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Abstract. We study the restriction to smaller subgroups, of cohomology classes on arith-
metic groups (possibly after moving the class by Hecke correspondences), especially in the
context of first cohomology of arithmetic groups. We obteanishing results for the first
cohomology of cocompact arithmetic latticesSiti (z, 1) which arise from hermitian forms

over division algebra® of degreepz, p an odd prime, equipped with an involution of

the second kind. We show that it is not possible for a ‘naive’ restriction of cohomology to
be injective in general. We also establish that the restriction map is injective at the level
of first cohomology for non co-compact lattices, extending a result of Raghunathan and
Venkataramana for co-compact lattices.

1. Introduction

In this paper we study the restriction to smaller subgroups, of cohomology groups
of arithmetic groups, especially in the context of first cohomology of arithmetic
groups. Here, “restriction” actually means restriction of the cohomology class in
guestion, after possibly moving the class by “Hecke correspondeces” (we call this
theweak restriction, see Definition 2 in Sect. (2.1)).

Our first purpose here is to obtamnishing results for the first cohomology of
cocompact arithmetic lattices $U (r, 1) which arise from hermitian forms over
division algebrasD of degreep?, p an odd prime, equipped with an involution
of the second kind. Our proof is a variant of a method of Oda [O], who proved
that the Albanese variety of an algebraic variety of the fath§U (n, 1)/K is
a factor of the direct sum of the abelian varieties associated to Shimura curves.
HereT is an arithmetic lattice ir5U (n, 1) of the type shown by Kazhdan [K] to
have nonvanishing first Betti number, aidis a maximal compact subgroup of
SU(n, 1).

We first establish that the weak restriction map (see Definition 2 of Sect. (2.1))
from a compact arithmetic quotient of the unit ball@ to any subvarietyZ is
injective (atthe level of first cohomology). Precisely, this means the followind: Let
be any co-compact (torsion-free) arithmetic subgrouplétn, 1). The symmetric
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space ofSU (n, 1) is the unit ballX in C" with an appripriateSU (n, 1) invariant
metric, and the quotierit\ X is a smooth projective variety. Suppogec '\ X

is a subvariety. Then, we prove that given a cohomology etassH(I", C), the
“restriction” in the above sense (of a translate under a Hecke correspondence of )
the cohomology class to the sub-variety is non-zero.

We apply the above result to the following situation. Supp@sea semi-simple
algebraic group defined ovér such that the grou (R) of real points, is, up to
compact factors, isomorphic 8/ (n, 1). Suppose thatl is a semi-simple algebraic
Q group with a morphisnH — G of Q-groups with finite kernel. Suppose that
H(R) is isomorphic taSU (p — 1, 1) up to compact factors, and that the inclusion
of the symmetric space af into that of G is holomorphic. We assume that the
subgroupH is of the formRg,gSU1(D), Rr/q is the Weil restriction of scalars,
whereD is a division algebra of degrge p a prime, over an imaginary quadratic
extensionE of a totally real number field” with an involution* of the second
kind (see Sect. (2.3)) such that the unitary grédp(D)(F ® R) is a product of
U(p—1, 1)withacompactgroup. By using the result stated in the last paragraph, we
reduce questions on the vanishing of the first cohomology of congruence subgroups
of G(R) to that of H (R).

A vanishing theorem for (the first cohomology of ) such lattices in the latter
case was proved ovér by Rapoport [Rp, 291], Rogawski [Ro] fosU (2, 1) and
in full generality by Clozel [CI], using the results and methods of Kottwitz in his
work on the zeta functions associated to Shimura varieties. We deduce from this
result, and the injectivity result, that the first cohnomology gréiiaI", C) is zero,
for all congruence subgroupsof G(Q).

We remark here that the result on injectivity follows from a special case of a
general criterion obtained in [CV, Prop. 2.2]. Our formulation however is geometric
and we give a direct proof of this result.

The injectivity of the restriction map as above, is equivalent to restricting the
cohomology to the family of subgroups obtained by conjugatinglbthe rational
elements5 (Q) of the bigger groug. We call this theveak restriction. Itis natural
to ask if the restriction map is injective imaive sense. By this we mean the natural
map on the restriction of the cohomology of an arithmetic latficeontained in
the ambient grouf, to the discrete subgroup obtained by interseciingith
the real points of a subgroufi. We show in Sect. 3, that the injectivity of the
naive restriction is not possible in general even after conjugating by an arbitrary
but fixed finite set of elements, once the level becomes sufficiently large. We do
this by comparing the growth of the cohomology group¥ @indl’ N H (R) as one
goes down the level. For this we prove some estimates givioge bound for
the multiplicities of automorphic representations when one goes down the level of
congruence subgroups, and this result seems to us of independent interest.

When the lattices are no longer cocompact, it is not clear that Oda’s method
can be applied, since it depends on the use of Hodge theory. In this situation when
the lattices are no longer cocompact, we prove an injectivity result at the level of
first cohomology by relating it to the relative congruence subgroup property. Bass,
Milnor and Serre [BMS, p. 135] had shown that if an arithmetic latficgatisfies
the congruence subgroup property, then all the first cohomology groupsvith
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algebraic coefficients vanish. Raghunathan and Venkataramana [RV] used a relative
congruence subgroup property to establish that the restriction map is injective at
the level of first conomology, provided the lattices are co-compact. We extend this
result to non co-compact lattices. However the presence of unipotent elements in
the non co-compact case, makes the proof in the non co-compact case simpler than
the proof in the co-compact case. The main ingredient in the proof is a theorem
of Raghunathan giving a criteria for a generalised congruence subgroup kernel
to be finite. As a corollary we obtain a theorem of Millson [Mi], that for certain
congruence arithmetic lattices KO (n, 1), the first Betti number does not vanish

for n > 5, by reducing it to the case of arithmetic latticesSiti (n, 1), where it is
known by a theorem of Wallach [Wa].

2. Therestriction map

In this section we define the restriction map and prove Theorem 1. As a corollary we
will deduce that for certain arithmetic latticEsontained irS U (n, 1), HY(I", C) =
©0).

2.1. Notation

Let G/Q semisimple algebraic group defined o¥@r such that all the)-simple
factors are non-compact at infinity.(Q) is a subgroup ofi (A r), whereA ¢ is the
ring of finite adéles of). There is a natural topology @i(A r) which makess (A )

into a locally compact totally disconnected topological group.Ket G(A ) be

a compact open subgroup. ThEn:= K N G(Q) is referred to as a congruence
arithmetic subgroup o; (Q). A subgroupl” of G(Q) is said to be arithmetic, if

I" is commensurable with a congruence arithmetic subgrou@(@f. If T is an
arithmetic subgroup, the@ (Q) is the commensurator group, consisting of those
elementg € G(R) such thagI'g~1 is commensurable with.

Let X denote the symmetric space associated (&), the space of maximal
compact subgroups @f (R). To a pointx € X, we letK, denote the corresponding
maximal compact subgroup 6f(R) with Lie algebrat,. We have an orthogonal
decompositiony = £, @ p,, with respect to the Killing form. We assume thais a
torsion-free arithmetic lattice i (R). Denote bys(I") = I'\ X, the corresponding
manifold.

Suppos€” is a manifold and we have a smooth morphigmZ — I'\ X. Let
Z — Z denote the universal cover & and¢ : Z — X be the lift of¢. We will
denote by, the corresponding morphism at the level of fundamental groups or at
the level of tangent spaces, aptithe pullback map at the level of cohomology or
of differential forms. For any € G(Q), we denote byZ, the following manifold:

Zy = ¢, MM Ng Mg\ Z.

Sincerl is an arithmetic lattice, the commensurator subgroup & G(Q), and
henceZ, is a compact manifold and is a finite coverof
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Definition 1. The restriction maps the natural map on the cohomol ogy groups,
¢" :=¢f : H*('\X, F) > H*(Z, F).

HereF is any field, which we usually take to be eitli@¢ror R. Note that since
M\XisaK (T, 1) space, there is a natural isomorphisfi(I'\ X, F) ~ H*(T, F)
of the singular cohomology groups ®f X with the group cohomology of'.
Suppose now thalT ¢ G(Q) a congruence arithmetic subgroup. We have the
natural morphisms at the level of cohomology groups,

H*(T\X, F) 5> H* (g Tg\X, F) 2 H*(Z4, F).

Letg, = ¢*g* : H*(I'\X, F) — H*(Zg, F) be the composite morphism.

Suppose how that = R or C and that we are considering deRham cohomology
groups. Letw be a differential form representing a cohomology clas$ X .
Considerqb;f (w) as a form on the universal covér Then at the level of forms we
have,

Pt (@) = *(g* ).
Definition 2. The weak restriction map or simply Resis defined to be

Resi= [[ ¢ H*C\X.F) > [] H*(Z.PF).
2€G@ 2€G@

Suppose thaX is a Hermitian symmetric domain. Assume now tldatis
anisotropic overQ. I is then a cocompact arithmetic lattice dnylX is a compact
Kahler manifold. LetZ be a compact Kéhler manifold arl: Z — T'\ X, be
a holomorphic map. For a poini € M with M a complex manifold, denote by
T, M the holomorphic tangent space & at m. With this notation we now have
the following version of Oda’s principle.

Theorem 1. Let X bea Hermitian symmetric domain and I" be a cocompact arith-
meticlatticein G(Q). Let Z beacompact Kéhler manifoldand¢ : Z — I'\ X, bea
holomorphic map. Fix aninteger ¢ > 0. Assume now that ¢ satisfiesthe following:
there exists a point yg € Z such that the K(/;(yo) span of é*(A‘I(TZyO)) isequal to
NI Xj(yg)):

Then we have an injection of cohomology groups

Res: H*O(I"\X) — ]‘[ H?%(Z,).
8€G(Q

Proof. It is a consequence of the K&hler identities for thand thed Laplacians

on a compact Kahler manifold, that the holomorphic forms inject into the deRham
cohomology groups of a compact Kéhler manifold. Hence if a holomorphic form
vanishes as a cohomology class, then the form is identically zero. Supposeisiow

a holomorphig;-form representing a cohomology clasdHf (I'\ X, C), belonging

to the kernel of Res. Then for agye G(Q), ¢g (@) considered as a holomorphic
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form onZ, is identically zero. At the level of the morphisfh— X, this translates
to

$*(g*w) =0, forallg e G(Q).

Now G (Q) is dense inG (R), and the action of; (R) on the space of forms on
X by conjgation is a continuous action. Hence it follows

$*(g*w) =0, forallg e G(R).

In particular, we have that § < (;NS*(/\‘{TZQ;(yO)), theng*(w)(¢§) = 0. By our

hypothesis that the&,, span of s (AY TZ,,) is the whole of the holomorphic
tangent space? (TXQ;(yO)), we obtain that

g (@)(€) =0, Vg e GIR), V& € A"(TX(,;(},O))
Now letx be any point orX andé be ag-multivector atc. We can find an element
g € G(R), such thatgx = yo. Thenw (&) = g*(w)(g«(€)) = 0. Hence we have
shown thato = 0. O

Remark. We remark thatwe have made no mention of special points in the statement
of the theorem, in contrast to the approach by [O] and [MR] (of course, [MR]
obtain other information, like fields of definition etc, by considering special points).
However, it is clear that the arithmeticity Bfis an essential ingredient in the proof,

in that we require the commensurability grouplofo be dense iz (R). We will

see in the next section that it is not possible to obtain injectivity for the restriction
map in the strong sense, even after taking finitely many conjugates.

Coroallary 1. With assumptionsasin thetheoremabove, we havethat therestriction
map

Res: H{(\X.C) > [] H'Z,.C)
8eG Q)
isan injection.
Proof. This follows from the Hodge decomposition for a compact Kahler manifold
M,
HYM,C) = HOY M) ® HO(M), HOL(M) = HO(M),
and the fact that a holomorphic map preserves the type of a form.

Coroallary 2. Suppose that the symmetric space associated to G (R) isisomorphic
to the symmetric space associated to SU (n, 1). Let T" be a cocompact arithmetic
lattice and let ¢ : Z — T\ X be a holomorphic map from a compact Kahler
manifold Z of rank r at some point yo € Z. Then for any g <r,

Res: HXOM\X) »> [ H*%Zyp
2€G(Q

isan injection.
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Proof. This follows from the fact that for the grougl/ (n, 1), a maximal compact
subgroup isS(U (n) x U (1)), and the associated action on ti& exterior power of
the holomorphic tangent space is the actiors of(n) on A9C". This latter action
is irreducible forg < n.

2.2. Injectivity of restriction for compact quotients of the unit ball

We are now interested in applying Theorem 1 to the following situationGList a
connected, semi-simple, simply connected group definecuaisdtr opic overQ.
Write G = [];_; Gi, where eacl; is aQ-simple, connnected, simply connected
group. Assume as before that;(R) is not compact for each. A congruence
arithmetic subgroup’ of G(Q) is commensurable with a producf;_; T';, where

I'; C G;(Q) is a congruence arithmetic subgroup. Thus the first Betti numbér of
can be computed in terms of the Betti number§'pfl < i < r). Hence we may
assume that is Q-simple, and that; (R) is non-compact. I&(R) # Spin(n, 1) or

SU (n, 1) upto compact factors, then it is well known from the work of Matsushima,
Kaneyuki, Nagano, Kazhdan, Kostant, Bernstein [BoW, p. 168] that

HYI,C)=0

for all congruence arithmetic subgroups. Therefore we will henceforth assume that
upto compact factor6 (R) = Spin(n, 1) or SU (n, 1).

SupposéH is a connected, semi-simple, simply connected group@ywhich
isQ-simple. Supposg: H — G isaQ-rational morphism of algebraic groups with
finite kernel. Itis then easy to see tltis anisotropic ovef) as well. Assume also
that H (R) is noncompact. Lek andY denote respectively the symmetric spaces
associated t@ (R) and H (R). We denote by N g~1I'g N H(R)) the subgroup
jﬂgl(r\g—lrg) of H(R). In this situation we have the following special case of
Corollary 2. Note that in the situation belo@; Ng~1TI'¢ N H (R))\Y is a manifold.

Theorem 2. Suppose G(R) (resp. H(R)) are SU (n, 1) (resp. SU (p, 1)) upto com+
pact factors (then Xy and X are Hermitian symmetric domains). Assume that
the natural map jr : Xy — X¢ isholomorphic. LetI' C G(R) be a cocompact,
torsion-freelatticein G(R). Then

Res: HY(T'\X, C) — ]—[ HY ("' ng rgn HMR))\Y, C)
8€G(Q)

isinjective.

2.3. Avanishing result

Our purpose now is to obtain a vanishing result for the first cohomology of certain
types of arithmetic lattices iU (n, 1), by the method of restriction of cohomology.
We use and extend the vanishing results for the first cohomology of Rapoport,
Rogawski and Clozel. Suppogeis a totally real number field of degreeover
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Q, and letE be a totally imaginary quadratic extension Bf Let o denote the
non-trivial element of the Galois group &f over F. Let D be a central division
algebra of degrep?, p an odd prime, oveE of the second kind with involution
t, such that(z) = o(z) for all z € E C D. Consider the special unitary group
defined overF,

Hp = SU(D) = {x € D*, Nred(x) = 1| xt(x) = 1},
whereNeq(x) denotes the reduced normxof D*. Let

H := ReqHp)
F/Q

be the Weil restriction of scalars. L&t ¢ H(Q) be a congruence arithmetic
subgroup. We have the following theorem, which was proved in some special cases
initially by Rapoport [Rp], by Rogawski [Ro] whem = 3 and by Clozel [Cl] when

p is an odd prime.

Theorem 3 (Rapoport, Rogawski, CloZeMith the foregoing notation,
HY(A,C) =0.

Consider now a left vector spadé of dimensionk over D, together with a
hermitian formB with respect to the involution Let G(B) be the Weil restriction
of scalars of the special isometry group of this hermitian form. We assume that the
form is such thaG (B)(R) = SU (kp — 1, 1) x SU (kp)"~L.

Example. Choose a basigs, e, - -, e;} of V over D. Fix a setry, 12, , 7,

of distinct non-conjugate embeddings Bfinto C. We continue to denote by
the map which sends an elemant D*tox ® 1 € D ®g ; C. With respect to
any of the embeddings, we have tHatRr ,, C >~ M(p, C), and the involution

¢t can be conjugated to the standard involution~ x’. The space of matrices
A € M(p,C) satisfyingt(A) = A, such that the unitary group of the hermitian
form B, (x) = «(x)Ax is of typeU(p —i,i), 0 < i < pis open. Since the space
{a € D | t(a) = a} is a subspace db defined ovelF, by weak approximation we
can find an element € D* (resp.b € D*), such that the isometry group of the
hermitian formB; (x) = t(x)t; (a)x, x € M(p, C) is of typeU (p — 1, 1) (resp. of
typeU (p, 0)) fori = 1 and of typel (p, 0) otherwise.

Let B,(x) = t(x)ax, x € D (respBp(x) = t(x)bx, x € D) denote the corre-
sponding hermitian forms ob. ThenG (B,)(R) ~ SU(p—1, 1) x SU(p)"~*and
G(Bp)(R) >~ SU(p) x SU(p)"~L. Write now an element € V asx = Zle xiej.
Let B(x) denote the hermitian form(x) = B,(x1) + Zf‘zz By, (x7). Then we have
thatG(B)(R) ~ SU (kp — 1,1) x SU (kp) L.

LetI" be a congruence arithmetic subgroup contained in-Rg&) (R). As a
corollary of Theorem 2 and Theorem 3, we obtain

Theorem 4. Wth notation as above,

HYI'\X,C) =0.
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3. Non-injectivity of naiverestriction

In this section we show that it is not possible to obtain an injectivity of the restriction
map on the cohomology groups, when one works with a naive notion of restriction.
More precisely our aim is to show the following:

Theorem 5. Let S be a finite subset of G(Q), and G, H be anisotropic Q groups
with a finite morphism H — G of QQ-algebraic groups as in section 1, with the
symmetric spaces X and Xy associated to G and H being of Hermitian type,
and such that the map Xy — X is holomorphic. Assume morever that G (R)
(resp. H(R)) islocally isomorphicto SU (n, 1) x SU (n+1)" 1 (resp. SU(1, 1) x
SU(2)"1). Suppose n > 3r. Then the following restriction map

Rrs: HY(T\X,C) > [ [ HY (@ ng~ g n HR)\Y. C)
ges

cannot be injective for all congruence subgroupsT™ C G(Q).

Proof. The method of proof is to compare the growth of the cohomology groups as
one goes down the level of. For a congruence arithmetic latti€ecorresponding

to a compact open subgroup C G(Ay), let m(7 ® ) be the multiplicity

with which the representation,, ® 7y occurs iNL2(I'(Q)\G (A)). We recall the
Matsushima formula [BoW]:

HYT\X,C) = P m(ec ® ) HY (g, t.700) @ 7 f .

Note thatG is assumed to be anisotropic ov@r hence the Matsushima formula
is valid as stated. Let = 7, ®, 7, be a cuspidal automorphic representation of
G (A), such that the archimedean component contributes to the relative Lie algebra
cohomologyH (g, £, 7o) # 0. We note that for us, the symbal, is a restricted
tensor product. Lep be such thatG(Q,) is non-compact. Then we note that if
7, is the “p-adic” component ofr thenm, cannot be finite dimensional: for,
otherwise, this would mean thay, is one dimensional, and then by a well known
argument using strong approximation, that is also one dimensional, but the
trivial representation o6 (R) does not have non-trivial first conomology as can
be easily seen. Choose a compact open subgkoapG (A y) such thabrf # 0.
We may further assume that = [[ K, where the product is over all primgs
andK, C G(Q,) is a compact open subgroup. For a primenrite K” =[] K;
wherel runs through all primes except

Fix now a primep such thatz /Q,, contains afactor locally isomorphic$d., ;1
overQ,. We will choose a sequence of compact subgrakipsc K C G(Ay)
for m large enough, wittk,,, = K”K,(m), whereK? = K N Hz;ep G(Qp), and
K ,(m) denotes the principal congruence subgroups of levat the primep, i.e.,
the kernel of the reduction moduljg” of the groupGL,(Z,),

K,(m) =Ker(GL,(Z,) - GL,(Z/p"Z)).
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Letl',, := G(Q)NK,, bethe corresponding congruence subgroup inGidg).
It follows from the Matsushima formula that the first Betti numbé&¢T,,,) of '),
satisfies the following estimate:

hY (T, > dim (n]’f) > dim (nfp(’”)) .

We now recall a fact about the growth of invariants (under smaller and smaller
open compact subgroups 6f,) of an admissible representatian, of a linear
p-adic groupG , overQ,. Let

1
D = min Edim O,

whereQ runs over the collection gfositive dimensional nilpotent orbits oiG , in

the adjoint representation on the Lie algebraGof. The following proposition is

a consequence of the theorems of Howeddr,, and Harish-Chandra for general

G, on the germ expansion of characters of admissible representations. We refer to
[DP, Prop. 1, p. 189], and for a proof of the proposition, to [Sa2, p. 143].

Proposition 1. Let 7 be an irreducible infinite dimensional admissible represen-
tation of G,. Let K, (m) be the principal congruence subgroup of level m. Then
there exists a positive constant ¢ > 0, such that for m large enough,

. K
dim (np ”(m)> > cp™P.

It is easy to check that foG locally isomorphic toSL, 1 we haveD = n.
Hence it follows from combining the Proposition with the above estimate for the
Betti number coming from the Matsushima formula, that#olarge enough,

YT \X) > c1p™,

for some positive constang.
Note that the same proof shows the following result, which seems to us to be
of independent interest.

Theorem 6. Let G bea semi-simplealgebraic group over Q suchthat G (R) isnon-
compact. Let 7 beanirreducibleinfinite dimensional representation of G (R) which
occursdiscretely in L2(I'\ G (R)) for some congruence subgroup I'. Fix a prime p
such that G(Q,) isnoncompact. Let T'(p™) bethe principal congruence subgroup
of I of level p™. Thenthe multiplicity of 7z inthe discrete part of L2(I' (p™)\ G (R))
is bounded below by a constant times p”'? where D is half the dimension of the
minimal positive dimensional nilpotent orbit in the Lie algebra of G.

Restricting our attention now t&, we observe first that there is an asymp-
totic upper bound [Sal], given byi(no’g)vol(g—ll*g N H(R)\H(R)), for the
multiplicity with which a representation occurs itf(g~1I'g\ H (R)). Here we
are fixing a Haar measure on the graligR) andd(r ) is the formal degree of
H (R)-representation 2 with respect to this measure. Since the number of repre-
sentations of (R) which have non-trivial cohomology (with trivial coefficients)
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is finite, it follows that the growth of the cohomology gro#fd (g ~1I'g N H (R))
is bounded above by,

hl(g™g N H(R)) < covol(g T g\H (R)),

wherec; is some absolute constant. Since for every S, we have assumed that
g € G(Zp), we have that the elements §normalisek ,(m). Hence the growth
of the volume as a function e, is given by

c3lSII(Kp(0) N H(Zp) : Kp(m) N H(Zp))|.
From the structure ok , (0) it follows that
I(K,(0) N H(Zp) : Kp(m) N H(Z))| = |H(Z/ p" 7).
We have a filtration of the group,
H(Z/p"Z) — H(Z/p"7) — - H(Z/pZ) — {1},

where the kernels except the last one, can be identified with the vectoﬂﬁﬂ’ﬂ‘q,()e
whereh denotes the Lie algebra éf. Suppose thatl (R) is locally isomorphic to
SU(L,1) x SU(2)"~. Then dim(h) = 3r, and|H (Z/p"Z)| = |H (F )| p¥ "~ Y.
From all this it follows that

dim (H HY ((r Ng e N HR)\Y, (C)) < cap¥m

ges

for some constanty. But then this does not grow as fast as the cohomology group
of HL(I',,\ X, C), provided we assume that> 3r. 0O

Remark. Itis clear from the proof that we could have assuniB@) to be locally
isomorphictaSU (k, 1) x SU (k+1)"~1, provided the inequality((k+1)2—1) < n
holds.

4. Congruence subgroup property and first Betti number

Our aim in this section is to prove that the weak restriction map is injective at
the level of first cohomology when the lattices are no longer co-compact. For co-
compact lattices this result was proved in [RV]. Even when both the groups involved
are unitary groups, Oda’s method cannot be applied directly as it rests on the use
of Hodge theory.

LetG, H be connected, simply connect®dgroups, which ar@-simple, with
amorphismj : H — G of Q algebraic groups. The group(Q), can be equipped
with two topological group structures, obtained by defining an arithmetic (resp.
congruence) subgroup 6f(Q) to be an open subgroup. These topological struc-
tures will be respectively called the arithmetic and the congruence topologies on
G(Q). The groupG (Q) admits a completion with respect to these topologies in the
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sense of [Bour], and we will denote l@(@)a (resp.G/(\Q)c) thearithmetic (resp.
congruence) completions ofG (Q). We have the following exact sequence,

1-CG) - G@Q), > G@Q). — 1,

wherer is induced by the identity map oG (Q). HereC(G) is the congruence
subgroup kernel and is a profinite group. The gra{) being trivial, amounts to
saying that every arithmetic subgroup is a congruence subgroup. The congruence
subgroup problem is the determination of the congruence subgroup kernel. In par-
ticular the question is to know when(G) is a finite group. It was shown in [BMS],

[Ral, page 153], that if (G) is finite, thenH(T", p) = 0, for any finite dimen-
sional representation @f. In [RV], a relative version of the congruence subgroup
property was established, and used to show the injectivity of the restriction map on
cohomology provided the lattices are cocompact.

4.1. Notation

LetI" ¢ G(Q) be a congruence arithmetic subgroup. TgeAl'g N H(R) = A,

is a congruence arithmetic subgroupfQ). Analogous to the restriction maps
defined in Section 2, we can define restriction maps at the group cohomology level
as follows:

Definition 3. Define the map j* asthe restriction map
J* =g Q) - B (7N, Q).

If ¢ € G(Q) andI” C G(Q) a congruence arithmetic subgroup, then we have
an isomorphisng* : H*(I', Q) — H*(g"1I'g, Q), induced byy — g~ 1yg on
I'. Let

i HY O, Q5 HY (g e, @ L B (e e N H, Q)
be the composite morphisyitg*.

Definition 4. Therestriction map or simply Resis defined to be

Res:= ]‘[ jiH*(.Q) — H H*(g g N HR), Q).
2eG(Q) geG(Q)

4.2. Relative congruence subgroup kernel

Fix a congruence subgrodpc G(Q), andg € G(Q). Then

(i) the cIosuAre off" in G/(@)a is precisely the profinite completian of I", and
C(G) CT.
(i) let I, be the closure of in G(Q),. Then one has the exact seqeunce

1-CG) -, -, — 1
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One can similarly defin€ (H), ﬁ@a, and ﬁ(@)c. The mapj, : g rgn
H(R) — g~ 1I'g induces the following commutative diagram:

1 C(G) — (g-Tg), — (g-Tg), — 1

T 1 T

1—-CH) —— (Ag)a —_— (Ag)c—>l

It may be checked that fgr e G(Q), Image j,). = ¢ limagd ji).g. Let Ny
be the closed subgroup 6f(G) generated by

(s7in(Cme | g € G@).
Define the relative congruence subgroup kernel
C(G,H)=C(G)/Ny.

As has been observed in [RV(;(G, H) is related to the restriction map Res
HYI,C) — [[HY¢ g n H(R), C).

Proposition 2. If C(G, H) isfinite or even torsion, then
Res: HYI',C) — ]‘[ HY(g rgn H[R), C)

isinjective.

4.3. A Theorem of Raghunathan

The mainingredient in the proof of our theorem is a theorem of Raghunathan giving
a criterion for a generalised congruence subgroup kernel to be finite. In this section
we assume from now onwards th@t H are isotropic ovef) and that

rankg (G) = rankg (H) = ranky(G) = rankg(H) = 1.

Let S ~ G,, be a maximalQ—split torus inH. ThenA = j(S) is also a
maximalQ—split torus inG.

The@Q groupG is in particular an algebraic variety, and we denotelby (G)
its Zariski dimension. Denote by«, = 2« the non-zero roots oA acting on
the Lie algebra of5. Denote byU™* = U, the subgroup of5 corresponding to
the Lie subalgebra of the Lie algebra@f, which is the direct sum of the root
space and thed2root space. Let/ ~ = U_,, be the subgroup aff corresponding
to the Lie subalgebra which is the direct sum of the and—2« root spaces. Put
Ui = U* N H. Then,U* are maximal unipotent subgroupsGf

Let M denote the centralizer of in G. It is known that the action o¥/ on the
«- root space is irreducible, being isomorphic upto twisting by a character to the
standard representation of the orthogonal or unitary groups.

Let N C C(G) be a closed subgroup of the congruence subgroup kétite)

of G, normalised byG(Q). Hence it will also be normalised tﬁﬁ@)a LetC =
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C(G)/N. The closure oU*(Q) ¢ G(Q) in the groqu/(\@)a is isomorphic to
U*(A ), sincerr splits overU*(A r) [Ral], [Ra2]. We recall that is the natural

map fromG/(\Q)a ontoG/(@c =G(Ay). Let
G/(\(@)N = G/(\(@)a/N~

Viar~1we getsections® : U(A;) - G(Q), — G(Q)y. LetG, be the group

generated by (U*(Q,)) ando~(U~(Q,)) in G(Q)y. We have the following
theorem of Raghunathan [Ra1l], [RaZ2]:

Theorem 7 (Raghunathan [Ral], [Ra2], [R33]

(i) 1fCiscentral in G(Q)y, then C isfinite. A A
(i) If for every pair (p, ¢) of distinct primesthegroups G, and G, commute, then

Ciscentral in G(Q) y.

Proof. i) follows from the fact that the Pontrjagin dual 6finjects into the meta-
plectic kernel, and the metaplectic kernel is known to be finite [Ra3]. ii) is a
restatement of [Ra2, Prop. 2.14]0

4.4. Injectivity of restriction in the non-co-compact case

We have the following theorem extending the results of [RV] to the case Whgn
no longer a co-compact lattice.

Theorem 8. With assumptions as above, assume also that the image Lie(j (H)) N
uy, # 0whereu, isthe «a root space. Then C(G, H) isfinite and

Res: HY(T', C) — ]_[ HY (¢ g N HR), C)
isinjective.

Proof. In view of Proposition 2, we need only show tlatG, H) is finite. ForN g
as in Subsection 4.2, let

G/(\Q)rel = G/(\(@)a/NH-
By Theorem 7, it is sufficient to show that
1- C(G, H) > G@Qrel > G(@) ~ G(Ay) > 1

is a central extension. This will be deduced by verifying the condition (ii) of Theo-

rem 7. Since the image of the congruence subgroup kerigisfrivial in G/(\Q)reh
it follows that for any pair of distinct primeg andg,

[U4(@Q)), Uy Q] = 1.

The natural embedding af(Q) inside G/(@)a gives a splittingr : G(Q) —
G (Q)rel, compatible with the embedding @f(Q) inside G(A ). Supposen <
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M(Q), andu, € U(Q,). The density o/ (Q) in U(Q,) and the compatibility of
the splitting, implies the following relation in the growﬁ@@:

Ad(z(m)) (o (up)) = o (Ad(mp)(up)),

wherem, denotes the element thought of as an element i (Q,). Hence we
have foru, € U (Q,), uy € Uy (Qy)

Ad(t(m)) ([o(up), o (ug)]) = [o(Ad(mp)(up)), o (Ad(mg) (ug))] = 1.

By weak approximation the diagonal subgroMiQ) is dense in the product
M(@Q,) x M(Qy).

Since we have assumed thate(j (H)) intersects ther root space ofs non-
trivially, we see from the irreducibility of th&f action on thex-root space, that the
elementsAd(m ) (up) generate the group(U(Q))) insideG/(\@re| et v(Qy)
denote the subgroup &f(Q,) so generated. First, the projection{Q,) to the
abelianisation ot/ (Q,) (which is isomorphic to the vector space(@f, rational
points of thex root space) is surjective, by irreducibility. Secondly, any subgroup
of U, (Q,,) which maps onto the abelianisation@f (Q,) is all of U, (Q,), as can
be easily seen. Thu¥,(Q)) is the same a&, (Q)).

We note that an analogous argument is already used in [Ra2] (cf. the proof of
Lemma (3.2) of [RaZ2]), in the course of the proof of the Congruence Subgroup
Property.

Hence we obtain,

[o(UT(@Qp), o(U™ (@] =1
By virtue of the splittings of Ui(Af), we obtain that the commutator
lo(UT(@Qp), o (UT(@QN] =1
SinceUi(Qp) generatef;p, we have
[Gp. Gyl =1,
and that proves the theoremo

Remark. It can be seen from the proof of the theorem that in the non co-compact
case, the presence of the unipotent groligs makes it easier to check Raghu-
nathan'’s criterion for the relative congruence subgroup kernel to be finite. Thus the
proof in the non-cocompact case turns out to be easier than the corresponding result
proved in [RV] for the co-compact case.

It was shown by Wallach [Wa], that I is a non co-compact congruence sub-
group in SU (n, 1), then there is a subgroup’ of finite index inT", such that
HYTI',Q) # 0. As a corollary, it follows from the structure theory of non co-
compact arithmetic lattices iIfO(n, 1), n > 3, that we have an embedding
Jj:S01m,1) - SU®m, L) overQ, with Lie(j(H)) intersecting thex root space
uy non-trivially. We thus have the following special case of a theorem of Millson
[Mi].
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Coradllary 3. If ' € SO(n, 1) is a non co-compact congruence arithmetic sub-
group, then HX(I"", Q) # 0, for some congruence arithmetic subgroup I'” of T".
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