
Compositio Mathematica 105: 29–41, 1997. 29
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

On the size of the Shafarevich–Tate group of elliptic
curves over function fields

C. S. RAJAN
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,
Mumbai – 400 005, India. e-mail: rajan@math.tifr.res.in

Received 19 June 1995; accepted in final form 3 August 1996

Abstract. Let E be a nonconstant elliptic curve, over a global field Kof positive, odd characterisitc.
Assuming the finiteness of the Shafarevich-Tate group ofE, we show that the order of the Shafarevich-
Tate group ofE, is given byO(N 1=2+6 log(2)= log(q)), whereN is the conductor ofE; q is the cardinality
of the finite field of constants of K, and where the constant in the bound depends only on K. The
method of proof is to work with the geometric analog of the Birch-Swinnerton Dyer conjecture for
the corresponding elliptic surface over the finite field, as formulated by Artin-Tate, and to examine
the geometry of this elliptic surface.
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1. Introduction

The class group of a number field K ‘measures’ the extent of departure of the
ring of integers of K from being a unique factorisation domain. It is known to be
finite and the class number formula of Dirichlet gives an explicit formula for the
order of the class group of K , the class number. It follows from this using partial
summation and the absolute lower bound for the regulator of number fields shown
in ([22]), that the class number of a number fieldK is bounded by�(1=2)+�

K , where
�K is the discriminant of K . In the case of number fields, the conductor NK of
the Dedekind zeta function of K is equal to the discriminant of K , and so one has
that the class number is bounded by N (1=2)+�

K .
Let E be an elliptic curve defined over a global field K . The analogue of the

class group is the Shafarevich–Tate group III(E=K) of E overK . For a place v of
K , let Kv denote the completion ofK at v. The Shafarevich–Tate group III(E=K)
is defined to be

III(E=K) := Ker

 
H1(K;E)!

Y
v

H1(Kv ; E)

!
;

where the cohomology groups are the Galois cohomology groups, and v runs over
the places of K . The Shafarevich–Tate group measures the extent to which the
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Hasse principle fails for E=K . It is conjectured that III(E=K) is finite and this is
known to hold for certain classes of elliptic curves. Morever an effective bound for
III(E=K) would be useful in computing a set of generators for the Mordell–Weil
group E(K) of K-rational points of E. Our results indicate that one can indeed
obtain a bound analogous to the bound obtained for the class numbers of number
fields, for elliptic curves over global fields of positive characteristic, provided one
assumes the finiteness of III.

Manin ([11]) and Lang ([7]), conjectured bounds for the size of III based on
various arithmetical invariants associated to the elliptic curve. Inspired by these
conjectures, Mai and Murty ([8]) in 1992, predicted the growth of III(E=Q) as
satisfying,

jIIIj = O(N (1=2)+�);

where N is the conductor of the elliptic curve. In ([9]), they produce an infinite
family of elliptic curves E=Q such that,

jIII(E)j � N (1=4)+�:

Since ([8]) has never been published, I have included their argument in an appendix.
Some of the conjectures used in the argument over number fields, viz., Szpiro’s

conjecture and Lang’s conjecture on lower bounds for the canonical heights of
rational points, are known to hold over global fields of positive characteristic ([13,
5]). It would be thus of interest to verify this conjecture for global fields of positive
characteristic.

However a fundamental problem for function fields, is that the estimate on the
rank of the Mordell–Weil group of an elliptic curve is not as sharp as expected for
number fields. Let k be a finite field of odd characteristic, with q = pf elements.
LetC denote an irreducible, smooth projective algebraic curve over k with function
field K , genus g, and Euler characteristic �(C) = 2� 2g. Let K 0 be the function
field of C over �k. Let E be an elliptic curve defined over K with conductor N . A.
Brumer has shown ([1])

r(E) 6
log(N)

2 log(logq(N)� 4g + 4)
+O

 
(logq(N)� 4g + 4) log2(q)
p
q log2(logq(N)� 4g + 4)

!
;

where r(E) is the rank of the Mordell–Weil group E(K). Using this and arguing
as in the case of number fields, provides an upper bound for III, which grows faster
than any power ofN , and will not provide the conjecturedO(N (1=2)+�). For details
we refer to the last remark in the Appendix. Thus it does not seem to be possible to
establish the desired bounds on III, arguing completely in analogy with the number
fields.

For an abelian groupA, let A(l) denote the l-primary component ofA. We have
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THEOREM 1. Let E be an elliptic curve over K as above. Assume that III(l) is
finite for some prime l and that the j-invariant jE of E is transcendental over k.
Then

jIII(E)j 6 (16q)��(C)=2(212q)�p
e�(C)=2Npe((1=2)+(6 log(2)= log(q))

where pe is the inseparable degree of K over k(jE).

In our proof, we work with the corresponding elliptic surface rather than directly
working with the elliptic curve, and with the analogue of the Birch–Swinnerton
Dyer conjecture for the surface. Instead of the regulator and the canonical height
pairing for the elliptic curve, we have the Neron–Severi group of the surface and
the intersection pairing on the divisors on the surface, which takes integral values.
Morever the product over the periods occuring in the Birch–Swinnerton Dyer
formula, is ‘replaced’ by the term q�(X), which has an expression in terms of the
cohomology of the surface, and is thus easier to compute.

2. Conjectures of Artin and Tate

Let X be the proper, minimal, regular model in the birational equivalence class of
surfaces fibered overC and having generic fiber isomorphic toE. Let �X = X�k

�k.
Let � : X ! C denote the projection map of X onto C . X is an elliptic surface
and � has a natural section associated to the zero element of E(K).

Let P2(X;T ) = det(1 � �2;lT ) denote the characteristic polynomial of the
endomorphism �2;l of the etale cohomology groups H2

et(
�X;Ql) induced by the

Frobenius morphism on X . Deligne has shown in ([2]), that P2(X;T ) is a polyno-
mial with rational integral coeffecients, is independent of l, and that the analogue
of the Riemann hypothesis holds i.e., P2(X;T ) =

Q
(1� ��T ) with j��j = q.

Inspired by the Birch–Swinnerton Dyer conjecture, Tate ([19]) conjectured that
the order of zeros of the L-function should be related to geometry of the cycles
on X . In our situation the conjecture predicts that q�1 is a root of P2(X;T ) with
mutiplicity exactly �(X), where �(X), the base number of X , is the rank of the
Néron-Severi group NS(X) of X . NS(X) is defined to be the image of Pic(X)
in NS( �X), the Néron-Severi group of �X , which is the group of divisors taken
modulo algebraic equivalence. Under our hypothesis on the j-invariant of E, it is
known by Néron’s theorem of the base ([6]), that NS(X) is a finitely generated
abelian group.

Let R(X;T ) = P2(X;T )=(1 � qT )�(X). By Tate’s conjecture R(X;T ) is a
polynomial with rational integral coeffecients which does not vanish when T =
q�1.

In our situation, a theorem of Artin ([20]) applies, and we have that

Br(X) ' III(E=K);

where Br(X) is the Brauer group of the surface X . Led by this result Artin and
Tate formulated a geometric analogue of the Birch–Swinnerton Dyer conjecture,
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describing the leading coefficient of the L-function at the center of the critical
strip, where the role of the Shafarevich–Tate group III(E) is replaced by that of the
Brauer group Br(X) of X:

R(X; q�1) =
jBr(X)jjdet(Di;Dj)j
q�(X)jNS(X)torsj2

(1)

where (Di)16i6� is a base for NS(X) modulo torsion. The symbol (Di; Dj)
denotes the total intersection multiplicity of the divisors Di and Dj . The term
jdet(Di; Dj)j is the regulator for the intersection pairing on NS(X).

�(X) = �(X;OX )� 1+ dim (Pic(X)): (2)

It is known that �(X) is non-negative.
In ([20]) it is shown that if Tate’s conjecture is assumed to hold for X , then

the subgroup of elements of Br(X), of order prime to p is finite, and (1) is true
upto a power of p. In ([12]), Milne showed that the conjecture of Tate is equivalent
to assuming the finiteness of Br(X)(l) for some prime l which can also be p.
Morever Milne showed that Tate’s conjecture implies the conjecture of Artin and
Tate. Consequently we have that if III(E)(l) or equivalently Br(X)(l) is finite for
some prime l, then

jIII(E=K)j = jBr(X)j = R(X; q�1)q�(X)
jNS(X)torsj2
jdet(Di;Dj)j

: (3)

Thus to obtain an estimate for jBr(X)j, we estimate each of the terms in the above
expression for jBr(X)j, in terms of the conductor N .

3. Estimating the regulator

We need a description of the Néron-Severi group NS( �X) ([15]). Let K 0 be the
function field of C over �k. It is known by the theorem of Lang–Néron ([6]), that
under our assumption on E, i.e., the j-invariant of E being transcendental over k,
that E(K 0) is a finitely generated abelian group. Morever the torsion of E(K 0) is
generated by at most two elements tj; j �J; jJ j 6 2 with orders nj respectively.
Let r; r0 denote the rank of the Mordell–Weil groups E(K); E(K 0) respectively.
We have r 6 r0. Let si; 1 6 i 6 r0 be a set of generators of E(K 0) modulo
torsion. Since X is proper, the group E(K 0) is canonically identified with the
group of sections of � : �X ! �C . Denote by (s) the image in �X of the section of
� corresponding to a rational element s�E(K 0), and by D(s) the divisor (s)� (0)
on �X .

For a place v ofC , letXv denote the fiber over v. LetS be the finite set of places
on C , the ramification locus of the map � : X ! C , where the fiber Xv is singular.
For v�S, let mv be the number of irreducible components of the fiber �Xv counted

comp3920.tex; 8/05/1997; 8:16; v.5; p.4



THE SIZE OF SHAFAREVICH – TATE GROUP OF ELLIPTIC CURVES 33

without multiplicity. Denote by�v;i; (0 6 i 6 mv�1) the irreducible components
of the fiber Xv , with the convention that the (0) divisor meets �v;0. Let u0 be a
point on C outside S. If D1;D2 are two divisors on �X , denote by (D1;D2) the
intersection multiplicity, which is a rational integer.

By decomposing divisors into ‘horizontal’ sections and ‘vertical’ fibers, it is
shown in ([15]), that the Néron–Severi group NS( �X) is generated by D(s�); (1 6
� 6 r0);D(tj); j 2 J; (0); �Xu0 ;�v;i; (v 2 S; 1 6 i 6 mv � 1), with the following
relations for j 2 J :

njD(tj) ' nj(D(tj); (0)) �Xu0 +
X
v;i

nj(�v;1; : : :�v;mv�1)

�A�1
v ((D(tj);�v;1); : : : ; (D(tj);�v;mv�1))

t; (4)

where ' denotes algebraic equivalence. Av is the intersection matrix defined by
the fiber �Xv , i.e., (Av)ij = (�v;i�v;j); (1 6 i; j 6mv � 1). It is known that Av is
invertible and negative definite.

Consequently it follows that the rank �� = �( �X) of NS( �X) is given by

�( �X) = r0 + 2+
X
v2S

(mv � 1): (5)

In order to estimate the regulator, we need the following result due to Shioda ([16,
Theorem 3.1]).

PROPOSITION 2. Suppose �X is a non-isotrivial elliptic surface as above. Then
numerically equivalent divisors are algebraically equivalent. Hence the Néron–
Severi group NS( �X) is torsion-free.

Proof. Since this fact is of basic importance to us, we give a brief outline of
the proof, following Shioda ([16]). Given a divisorD on �X numerically equivalent
to 0, by Grothendieck–Riemann–Roch, we have �( �X;O(D)) = �( �X;O �X). By
the formulas (11) and (12), and by our assumption that the j-invariant jE of E
is non-constant, we see that �( �X;O(D)) > 0. Hence either h0(O(D)) > 0 or
h2(O(D)) > 0.

If h0(O(D)) > 0, then D is linearly equivalent to an effective divisor and
numerically equivalent to 0, which implies that D is algebraically equivalent to 0.

If h2(O(D)) > 0, then by duality K �D is linearly equivalent to an effective
divisorD0, whereK is the canonical divisor of �X . Since on an elliptic surfaceK is
fibral, by our assumption onD, we have (D0;�) = 0, for any vertical divisor� on
�X . This forces D0 and hence D to be algebraically equivalent to a vertical divisor.

Morever, it is easy to see from our assumption onD, and the non-degeneracy of the
intersection pairing of the divisors on any fiber, that D is algebraically equivalent
to 0 on �X .

Since the intersection pairing is non-degenerate on the group of divisors modulo
numerical equivalence, this gives us that the Néron–Severi groupNS( �X) is torsion-
free.
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This allows us to estimate jNS(X)torsj2=jdet(DiDj)j. Since NS(X) is a sub-
group ofNS( �X) it is torsion free. The intersection numbers being rational integers,
the determinant of the intersection matrix is an integer and we know it is non-zero.
Hence we have

jNS(X)torsj2
jdet(DiDj)j

6 1: (6)

4. Estimating R(X; q�1)

Let Bi(1 6 i 6 4) denote the Betti numbers of the surface X , the dimension of
Hi

et(
�X;Ql) over Ql. The degree of the polynomialP2(X;T ) isB2. By the results of

Artin and Ogg–Shafarevich–Grothendieck ([14]), one has a formula for the Picard
number B2 � ��, the dimension of the space of ‘transcendental cycles’ on �X , in
terms of the exponents of the conductor.

Let M be a l-torsion abelian group which is ‘cofinite’, i.e., is of the form
(Ql=Zl)

s�M0;M0 a finite group. Then s is called as the corank of M . It is shown
in ([4]), under our hypothesis on the map � : �X ! �C , that B2 � �� is the corank
r0(l) of the l-torsion of Br( �X) ' H2( �X;Gm).

Let � be the generic point of C . Arguing using the Leray spectral sequnece for
the map �, Artin remarks that the map H1( �C; ��X�) ! H2( �X;Gm) has finite
kernel and cokernel and hence the coranks are same. For almost all l, then the corank
of H1( �C; ��X�) is given by the formula of Ogg–Shafarevich–Grothendieck as

r0(l) = 4g � 4� r0 +
X
v

fv;

where g is the genus of the curve C and fv is the exponent of the conductor N of
the elliptic curve E at v. Hence

B2 � �� = 4g � 4� r0 +
X
v2S

fv: (7)

Let �v denote the minimal discriminant of E at v, and let ordv(�v) denote the
exponent of the minimal discriminant �v at v. We have the following important
formula due to Ogg([18]), relating the exponents of the discriminant, the conductor
and the numbermv of irreducible components, counted without multiplicity of the
singular fibers

ordv(�v) = fv +mv � 1: (8)

Hence by (5) and (7), we have

B2 = 4g � 2+
X
v2S

ordv(�v): (9)
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On the assumption that Br(X)(l) is finite for some prime l, we have by the
results of Deligne and Milne, that R(X;T ) =

Q
�(1 � ��T ) where j��j = q and

�� 6= q. Hence R(X; q�1) =
Q

�(1 � w�) with jw�j = 1; w� 6= 1. Morever the
degree of R(X;T ) is B2 � �, which is less than B2� r� 2, where r is the rank of
E(K), the Mordell–Weil group of E over K . Hence

degR(X;T ) 6 4g � 4� r +
X
v2S

ordv(�v)

Hence

jR(X; q�1)j =
Y
�

j(1� w�)j

6 2�r24g�4:2�v2s ordv(�v): (10)

5. Estimating q�(X)

Let OX denote the structure sheaf of X . It is known for an elliptic surface, the
irregularity q = dim (Pic( �X)) of �X is the genus g of the curveC . By Weil’s theory
of Jacobians one has that B1 = 2q = 2g. By duality B3 = 2g. Hence from (9),
it follows that the topological Euler characteristic �top(X) =

P
i(�1)iBi is given

by the following interesting formula

�top(X) =
X
v2S

ordv(�v): (11)

By semicontinuity we have �(X;OX ) = �( �X;O �X). Morever it is known that
canonical divisor is fibral, and is of the form ��(T ), where T is a divisor on
C . This gives us K2 = 0, where K is the canonical bundle of X . Hence by
Grothendieck–Riemann–Roch formula, we have

�(X)top = 12�(X;OX) (12)

We have

�(X) = �(X;OX )� 1+ dim (Pic(X))

=
1

12

 X
v2S

ordv�v

!
+ g � 1 (13)

by (2), (11) and (12).

Remark. It is expected that a decomposition as above for �(X), as a sum of
local contributions from the ramified primes, should hold in general for any motive.
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However it is interesting to note that even though �(X) is an integer, the terms
corresponding to the individual ramified places need not be integral. A different
formula for �(X) has been obtained by Milne ([12]).

We would also like to recall a conjecture of Szpiro’s, and which is known to
hold over function fields of arbitrary characteristic ([13]),

X
v

ordv(�v) 6 6pe
(X

v

fv + 2g � 2

)
; (14)

where pe is the inseparable degree of K over k(jE). Hence we get by (13) and
(14), an estimate for the ‘period’,

q�(X) = (q�p
ef
v )1=2q(p

e
+1)(g�1)

6 q�(p
e
+1)�(C)=2Npe=2: (15)

We can also express the estimate we obtained for jR(X; q�1)j in terms of the
conductor as

jR(X; q�1)j 6 2�r24g�426pe(�vfv + 2g � 2)

Now N =
Q

v q
fv
v > q�fv , where qv is the cardinality of the residue field at v�S

and we have qv > q. So log(N)=log(q) >
P

v2S fv and 2�fv 6 2log(N)=log(q) =

N log(2)=log(q). Thus

jR(X; q�1)j 6 2�r(4��(C)2�6pe�(C))N6pe(log(2)= log(q): (16)

6.

Under the assumption that Br(X)(l) is finite for some prime l, and that the j-
invariant of E is transcendental over k, we get from (3), (6), (15) and (16),

jIII(E=K)j

= jBr(X)j

6 2�r(16q)��(C)=2(212q)�p
e�(C)=2Npe((1=2) + (6 log(2)= log(q)):

Remark. It is interesting to notice the terms which contribute to N1=2 in the
function field and the number field. Over number fields it is the infinite period
�1 which satisfies the relation j�1j > H1=12, where H is the height of the
elliptic curve which seems to be contributing to the N1=2 term. In the function
fields it is the term q�(X) which contributes. One has an ‘analogous’ relationship
�(X)top = 12�(X;OX). This is in agreement with the belief that the archimedean
places are to be considered as ‘ramified’ places for an elliptic curve, and the formula
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(13), expressing �(X) as a sum of contributions over the ramified primes of the
elliptic curve.

Appendix?

Let E be an elliptic curve over Q of conductor N and minimal discriminant �.
Let III denote the Shafarevich–Tate group of E. Manin ([11]) and Lang ([7]) have
suggested that the Birch–Swinnerton Dyer conjecture can be used to give upper
bounds for III. Using methods of analytic number theory Mai and Murty ([8]),
conjectured the following

CONJECTURE 1. For any � > 0,

jIIIj = O(N (1=2)+�);

where the implicit constant depends only on �.
In fact they make the stronger

CONJECTURE 2. There is an absolute constant c such that

jIIIj = O

�
H(1=12exp

�
c

logN
log log N

��
;

where the implied constant is absolute and where H is a naive height of E defined
as follows

Let y2 = x3 + ax+ b be an equation for E over Q. Define

H = max(jaj3; jbj2):

Let LE(s) be the L-series associated to E. Define

SE(1+ it) = argLE(1+ it);

where the argument is obtained by continuous variation along the straight lines
joining 2; 2+ it; 1

2 + it starting with value zero, provided t is not the ordinate of a
zero. Define SE(t) = lim�!0SE(t+ �), if t is the ordinate of a zero of LE(s). In
analogy with a conjecture of Montgomery, we make

CONJECTURE 3. For jtj > 2

SE(t) = O

 �
log Nt

log log Nt

�1=2
!

? I would like to thank Ram Murty for allowing me to include the results of ([8]) here. R. Murty
informs me that these conjectures were presented at the Newton Institute in May 1993, but were never
published.
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By arguments as in ([21], page 354) and by using the Phragmen–Lindelof
theorem as in ([10]), it can be seen that

THEOREM. Assuming Conjecture 3, we have

jLE(1+ it)j 6 exp

 
A

�
log Nt

log log Nt

�1=2
!

(17)

for some absolute constant A.

COROLLARY. If r = ords=1LE(s) and Conjecture 3 is true, then

r = O

 �
log N

log log N

�1=2
!
; (18)

where the implied constant is absolute
Proof. LetC be a circle of radius 1= log log N centred at 1. By Jensen’s theorem,

we have

r 6 log maxz"C jLE(z)j

= O

 �
log N

log log N

�1=2
!

by the above theorem.
We recall now a conjecture of Lang on lower bounds for the canonical height

of rational points on E. Let h denote the canonical Neron–Tate height on E.

CONJECTURE (Lang). For any non-torsion rational point P 2 E(Q),

h(P )� log �j�j
for some positive constant �, which does not depend on E.

This conjecture has been proved by Silverman in the case that E has integral
j-invariant.

We also recall a conjecture of Szpiro and Hall relating the height and the
conductor of the elliptic curve E.

CONJECTURE (Szpiro, Hall).

H � N 6+�;

where the constant depends on �.

THEOREM. Let E be a modular elliptic curve over Q satisfying the Birch–
Swinnerton Dyer conjecture, Conjecture 3, and the conjecture of Lang stated
above. Then there exists an absolute constant A such that

jIIIj � H1=12exp
�
A

log N

log log N

�
:
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Proof. Let r be the order of the zero of LE(s) at s = 1. Birch and Swinnerton–
Dyer conjecture that

L(r)(1)
r!

=
jIIIjR

2rjE(Q)torsj2
�1

Y
p0

�p;

where �p are certain integers, R is the regulator of E and �1 is a suitably chosen
infinite period of E. Applying Cauchy’s theorem to a circle of radius 1= log log N

centred at 1, and by the estimate (17), we have

L(r)(1)
r!

� exp

 
c

�
logN

log log N

�1=2
!
(log log N)r+2;

where c is an absolute constant. Mazur has shown that jE(Q)torsj 6 16. The �p are
integers. For the real period Lang has shown that

j�1j � H�1=12:

From Lang’s conjecture stated above, it follows using Hermite’s theorem (see [7]),
that

R� (
p

3=2)r
2
(log j�j)r:

This lower bound for the volume of a lattice is sharp, and neither
p

3=2 nor the
power r2 can be improved upon. Thus we have

jIIIj � H1=12exp

 
c

�
log N

log log N

�1=2
!

�(2 log log N)r+2(2=
p

3)r
2
(log j�j)�r:

As r = O((log N= log log N)1=2), we have

jIIIj � H1=12exp
�
A

log N

log log N

�

for some absolute constant A.

COROLLARY. If we further assume Szpiro’s conjecture, then

jIIIj � N (1=2)+�:

Conversely, we remark that if the above upper bound for III fails to hold, then our
arguments indicate that there should exist elliptic curves of large rank.

comp3920.tex; 8/05/1997; 8:16; v.5; p.11



40 C. S. RAJAN

Remark. In view of the fact that (2=
p

3)r
2

occurs in the estimate for III, and
2=
p

3 > 1, it is of extreme importance to have the square root in the estimate (18)
for the rank r. An upper bound for r of the form O(log N= log log N), will give
an upper bound for III, which grows faster than any power of N .
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