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Abstract. We study the restriction to smaller subgroups, of cohomology classes on arith-
metic groups (possibly after moving the class by Hecke correspondences), especially in the
context of first cohomology of arithmetic groups. We obtainvanishing results for the first
cohomology of cocompact arithmetic lattices inSU(n,1) which arise from hermitian forms
over division algebrasD of degreep2, p an odd prime, equipped with an involution of
the second kind. We show that it is not possible for a ‘naive’ restriction of cohomology to
be injective in general. We also establish that the restriction map is injective at the level
of first cohomology for non co-compact lattices, extending a result of Raghunathan and
Venkataramana for co-compact lattices.

1. Introduction

In this paper we study the restriction to smaller subgroups, of cohomology groups
of arithmetic groups, especially in the context of first cohomology of arithmetic
groups. Here, “restriction” actually means restriction of the cohomology class in
question, after possibly moving the class by “Hecke correspondeces” (we call this
theweak restriction, see Definition 2 in Sect. (2.1)).

Our first purpose here is to obtainvanishing results for the first cohomology of
cocompact arithmetic lattices inSU(n,1) which arise from hermitian forms over
division algebrasD of degreep2, p an odd prime, equipped with an involution
of the second kind. Our proof is a variant of a method of Oda [O], who proved
that the Albanese variety of an algebraic variety of the form	\SU(n,1)/K is
a factor of the direct sum of the abelian varieties associated to Shimura curves.
Here	 is an arithmetic lattice inSU(n,1) of the type shown by Kazhdan [K] to
have nonvanishing first Betti number, andK is a maximal compact subgroup of
SU(n,1).

We first establish that the weak restriction map (see Definition 2 of Sect. (2.1))
from a compact arithmetic quotient of the unit ball inCn to any subvarietyZ is
injective (at the level of first cohomology). Precisely, this means the following. Let	

be any co-compact (torsion-free) arithmetic subgroup ofSU(n,1). The symmetric
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space ofSU(n,1) is the unit ballX in Cn with an appripriateSU(n,1) invariant
metric, and the quotient	\X is a smooth projective variety. SupposeZ ⊂ 	\X
is a subvariety. Then, we prove that given a cohomology classα ∈ H 1(	,C), the
“restriction” in the above sense (of a translate under a Hecke correspondence of )
the cohomology classα to the sub-varietyZ is non-zero.

We apply the above result to the following situation. SupposeG is a semi-simple
algebraic group defined overQ such that the groupG(R) of real points, is, up to
compact factors, isomorphic toSU(n,1). Suppose thatH is a semi-simple algebraic
Q group with a morphismH → G of Q-groups with finite kernel. Suppose that
H(R) is isomorphic toSU(p − 1,1) up to compact factors, and that the inclusion
of the symmetric space ofH into that ofG is holomorphic. We assume that the
subgroupH is of the formRK/QSU1(D), RF/Q is the Weil restriction of scalars,
whereD is a division algebra of degreep, p a prime, over an imaginary quadratic
extensionE of a totally real number fieldF with an involution∗ of the second
kind (see Sect. (2.3)) such that the unitary groupSU(D)(F ⊗ R) is a product of
U(p−1,1)with a compact group. By using the result stated in the last paragraph, we
reduce questions on the vanishing of the first cohomology of congruence subgroups
of G(R) to that ofH(R).

A vanishing theorem for (the first cohomology of ) such lattices in the latter
case was proved overQ by Rapoport [Rp, p.̇291], Rogawski [Ro] forSU(2,1) and
in full generality by Clozel [Cl], using the results and methods of Kottwitz in his
work on the zeta functions associated to Shimura varieties. We deduce from this
result, and the injectivity result, that the first cohomology groupH 1(	,C) is zero,
for all congruence subgroups	 of G(Q).

We remark here that the result on injectivity follows from a special case of a
general criterion obtained in [CV, Prop. 2.2]. Our formulation however is geometric
and we give a direct proof of this result.

The injectivity of the restriction map as above, is equivalent to restricting the
cohomology to the family of subgroups obtained by conjugating byall the rational
elementsG(Q)of the bigger groupG.We call this theweak restriction. It is natural
to ask if the restriction map is injective in anaive sense. By this we mean the natural
map on the restriction of the cohomology of an arithmetic lattice	 contained in
the ambient groupG, to the discrete subgroup obtained by intersecting	 with
the real points of a subgroupH . We show in Sect. 3, that the injectivity of the
naive restriction is not possible in general even after conjugating by an arbitrary
but fixed finite set of elements, once the level becomes sufficiently large. We do
this by comparing the growth of the cohomology groups of	 and	∩H(R) as one
goes down the level. For this we prove some estimates giving alower bound for
the multiplicities of automorphic representations when one goes down the level of
congruence subgroups, and this result seems to us of independent interest.

When the lattices are no longer cocompact, it is not clear that Oda’s method
can be applied, since it depends on the use of Hodge theory. In this situation when
the lattices are no longer cocompact, we prove an injectivity result at the level of
first cohomology by relating it to the relative congruence subgroup property. Bass,
Milnor and Serre [BMS, p. 135] had shown that if an arithmetic lattice	 satisfies
the congruence subgroup property, then all the first cohomology groups of	 with
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algebraic coefficients vanish. Raghunathan andVenkataramana [RV] used a relative
congruence subgroup property to establish that the restriction map is injective at
the level of first cohomology, provided the lattices are co-compact. We extend this
result to non co-compact lattices. However the presence of unipotent elements in
the non co-compact case, makes the proof in the non co-compact case simpler than
the proof in the co-compact case. The main ingredient in the proof is a theorem
of Raghunathan giving a criteria for a generalised congruence subgroup kernel
to be finite. As a corollary we obtain a theorem of Millson [Mi], that for certain
congruence arithmetic lattices inSO(n,1), the first Betti number does not vanish
for n ≥ 5, by reducing it to the case of arithmetic lattices inSU(n,1), where it is
known by a theorem of Wallach [Wa].

2. The restriction map

In this section we define the restriction map and prove Theorem 1.As a corollary we
will deduce that for certain arithmetic lattices	 contained inSU(n,1),H 1(	,C) =
(0).

2.1. Notation

Let G/Q semisimple algebraic group defined overQ, such that all theQ-simple
factors are non-compact at infinity.G(Q) is a subgroup ofG(Af ), whereAf is the
ring of finite adéles ofQ. There is a natural topology onG(Af )which makesG(Af )

into a locally compact totally disconnected topological group. LetK ⊂ G(Af ) be
a compact open subgroup. Then	 := K ∩ G(Q) is referred to as a congruence
arithmetic subgroup ofG(Q). A subgroup	 of G(Q) is said to be arithmetic, if
	 is commensurable with a congruence arithmetic subgroup ofG(Q). If 	 is an
arithmetic subgroup, thenG(Q) is the commensurator group, consisting of those
elementsg ∈ G(R) such thatg	g−1 is commensurable with	.

Let X denote the symmetric space associated toG(R), the space of maximal
compact subgroups ofG(R). To a pointx ∈ X, we letKx denote the corresponding
maximal compact subgroup ofG(R) with Lie algebrakx . We have an orthogonal
decompositiong = kx ⊕px , with respect to the Killing form. We assume that	 is a
torsion-free arithmetic lattice inG(R). Denote byS(	) = 	\X, the corresponding
manifold.

SupposeZ is a manifold and we have a smooth morphismφ : Z → 	\X. Let
Z̃ → Z denote the universal cover ofZ, andφ̃ : Z̃ → X be the lift ofφ. We will
denote byφ∗ the corresponding morphism at the level of fundamental groups or at
the level of tangent spaces, andφ∗ the pullback map at the level of cohomology or
of differential forms. For anyg ∈ G(Q), we denote byZg the following manifold:

Zg := φ−1∗ (	 ∩ g−1	g)\Z̃.
Since	 is an arithmetic lattice, the commensurator subgroup of	 is G(Q), and
henceZg is a compact manifold and is a finite cover ofZ.
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Definition 1. The restriction mapis the natural map on the cohomology groups,

φ∗ := φ∗
	 : H ∗(	\X,F) → H ∗(Z, F ).

HereF is any field, which we usually take to be eitherQ or R. Note that since
	\X is aK(	,1) space, there is a natural isomorphismH ∗(	\X,F) � H ∗(	, F )

of the singular cohomology groups of	\X with the group cohomology of	.
Suppose now that	 ⊂ G(Q) a congruence arithmetic subgroup. We have the
natural morphisms at the level of cohomology groups,

H ∗(	\X,F)
g∗
−→ H ∗(g−1	g\X,F)

φ∗
−→ H ∗(Zg, F ).

Let φ∗
g = φ∗g∗ : H ∗(	\X,F) → H ∗(Zg, F ) be the composite morphism.

Suppose now thatF = R orC and that we are considering deRham cohomology
groups. Letω be a differential form representing a cohomology class in	\X.
Considerφ∗

g(ω) as a form on the universal coverZ̃. Then at the level of forms we
have,

φ∗
g(ω) = φ̃∗(g∗ω).

Definition 2. The weak restriction map or simply Resis defined to be

Res:=
∏

g∈G(Q)

φg
∗ : H ∗(	\X,F) →

∏
g∈G(Q)

H ∗(Zg, F ).

Suppose thatX is a Hermitian symmetric domain. Assume now thatG is
anisotropic overQ.	 is then a cocompact arithmetic lattice and	\X is a compact
Kähler manifold. LetZ be a compact Kähler manifold andφ : Z → 	\X, be
a holomorphic map. For a pointm ∈ M with M a complex manifold, denote by
TmM the holomorphic tangent space toM atm. With this notation we now have
the following version of Oda’s principle.

Theorem 1. Let X be a Hermitian symmetric domain and 	 be a cocompact arith-
metic lattice inG(Q). LetZ be a compact Kähler manifold and φ : Z → 	\X, be a
holomorphic map. Fix an integer q ≥ 0. Assume now that φ satisfies the following:
there exists a point y0 ∈ Z such that the Kφ̃(y0)

span of φ̃∗(∧q(T Zy0)) is equal to
∧q(T Xφ̃(y0)

).
Then we have an injection of cohomology groups

Res: Hq,0(	\X) →
∏

g∈G(Q)

Hq,0(Zg).

Proof. It is a consequence of the Kähler identities for thed and the∂̄ Laplacians
on a compact Kahler manifold, that the holomorphic forms inject into the deRham
cohomology groups of a compact Kähler manifold. Hence if a holomorphic form
vanishes as a cohomology class, then the form is identically zero. Suppose nowω is
a holomorphicq-form representing a cohomology class inHq(	\X,C), belonging
to the kernel of Res. Then for anyg ∈ G(Q), φ∗

g(ω) considered as a holomorphic
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form onZg is identically zero. At the level of the morphism̃Z → X, this translates
to

φ̃∗(g∗ω) = 0, for all g ∈ G(Q).

NowG(Q) is dense inG(R), and the action ofG(R) on the space of forms on
X by conjgation is a continuous action. Hence it follows

φ̃∗(g∗ω) = 0, for all g ∈ G(R).

In particular, we have that ifξ ∈ φ̃∗(∧qT Zφ̃(y0)
), theng∗(ω)(ξ) = 0. By our

hypothesis that theKy0 span ofφ̃∗(∧qT Zy0) is the whole of the holomorphic
tangent space∧q(T Xφ̃(y0)

), we obtain that

g∗(ω)(ξ) = 0, ∀g ∈ G(R), ∀ξ ∈ ∧q(T Xφ̃(y0)
).

Now letx be any point onX andξ be aq-multivector atx. We can find an element
g ∈ G(R), such thatgx = y0. Thenω(ξ) = g∗(ω)(g∗(ξ)) = 0. Hence we have
shown thatω = 0. ��
Remark. We remark that we have made no mention of special points in the statement
of the theorem, in contrast to the approach by [O] and [MR] (of course, [MR]
obtain other information, like fields of definition etc, by considering special points).
However, it is clear that the arithmeticity of	 is an essential ingredient in the proof,
in that we require the commensurability group of	 to be dense inG(R). We will
see in the next section that it is not possible to obtain injectivity for the restriction
map in the strong sense, even after taking finitely many conjugates.

Corollary 1. With assumptions as in the theorem above, we have that the restriction
map

Res: H 1(	\X,C) →
∏

g∈G(Q)

H 1(Zg,C)

is an injection.

Proof. This follows from the Hodge decomposition for a compact Kähler manifold
M,

H 1(M,C) = H 0,1(M) ⊕ H 1,0(M), H 0,1(M) = H 1,0(M),

and the fact that a holomorphic map preserves the type of a form.��
Corollary 2. Suppose that the symmetric space associated to G(R) is isomorphic
to the symmetric space associated to SU(n,1). Let 	 be a cocompact arithmetic
lattice and let φ : Z → 	\X be a holomorphic map from a compact Kahler
manifold Z of rank r at some point y0 ∈ Z. Then for any q ≤ r,

Res: Hq,0(	\X) →
∏

g∈G(Q)

Hq,0(Zg)

is an injection.
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Proof. This follows from the fact that for the groupSU(n,1), a maximal compact
subgroup isS(U(n)×U(1)), and the associated action on theqth exterior power of
the holomorphic tangent space is the action ofSU(n) on ∧qCn. This latter action
is irreducible forq ≤ n.

2.2. Injectivity of restriction for compact quotients of the unit ball

We are now interested in applying Theorem 1 to the following situation. LetG be a
connected, semi-simple, simply connected group defined andanisotropic overQ.
WriteG = ∏r

i=1Gi , where eachGi is aQ-simple, connnected, simply connected
group. Assume as before thatGi(R) is not compact for eachi. A congruence
arithmetic subgroup	 of G(Q) is commensurable with a product

∏r
i=1	i , where

	i ⊂ Gi(Q) is a congruence arithmetic subgroup. Thus the first Betti number of	

can be computed in terms of the Betti numbers of	i (1 ≤ i ≤ r). Hence we may
assume thatG isQ-simple, and thatG(R) is non-compact. IfG(R) �= Spin(n,1) or
SU(n,1) upto compact factors, then it is well known from the work of Matsushima,
Kaneyuki, Nagano, Kazhdan, Kostant, Bernstein [BoW, p. 168] that

H 1(	,C) = 0

for all congruence arithmetic subgroups. Therefore we will henceforth assume that
upto compact factorsG(R) = Spin(n,1) or SU(n,1).

SupposeH is a connected, semi-simple, simply connected group overQ, which
isQ-simple. Supposej : H → G is aQ-rational morphism of algebraic groups with
finite kernel. It is then easy to see thatH is anisotropic overQ as well. Assume also
thatH(R) is noncompact. LetX andY denote respectively the symmetric spaces
associated toG(R) andH(R). We denote by	 ∩ g−1	g ∩ H(R)) the subgroup
j−1
R (	\g−1	g) of H(R). In this situation we have the following special case of

Corollary 2. Note that in the situation below,(	∩g−1	g∩H(R))\Y is a manifold.

Theorem 2. Suppose G(R) (resp. H(R)) are SU(n,1) (resp. SU(p,1)) upto com-
pact factors (then XH and XG are Hermitian symmetric domains). Assume that
the natural map jR : XH → XG is holomorphic. Let 	 ⊂ G(R) be a cocompact,
torsion-free lattice in G(R). Then

Res: H 1(	\X,C) →
∏

g∈G(Q)

H 1((	 ∩ g−1	g ∩ H(R))\Y,C)

is injective.

2.3. A vanishing result

Our purpose now is to obtain a vanishing result for the first cohomology of certain
types of arithmetic lattices inSU(n,1), by the method of restriction of cohomology.
We use and extend the vanishing results for the first cohomology of Rapoport,
Rogawski and Clozel. SupposeF is a totally real number field of degreer over
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Q, and letE be a totally imaginary quadratic extension ofF . Let σ denote the
non-trivial element of the Galois group ofE overF . Let D be a central division
algebra of degreep2, p an odd prime, overE of the second kind with involution
ι, such thatι(z) = σ(z) for all z ∈ E ⊂ D. Consider the special unitary group
defined overF ,

HF = SU(D) = {x ∈ D∗, Nred(x) = 1 | xι(x) = 1},
whereNred(x) denotes the reduced norm ofx ∈ D∗. Let

H := Res
F/Q

(HF )

be the Weil restriction of scalars. Let- ⊂ H(Q) be a congruence arithmetic
subgroup. We have the following theorem, which was proved in some special cases
initially by Rapoport [Rp], by Rogawski [Ro] whenp = 3 and by Clozel [Cl] when
p is an odd prime.

Theorem 3 (Rapoport, Rogawski, Clozel). With the foregoing notation,

H 1(-,C) = 0.

Consider now a left vector spaceV of dimensionk overD, together with a
hermitian formB with respect to the involutioni. LetG(B) be the Weil restriction
of scalars of the special isometry group of this hermitian form. We assume that the
form is such thatG(B)(R) = SU(kp − 1,1) × SU(kp)r−1.

Example. Choose a basis{e1, e2, · · · , ek} of V overD. Fix a setτ1, τ2, · · · , τr
of distinct non-conjugate embeddings ofE into C. We continue to denote byτi
the map which sends an elementx ∈ D∗ to x ⊗ 1 ∈ D ⊗E,τi C. With respect to
any of the embeddings, we have thatD ⊗E,τi C � M(p,C), and the involution
ι can be conjugated to the standard involutionx → x̄t . The space of matrices
A ∈ M(p,C) satisfyingι(A) = A, such that the unitary group of the hermitian
form BA(x) = ι(x)Ax is of typeU(p − i, i), 0 ≤ i ≤ p is open. Since the space
{a ∈ D | ι(a) = a} is a subspace ofD defined overF , by weak approximation we
can find an elementa ∈ D∗ (resp.b ∈ D∗), such that the isometry group of the
hermitian formBi(x) = ι(x)τi(a)x, x ∈ M(p,C) is of typeU(p − 1,1) (resp. of
typeU(p,0)) for i = 1 and of typeU(p,0) otherwise.

Let Ba(x) = ι(x)ax, x ∈ D (resp.Bb(x) = ι(x)bx, x ∈ D) denote the corre-
sponding hermitian forms onD. ThenG(Ba)(R) � SU(p−1,1)×SU(p)r−1 and
G(Bb)(R) � SU(p)×SU(p)r−1. Write now an elementx ∈ V asx = ∑k

l=1 xlel .
LetB(x) denote the hermitian formB(x) = Ba(x1)+∑k

l=2Bb(xl). Then we have
thatG(B)(R) � SU(kp − 1,1) × SU(kp)r−1.

Let 	 be a congruence arithmetic subgroup contained in ResF/Q(G)(R). As a
corollary of Theorem 2 and Theorem 3, we obtain

Theorem 4. With notation as above,

H 1(	\X,C) = 0.



544 C. S. Rajan, T. N. Venkataramana

3. Non-injectivity of naive restriction

In this section we show that it is not possible to obtain an injectivity of the restriction
map on the cohomology groups, when one works with a naive notion of restriction.
More precisely our aim is to show the following:

Theorem 5. Let S be a finite subset of G(Q), and G, H be anisotropic Q groups
with a finite morphism H → G of Q-algebraic groups as in section 1, with the
symmetric spaces XG and XH associated to G and H being of Hermitian type,
and such that the map XH → XG is holomorphic. Assume morever that G(R)

(resp. H(R)) is locally isomorphic to SU(n,1)×SU(n+ 1)r−1 (resp. SU(1,1)×
SU(2)r−1). Suppose n > 3r . Then the following restriction map

R	,S : H 1(	\X,C) →
∏
g∈S

H 1((	 ∩ g−1	g ∩ H(R))\Y,C)

cannot be injective for all congruence subgroups 	 ⊂ G(Q).

Proof. The method of proof is to compare the growth of the cohomology groups as
one goes down the level of	. For a congruence arithmetic lattice	 corresponding
to a compact open subgroupK ⊂ G(Af ), let m(π∞ ⊗ πf ) be the multiplicity
with which the representationπ∞ ⊗ πf occurs inL2(	(Q)\G(A)). We recall the
Matsushima formula [BoW]:

H 1(	\X,C) =
⊕

m(π∞ ⊗ πf )H
1(g, k, π∞) ⊗ πK

f .

Note thatG is assumed to be anisotropic overQ, hence the Matsushima formula
is valid as stated. Letπ = π∞ ⊗p πp be a cuspidal automorphic representation of
G(A), such that the archimedean component contributes to the relative Lie algebra
cohomologyH 1(g, k, π∞) �= 0. We note that for us, the symbol⊗p is a restricted
tensor product. Letp be such thatG(Qp) is non-compact. Then we note that if
πp is the “p-adic” component ofπ thenπp cannot be finite dimensional: for,
otherwise, this would mean thatπp is one dimensional, and then by a well known
argument using strong approximation, thatπ∞ is also one dimensional, but the
trivial representation ofG(R) does not have non-trivial first cohomology as can
be easily seen. Choose a compact open subgroupK ⊂ G(Af ) such thatπK

f �= 0.
We may further assume thatK = ∏

Kp where the product is over all primesp
andKp ⊂ G(Qp) is a compact open subgroup. For a primep, writeKp = ∏

Kl

wherel runs through all primes exceptp.
Fix now a primep such thatG/Qp contains a factor locally isomorphic toSLn+1

overQp. We will choose a sequence of compact subgroupsKm ⊂ K ⊂ G(Af )

for m large enough, withKm = KpKp(m), whereKp = K ∩ ∏
l �=p G(Ql ), and

Kp(m) denotes the principal congruence subgroups of levelm at the primep, i.e.,
the kernel of the reduction modulopm of the groupGLn(Zp),

Kp(m) = Ker(GLn(Zp) → GLn(Z/p
mZ)).
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Let	m := G(Q)∩Km be the corresponding congruence subgroup insideG(Q).
It follows from the Matsushima formula that the first Betti numberh1(	m) of 	m

satisfies the following estimate:

h1(	m) ≥ dim
(
π
Km

f

)
≥ dim

(
π
Kp(m)
p

)
.

We now recall a fact about the growth of invariants (under smaller and smaller
open compact subgroups ofGp) of an admissible representationπp of a linear
p-adic groupGp overQp. Let

D = min
1

2
dim O,

whereO runs over the collection ofpositive dimensional nilpotent orbits ofGp in
the adjoint representation on the Lie algebra ofGp. The following proposition is
a consequence of the theorems of Howe forGLn and Harish-Chandra for general
G, on the germ expansion of characters of admissible representations. We refer to
[DP, Prop. 1, p. 189], and for a proof of the proposition, to [Sa2, p. 143].

Proposition 1. Let π be an irreducible infinite dimensional admissible represen-
tation of Gp. Let Kp(m) be the principal congruence subgroup of level m. Then
there exists a positive constant c > 0, such that for m large enough,

dim
(
π
Kp(m)
p

)
≥ cpmD.

It is easy to check that forG locally isomorphic toSLn+1 we haveD = n.
Hence it follows from combining the Proposition with the above estimate for the
Betti number coming from the Matsushima formula, that form large enough,

h1(	m\X) ≥ c1p
mn,

for some positive constantc1.
Note that the same proof shows the following result, which seems to us to be

of independent interest.

Theorem 6. LetG be a semi-simple algebraic group over Q such thatG(R) is non-
compact. Letπ be an irreducible infinite dimensional representation ofG(R)which
occurs discretely in L2(	\G(R)) for some congruence subgroup 	. Fix a prime p
such that G(Qp) is noncompact. Let 	(pm) be the principal congruence subgroup
of 	 of level pm. Then the multiplicity of π in the discrete part of L2(	(pm)\G(R))

is bounded below by a constant times pmD where D is half the dimension of the
minimal positive dimensional nilpotent orbit in the Lie algebra of G.

Restricting our attention now toH , we observe first that there is an asymp-
totic upper bound [Sa1], given byd(πH∞)vol(g−1	g ∩ H(R)\H(R)), for the
multiplicity with which a representation occurs inL2(g−1	g\H(R)). Here we
are fixing a Haar measure on the groupH(R) andd(πH∞) is the formal degree of
H(R)-representationπH∞ with respect to this measure. Since the number of repre-
sentations ofH(R) which have non-trivial cohomology (with trivial coefficients)
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is finite, it follows that the growth of the cohomology groupH 1(g−1	g ∩ H(R))

is bounded above by,

h1(g−1	g ∩ H(R)) ≤ c2vol(g−1	g\H(R)),

wherec2 is some absolute constant. Since for everyg ∈ S, we have assumed that
g ∈ G̃(Zp), we have that the elements ofS normaliseKp(m). Hence the growth
of the volume as a function ofm, is given by

c3|S||(Kp(0) ∩ H̃ (Zp) : Kp(m) ∩ H̃ (Zp))|.
From the structure ofKp(0) it follows that

|(Kp(0) ∩ H̃ (Zp) : Kp(m) ∩ H̃ (Zp))| = |H̃ (Z/pmZ)|.
We have a filtration of the group,

H̃ (Z/pmZ) → H̃ (Z/pm−1Z) → · · · H̃ (Z/pZ) → {1},
where the kernels except the last one, can be identified with the vector spaceh̃(Fp),

whereh̃ denotes the Lie algebra of̃H . Suppose thatH(R) is locally isomorphic to
SU(1,1)× SU(2)r−1. Then dim(h̃) = 3r, and|H̃ (Z/pmZ)| = |H̃ (Fp)|p3r(m−1).
From all this it follows that

dim


∏

g∈S
H 1

(
(	 ∩ g−1	mg ∩ H(R))\Y,C

)
 ≤ c4p

3rm

for some constantc4. But then this does not grow as fast as the cohomology group
of H 1(	m\X,C), provided we assume thatn > 3r. ��
Remark. It is clear from the proof that we could have assumedH(R) to be locally
isomorphic toSU(k,1)×SU(k+1)r−1, provided the inequalityr((k+1)2−1) < n

holds.

4. Congruence subgroup property and first Betti number

Our aim in this section is to prove that the weak restriction map is injective at
the level of first cohomology when the lattices are no longer co-compact. For co-
compact lattices this result was proved in [RV]. Even when both the groups involved
are unitary groups, Oda’s method cannot be applied directly as it rests on the use
of Hodge theory.

LetG, H be connected, simply connectedQ-groups, which areQ-simple, with
a morphismj : H → G of Q algebraic groups. The groupG(Q), can be equipped
with two topological group structures, obtained by defining an arithmetic (resp.
congruence) subgroup ofG(Q) to be an open subgroup. These topological struc-
tures will be respectively called the arithmetic and the congruence topologies on
G(Q). The groupG(Q) admits a completion with respect to these topologies in the
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sense of [Bour], and we will denote bŷG(Q)a (resp.Ĝ(Q)c) thearithmetic (resp.
congruence) completions ofG(Q). We have the following exact sequence,

1 → C(G) → Ĝ(Q)a
π−→ Ĝ(Q)c → 1,

whereπ is induced by the identity map onG(Q). HereC(G) is the congruence
subgroup kernel and is a profinite group. The groupC(G) being trivial, amounts to
saying that every arithmetic subgroup is a congruence subgroup. The congruence
subgroup problem is the determination of the congruence subgroup kernel. In par-
ticular the question is to know whenC(G) is a finite group. It was shown in [BMS],
[Ra1, page 153], that ifC(G) is finite, thenH 1(	, ρ) = 0, for any finite dimen-
sional representation of	. In [RV], a relative version of the congruence subgroup
property was established, and used to show the injectivity of the restriction map on
cohomology provided the lattices are cocompact.

4.1. Notation

Let 	 ⊂ G(Q) be a congruence arithmetic subgroup. Theng−1	g ∩ H(R) = -g

is a congruence arithmetic subgroup ofH(Q). Analogous to the restriction maps
defined in Section 2, we can define restriction maps at the group cohomology level
as follows:

Definition 3. Define the map j∗ as the restriction map

j∗ := j∗
	 : H ∗(	,Q) → H ∗ (

j−1(	),Q
)
.

If g ∈ G(Q) and	 ⊂ G(Q) a congruence arithmetic subgroup, then we have
an isomorphismg∗ : H ∗(	,Q) → H ∗(g−1	g,Q), induced byγ → g−1γg on
	. Let

j∗
g : H ∗(	,Q)

g∗
−→ H ∗(g−1	g,Q)

j∗
−→ H ∗(g−1	g ∩ H,Q)

be the composite morphismj∗g∗.

Definition 4. The restriction map or simply Resis defined to be

Res:=
∏

g∈G(Q)

j∗
g : H ∗(	,Q) →

∏
g∈G(Q)

H ∗(g−1	g ∩ H(R),Q).

4.2. Relative congruence subgroup kernel

Fix a congruence subgroup	 ⊂ G(Q), andg ∈ G(Q). Then

(i) the closure of	 in Ĝ(Q)a is precisely the profinite completion̂	 of 	, and
C(G) ⊂ 	̂.

(ii) let 	̂c be the closure of	 in Ĝ(Q)c. Then one has the exact seqeunce

1 → C(G) → 	̂a → 	̂c → 1.
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One can similarly defineC(H), Ĥ (Q)a , and Ĥ (Q)c. The mapjg : g−1	g ∩
H(R) → g−1	g induces the following commutative diagram:

1 → C(G) −−−−→ ̂(g−1	g)a −−−−→ ̂(g−1	g)c → 1�(jg)∗
�j

�j

1 → C(H) −−−−→ (-̂g)a −−−−→ (-̂g)c → 1

It may be checked that forg ∈ G(Q), Image(jg)∗ = g−1Image(j1)∗g. LetNH

be the closed subgroup ofC(G) generated by
〈
g−1j1∗(CH )g | g ∈ G(Q)

〉
.

Define the relative congruence subgroup kernel

C(G,H) = C(G)/NH .

As has been observed in [RV],C(G,H) is related to the restriction map Res:
H 1(	,C) → ∏

H 1(g−1	g ∩ H(R),C).

Proposition 2. If C(G,H) is finite or even torsion, then

Res: H 1(	,C) →
∏

H 1(g−1	g ∩ H(R),C)

is injective.

4.3. A Theorem of Raghunathan

The main ingredient in the proof of our theorem is a theorem of Raghunathan giving
a criterion for a generalised congruence subgroup kernel to be finite. In this section
we assume from now onwards thatG, H are isotropic overQ and that

rankR(G) = rankR(H) = rankQ(G) = rankQ(H) = 1.

Let S � Gm be a maximalQ−split torus inH . ThenA = j (S) is also a
maximalQ−split torus inG.

TheQ groupG is in particular an algebraic variety, and we denote bydim(G)

its Zariski dimension. Denote by±α, ± 2α the non-zero roots ofA acting on
the Lie algebra ofG. Denote byU+ = Uα the subgroup ofG corresponding to
the Lie subalgebra of the Lie algebra ofG , which is the direct sum of theα root
space and the 2α-root space. LetU− = U−α be the subgroup ofG corresponding
to the Lie subalgebra which is the direct sum of the−α and−2α root spaces. Put
U±
H = U± ∩ H . Then,U± are maximal unipotent subgroups ofG.

LetM denote the centralizer ofA in G. It is known that the action ofM on the
α- root space is irreducible, being isomorphic upto twisting by a character to the
standard representation of the orthogonal or unitary groups.

LetN ⊂ C(G) be a closed subgroup of the congruence subgroup kernelC(G)

of G, normalised byG(Q). Hence it will also be normalised bŷG(Q)a . LetC =
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C(G)/N . The closure ofU±(Q) ⊂ G(Q) in the groupĜ(Q)a is isomorphic to
U±(Af ), sinceπ splits overU±(Af ) [Ra1], [Ra2]. We recall thatπ is the natural

map fromĜ(Q)a ontoĜ(Q)c = G(Af ). Let

Ĝ(Q)N = Ĝ(Q)a/N.

Viaπ−1 we get sectionsσ± : U±(Af ) → Ĝ(Q)a → Ĝ(Q)N . Let Ĝp be the group

generated byσ+(U+(Qp)) andσ−(U−(Qp)) in Ĝ(Q)N . We have the following
theorem of Raghunathan [Ra1], [Ra2]:

Theorem 7 (Raghunathan [Ra1], [Ra2], [Ra3]).

(i) If C is central in Ĝ(Q)N , then C is finite.
(ii) If for every pair (p, q) of distinct primes the groups Ĝp and Ĝq commute, then

C is central in Ĝ(Q)N .

Proof. i) follows from the fact that the Pontrjagin dual ofC injects into the meta-
plectic kernel, and the metaplectic kernel is known to be finite [Ra3]. ii) is a
restatement of [Ra2, Prop. 2.14].��

4.4. Injectivity of restriction in the non-co-compact case

We have the following theorem extending the results of [RV] to the case when	 is
no longer a co-compact lattice.

Theorem 8. With assumptions as above, assume also that the image Lie(j (H))∩
uα �= 0 where uα is the α root space. Then C(G,H) is finite and

Res: H 1(	,C) →
∏

H 1(g−1	g ∩ H(R),C)

is injective.

Proof. In view of Proposition 2, we need only show thatC(G,H) is finite. ForNH

as in Subsection 4.2, let
Ĝ(Q)rel = Ĝ(Q)a/NH .

By Theorem 7, it is sufficient to show that

1 → C(G,H) → Ĝ(Q)rel
π−→ Ĝ(Q)c � G(Af ) → 1

is a central extension. This will be deduced by verifying the condition (ii) of Theo-
rem 7. Since the image of the congruence subgroup kernel ofH is trivial in Ĝ(Q)rel,
it follows that for any pair of distinct primesp andq,

[U+
H (Qp), U

−
H (Qq)] = 1.

The natural embedding ofG(Q) inside Ĝ(Q)a gives a splittingτ : G(Q) →
Ĝ(Q)rel, compatible with the embedding ofG(Q) insideG(Af ). Supposem ∈
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M(Q), andup ∈ U(Qp). The density ofU(Q) in U(Qp) and the compatibility of

the splitting, implies the following relation in the group̂G(Q)rel:

Ad(τ (m))(σ (up)) = σ(Ad(mp)(up)),

wheremp denotes the elementm thought of as an element inM(Qp). Hence we
have forup ∈ U+

H (Qp), uq ∈ U−
H (Qq)

Ad(τ (m))
([σ(up), σ (uq)]

) = [
σ(Ad(mp)(up)), σ (Ad(mq)(uq))

] = 1.

By weak approximation the diagonal subgroupM(Q) is dense in the product
M(Qp) × M(Qq).

Since we have assumed thatLie(j (H)) intersects theα root space ofG non-
trivially, we see from the irreducibility of theM action on theα-root space, that the
elementsAd(mp)(up) generate the groupσ(U+(Qp)) insideĜ(Q)rel : letV (Qp)

denote the subgroup ofU(Qp) so generated. First, the projection ofV (Qp) to the
abelianisation ofUα(Qp) (which is isomorphic to the vector space ofQp rational
points of theα root space) is surjective, by irreducibility. Secondly, any subgroup
of Uα(Qp) which maps onto the abelianisation ofUα(Qp) is all ofUα(Qp), as can
be easily seen. Thus,V (Qp) is the same asUα(Qp).

We note that an analogous argument is already used in [Ra2] (cf. the proof of
Lemma (3.2) of [Ra2]), in the course of the proof of the Congruence Subgroup
Property.

Hence we obtain,

[σ(U+(Qp)), σ (U
−(Qq))] = 1.

By virtue of the splittingσ of U±(Af ), we obtain that the commutator

[σ(U+(Qp)), σ (U
+(Qq))] = 1.

SinceU±(Qp) generateĜp, we have

[Ĝp, Ĝq ] = 1,

and that proves the theorem.��
Remark. It can be seen from the proof of the theorem that in the non co-compact
case, the presence of the unipotent groupsU± makes it easier to check Raghu-
nathan’s criterion for the relative congruence subgroup kernel to be finite. Thus the
proof in the non-cocompact case turns out to be easier than the corresponding result
proved in [RV] for the co-compact case.

It was shown by Wallach [Wa], that if	 is a non co-compact congruence sub-
group in SU(n,1), then there is a subgroup	′ of finite index in	, such that
H 1(	,Q) �= 0. As a corollary, it follows from the structure theory of non co-
compact arithmetic lattices inSO(n,1), n ≥ 3, that we have an embedding
j : SO(n,1) → SU(n,1) overQ, with Lie(j (H)) intersecting theα root space
uα non-trivially. We thus have the following special case of a theorem of Millson
[Mi].
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Corollary 3. If 	 ⊂ SO(n,1) is a non co-compact congruence arithmetic sub-
group, then H 1(	′,Q) �= 0, for some congruence arithmetic subgroup 	′ of 	.
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