results indicate that the significance of the resuls in the signal (b), same-sign
dileptons, provides a very interesting discovery potential, as the backgrounds in this channel are
very low. This channel can also give a good estimate of the masses of T-odd quarks from the
Hp-distribution. As can be seen from the results, one must optimise the secondary selection
cuts to further improve the signal rates as compared to the backgrounds. This is beyond the
scope of the present paper. To summarize, the pair production of T-odd quarks can probe a
substantial (f, ) region of the LHT model parameter space. For some reasonable values of k
using the same-sign dilepton channel described above, one can probe the symmetry breaking
scale of the LHT model (f) up to the TeV range. We hope that this study will motivate the
LHC collaborations to search for the first two generations of T-odd quarks at LHC.
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