Distinguished Representations, Base Change, and Reducibility for Unitary Groups

U. K. Anandavardhanan and C. S. Rajan

1 Introduction

A representation (π, V) of a group G is said to be distinguished with respect to a character χ of a subgroup H if there exists a linear form l of V satisfying $l(\pi(h)\nu) = \chi(h)l(\nu)$ for all $\nu \in V$ and $h \in H$. When the character χ is taken to be the trivial character, such representations are also called as distinguished representations of G with respect to H. The concept of distinguished representations can be carried over to a continuous context of representations of real and p-adic Lie groups, as well in a global automorphic context (where the requirement of a nonzero linear form is replaced by the nonvanishing of a period integral). The philosophy, due to Jacquet, is that representations of a group G distinguished with respect to a subgroup H of fixed points of an involution on G are often functorial lifts from another group G'.

In this paper, we consider $G = \text{Res}_{E/F} \text{GL}(n)$ and H = GL(n), where E is a quadratic extension of a non-Archimedean local field F of characteristic zero. In this case, the group G' is conjectured to be the quasisplit unitary group with respect to E/F,

$$G' = U(n) = \left\{ g \in GL_n(E) \mid gJ^t \bar{g} = J \right\}, \tag{1.1}$$

where $J_{ij}=(-1)^{n-i}\delta_{i,n-j+1}$ and \bar{g} is the Galois conjugate of g. There are two base change

Received 5 August 2004. Revision received 7 December 2004. Communicated by Freydoon Shahidi.

maps from U(n) to GL(n) over E called the stable and the unstable base change maps (see Section 4.2). We have the following conjecture due to Flicker and Rallis (see[4]).

Conjecture 1.1. Let π be an irreducible admissible representation of $GL_n(E)$. If n is odd (resp., even), then π is $GL_n(F)$ -distinguished if and only if it is a stable (resp., unstable) base change from U(n).

When n = 1 the above conjecture is just Hilbert's Theorem 90. The case n = 2 is established by Flicker [4]. The following theorem proves the conjecture for a supercuspidal representation when n = 3.

Theorem 1.2. A supercuspidal representation π of $GL_3(E)$ is distinguished with respect to $GL_3(F)$ if and only if it is a stable base change lift from U(3).

Let G be a reductive p-adic group. Any irreducible tempered representation of G occurs as a component of an induced representation $I(\pi)$, parabolically induced from a square-integrable representation π of the Levi component M of a parabolic subgroup P of G. Thus the tempered spectrum of G is determined from a knowledge of the discrete series representations of the Levi components of different parabolics and knowing the decomposition of induced representations. The decomposition of $I(\pi)$ is governed by the theory of R-groups.

Let G = U(n, n) be the quasisplit unitary group in 2n variables over a p-adic field F, defined with respect to a quadratic extension E of F. Let P be a parabolic subgroup of G with a Levi component M isomorphic to $GL_{n_1}(E) \times \cdots \times GL_{n_t}(E)$ for some integers $n_i \ge 1$ satisfying $\sum_{i=1}^{t} n_i = n$. Let $\pi_i, 1 \le i \le t$, be discrete series representations of $GL_{n_i}(E)$. Let $\pi = \pi_1 \otimes \cdots \otimes \pi_t$ be the discrete series representation of M. Let $\omega_{E/F}$ denote the quadratic character of F* associated to the quadratic extension E/F. The following theorem gives a description of the R-group $R(\pi)$ in terms of distinguishedness of the representations π_i .

Theorem 1.3. With the above notation,

$$\mathsf{R}(\pi) \simeq (\mathbb{Z}/2\mathbb{Z})^{\mathsf{r}},\tag{1.2}$$

where r is the number of inequivalent representations π_i which are $\omega_{E/F}$ -distinguished with respect to $GL_{n_i}(F)$.

Corollary 1.4. Let P be a maximal parabolic of U(n, n) with Levi component isomorphic to $GL_n(E)$, and π be a discrete series representation of $GL_n(E)$. Then $I(\pi)$ is reducible if and only if π is $\omega_{E/F}$ -distinguished with respect to $GL_n(F)$.

A particular consequence of the corollary is the following result about the Steinberg representation of $GL_n(E)$, which is part of a more general conjecture, due to D. Prasad, about the Steinberg representation of G(E), where G is a reductive algebraic group over F [15].

Theorem 1.5. Let π be the Steinberg representation of $GL_n(E)$. Then π is distinguished with respect to a character $\chi \circ$ det of $GL_n(F)$, for a character χ of F^* , if and only if n is odd and χ is the trivial character, or n is even and $\chi = \omega_{E/F}$.

Our approach to the above theorems is via the theory of Asai L-functions. The Asai L-function, also called the twisted tensor L-function, can be defined in three different ways: one via the local Langlands correspondence and in terms of Langlands parameters denoted by $L(s, As(\pi))$; via the theory of Rankin-Selberg integrals [3, 5, 12] denoted by $L_1(s, As(\pi))$; and the Langlands-Shahidi method (applied to a suitable unitary group) [6, 18] denoted by $L_2(s, As(\pi))$. It is of course expected that all the above three L-functions match.

The main point is that the analytical properties of the different definitions of Asai L-function give different insights about the representation: the Asai L-function defined via the Rankin-Selberg method can be related to distinguishedness with respect to $GL_n(F)$, whereas the Asai L-function defined via the Langlands-Shahidi method is related to the base change theory from U(n), and to reducibility questions for U(n, n). Thus the following theorem, proved using global methods, is a key ingredient towards a proof of the above theorems.

Theorem 1.6. Let π be a square-integrable representation of $GL_n(E)$. Then $L_1(s, As(\pi)) = L_2(s, As(\pi))$.

2 Asai L-functions

2.1 Langlands parameters

Let F be a non-Archimedean local field and let E be a quadratic extension of F. The Weil-Deligne group W'_E of E is of index two in the Weil-Deligne group W'_F of F. Choose $\sigma \in W'_F \setminus W'_E$ of order 2. Given a continuous, Φ -semisimple representation ρ of W'_E of dimension n, the representation $As(\rho) : W'_F \to GL_{n^2}(\mathbb{C})$ given by tensor induction of ρ is defined as

$$As(\rho)(x) = \begin{cases} \rho(x) \otimes \rho(\sigma^{-1}x\sigma) & \text{if } x \in W'_{\mathsf{E}}, \\ \left[\rho(\sigma x) \otimes \rho(x\sigma)\right] \circ I & \text{if } x \notin W'_{\mathsf{E}}, \end{cases}$$
(2.1)

where $I(v_1 \otimes v_2) = v_2 \otimes v_1$ is the switching operator. Let π be an irreducible, admissible representation of $GL_n(E)$ with Langlands parameter ρ_{π} . The Asai L-function $L(s, As(\pi))$ is defined to be the L-function $L(s, As(\rho_{\pi}))$.

2.2 Rankin-Selberg method

2.2.1 Local theory. We recall the Rankin-Selberg theory of the Asai L-function [3, 5, 12]. Let F be a non-Archimedean local field and let E be either a quadratic extension of F or F \oplus F. Let π be an irreducible admissible generic representation of $GL_n(E)$. We take an additive character ψ of E which restricts trivially to F. There exists an additive character ψ_0 of F such that $\psi(x) = \psi_0(\Delta(x - \bar{x}))$, where Δ is a trace zero element of E^{*}. Let $\mathcal{W}(\pi, \psi)$ denote the Whittaker model of π with respect to ψ . Let $N_n(F)$ be the unipotent radical of the Borel subgroup of $GL_n(F)$. Consider the integral (see [3])

$$\Psi(s, W, \Phi) = \int_{N_n(F) \setminus GL_n(F)} W(g) \Phi((0, 0, \dots, 1)g) |\det g|_F^s dg,$$
(2.2)

where $\Phi \in S(F^n)$, the space of locally constant compactly supported functions on F^n , and dg is a $GL_n(F)$ -invariant measure on $N_n(F) \setminus GL_n(F)$.

In [5], Flicker proves that the above integral converges absolutely in some right half-plane to a rational function in $X = q^{-s}$, where $q = q_F$ is the cardinality of the residue field of F. The space spanned by $\Psi(s, W, \Phi)$ (as W and Φ vary) is a fractional ideal in $\mathbb{C}[X, X^{-1}]$ containing the constant function 1. We can choose a unique generator of this ideal of the form $P_1(X)^{-1}$, $P_1(X) \in \mathbb{C}[X]$ such that $P_1(0) = 1$. Define the Asai L-function $L_1(s, As(\pi))$ as

$$L_1(s, As(\pi)) = P_1(q^{-s})^{-1}.$$
(2.3)

This does not depend on the choice of the additive character $\psi.$ Moreover, $\Psi(s,W,\Phi)$ satisfies the functional equation

$$\Psi(1-s,\widehat{W},\widehat{\Phi}) = \gamma_1(s, As(\pi), \psi)\Psi(s, W, \Phi), \qquad (2.4)$$

where $\widetilde{W}(g) = W(w^t g^{-1}), w$ is the longest element of the Weyl group, and $\widehat{\Phi}$ is the Fourier

transform of Φ with respect to ψ_0 . The epsilon factor

$$\epsilon_{1}(s, As(\pi), \psi) = \gamma_{1}(s, As(\pi), \psi) \frac{L_{1}(s, As(\pi))}{L_{1}(1 - s, As(\pi^{\vee}))}$$
(2.5)

is a monomial in q_F^{-s} .

If $E=F\oplus F,$ write $\pi=\pi_1\times\pi_2$ considered as a representation of $GL_n(F)\times GL_n(F).$ Then

$$L_1(s, As(\pi)) = L(s, \pi_1 \times \pi_2), \qquad (2.6)$$

where the right-hand side is the Rankin-Selberg L-factor of $\pi_1 \times \pi_2$.

We have the following proposition [3, proposition in Section 3].

Proposition 2.1. Suppose E/F is an unramified quadratic extension. Let $\pi = Ps(\mu_1, \ldots, \mu_n)$ be an unramified unitary representation induced from the character $(t_1, \ldots, t_n) \rightarrow \prod \mu_i(t_i)$ of the diagonal torus in $GL_n(E)$. Let W^0_{π} be the spherical Whittaker function, and let Φ^0_F be the characteristic function of \mathcal{O}^n_F . Then

$$\Psi(s, W_{\pi}^{0}, \Phi_{F}^{0}) = \prod_{j=1}^{n} \left(1 - \mu_{j}(\varpi_{F})q_{F}^{-s}\right)^{-1} \cdot \prod_{i < j} \left(1 - \mu_{i}(\varpi_{F})\mu_{j}(\varpi_{F})q_{F}^{-2s}\right)^{-1},$$
(2.7)

where ϖ_F is a uniformizing parameter of F.

The following proposition is proved in [12, Theorem 4].

Proposition 2.2. Let π be a square-integrable representation of $GL_{\pi}(E)$. Then $L_1(s, As(\pi))$ is regular in the region Re(s) > 0.

We remark that for the proof of Theorem 1.6 all that we require is that $L_1(s, As(\pi))$ be regular in the region $Re(s) \ge 1/2$.

2.2.2 Global theory. Now let L/K be a quadratic extension of number fields. We assume that the Archimedean places of K split in L. Let ψ_0 be a nontrivial character of \mathbb{A}_K/K , and let $\psi = \psi_0(\Delta(x - \bar{x}))$, where Δ is an element of trace 0 in L. For a global field K, let Σ_K denote the set of places of K. Let $\Pi = \bigotimes_{w \in \Sigma_L} \Pi_w$ be a representation of $GL_n(\mathbb{A}_L)$. Let T be a finite set of places of K containing the following places:

- $(\mathfrak{i})~$ the Archimedean places of K,
- (ii) the ramified places of the extension $L/K,\,$
- (iii) the places ν of K dividing a place w of L, where either $\psi_{0,\nu},\,\psi_{L_w},\,$ or Π_w is ramified.

Define

$$L_{1,\nu}'(s, \mathbf{As}(\Pi)) = \begin{cases} L_1(s, \mathbf{As}(\Pi_w)), & w | \nu, \nu \in \mathsf{T}, \nu \text{ inert}, \\ \Psi_{\nu}(s, W_{\Pi_w}^0, \Phi_{\mathsf{F}_{\nu}}^0), & \nu \text{ inert}, \nu \notin \mathsf{T}, \\ L(s, \Pi_{w_1} \times \Pi_{w_2}), & \nu \text{ splits}, \nu = w_1 w_2. \end{cases}$$
(2.8)

Remark 2.3. Let v be a place of K not in T, inert in L, and w the place of L dividing v. It is not known that $L_1(s, As(\Pi_w)) = \Psi(s, W^0_{\Pi_w}, \Phi^0_{K_v})$. In the notation of Proposition 2.1, the right-hand side is the L-factor associated by Langlands functoriality.

Following Kable [12], we define the Rankin-Selberg Asai L-function $L_1(s, \text{As}(\Pi))$ as follows:

$$L_1(s, As(\Pi), T) = \prod_{\nu \in \Sigma_K} L'_{1,\nu}(s, As(\Pi)).$$
(2.9)

We have the following functional equation.

Proposition 2.4 (see [12, Theorem 5]). Let Π be a cuspidal automorphic representation of $GL_n(\mathbb{A}_L)$. Then $L_1(s, As(\Pi), T)$ admits a meromorphic continuation to the entire plane and satisfies the functional equation

$$L_1(s, As(\Pi), T) = \varepsilon_1(s, As(\Pi), T)L_1(1 - s, As(\Pi^{\vee}), T),$$
(2.10)

where the function $\epsilon_1(s, As(\Pi), T)$ is entire and nonvanishing, where T is a finite set of places of K chosen as above.

2.3 Langlands-Shahidi method

2.3.1 Local theory. We now recall the Langlands-Shahidi approach to the Asai L-function [6, 18]. Let G = U(n, n) be the quasisplit unitary group in 2n variables with respect to E/F. The group $M = R_{E/F}$ GL_n can be embedded as a Levi component of a maximal parabolic subgroup P of G with unipotent radical N. Let r be the adjoint representation of the L-group of M on the Lie algebra of the L-group of N. Fix an additive character ψ_0 of F. The Langlands-Shahidi gamma factor $\gamma_2(s, \pi, r, \psi_0)$ defined in [18] is a rational function of q^{-s} . Let $P_2(X)$ be the unique polynomial satisfying $P_2(0) = 1$ such that $P_2(q^{-s})$ is the numerator of $\gamma_2(s, \pi, r, \psi_0)$. For a tempered π , the Langlands-Shahidi Asai L-function is defined as

$$L_2(s, As(\pi)) = \frac{1}{P_2(q^{-s})}.$$
(2.11)

The L-function is independent of the additive character. The quantity

$$\epsilon_{2}(s, As(\pi), \psi_{0}) = \gamma_{2}(s, \pi, r, \psi_{0}) \frac{L_{2}(s, As(\pi))}{L_{2}(1 - s, As(\pi^{\vee}))}$$
(2.12)

is the Langlands-Shahidi epsilon factor, and is a monomial in q^{-s}.

The analytical properties of $L_2(s, As(\pi))$ are proved in [18, Theorem 3.5, Proposition 7.2].

Proposition 2.5. Let π be an irreducible admissible representation of $GL_n(E)$. Then the following hold.

(1) If E is an unramified extension of F and $\pi = Ps(\mu_1, \dots, \mu_n)$ is a unitary unramified representation of $GL_n(E)$, as in the hypothesis of Proposition 2.1, then

$$L_{2}(s, As(\pi)) = \prod_{j=1}^{n} (1 - \mu_{j}(\varpi_{F})q_{F}^{-s})^{-1} \cdot \prod_{i < j} (1 - \mu_{i}(\varpi_{F})\mu_{j}(\varpi_{F})q_{F}^{-2s})^{-1}.$$
(2.13)

(2) Let π be a tempered representation of $GL_{\pi}(E)$. Then $L_2(s, As(\pi))$ is regular in the region Re(s) > 0.

2.3.2 Global theory. Let L/K be a quadratic extension of number fields, and let $\Pi = \bigotimes_{w} \Pi_{w}$ be a representation of $GL_{n}(\mathbb{A}_{L})$. Define for a place v of K,

$$L_{2,\nu}(s, As(\Pi)) = \begin{cases} L_2(s, As(\Pi_w)), & w|\nu, \nu \text{ inert}, \\ L(s, \Pi_{w_1} \times \Pi_{w_2}), & \nu \text{ splits}, \nu = w_1 w_2. \end{cases}$$
(2.14)

Define the global L-function

$$L_2(s, As(\Pi)) = \prod_{\nu \in \Sigma_K} L_{2,\nu}(s, As(\Pi)).$$
(2.15)

Then we have the following functional equation [18].

Proposition 2.6. Let Π be a cuspidal automorphic representation of $GL_{\pi}(\mathbb{A}_L)$. Then $L_2(s, As(\Pi))$ admits a meromorphic continuation to the entire plane and satisfies the functional equation

$$L_{2}(s, As(\Pi)) = \epsilon_{2}(s, As(\Pi))L_{2}(1 - s, As(\Pi^{\vee})), \qquad (2.16)$$

where the function $\epsilon_2(s, As(\Pi))$ is entire and nonvanishing. \Box

3 Proof of Theorem 1.6

The proof of Theorem 1.6 is via global methods. The following proposition embedding a square-integrable representation π as the local component of a cuspidal automorphic representation is well known [12, Lemma 5] and [2, Chapter 1, Lemma 6.5].

Proposition 3.1. Let E/F be a quadratic extension of non-Archimedean local fields of characteristic zero and residue characteristic p. Let π be a square-integrable representation of $GL_n(E)$. Then the following hold.

- (1) There exist a number field K, a quadratic extension L of K, and a place v_0 of K inert in L such that $K_{v_0} \simeq F$ and $L_{w_0} \simeq E$, where w_0 is the unique place of L dividing v_0 . Further, v_0 is the unique place of K lying over the rational prime p, and the real places of K are split in L.
- $(2) \mbox{ There exists a cuspidal automorphic representation Π of $GL_n(\mathbb{A}_L)$ such that $\Pi_{w_0}\simeq \pi$.} \end{tabular}$

Let Π be a cuspidal representation of $GL_n(\mathbb{A}_L)$ satisfying the properties of the above proposition. Choose a finite set T of places of K as in Proposition 2.4. Consider the ratio

$$F(s,\Pi) = \frac{L_2(s, As(\Pi))}{L_1(s, As(\Pi), T)}.$$
(3.1)

If $v = w_1 w_2$ is a place of K which splits into two places w_1 and w_2 of L, then

$$L'_{1,\nu}(s, As(\Pi)) = L_{2,\nu}(s, As(\Pi)) = L(s, \Pi_{w_1} \times \Pi_{w_2}).$$
(3.2)

By Propositions 2.1 and 2.5, if v is a place of K which is inert and not in T, then

$$L'_{1,\nu}(s, As(\Pi)) = L_{2,\nu}(s, As(\Pi)).$$

$$(3.3)$$

Hence,

$$\mathsf{F}(\mathsf{s},\mathsf{\Pi}) = \prod_{\nu\in\mathsf{T}} \frac{\mathsf{L}_{2,\nu}(\mathsf{s},\mathsf{A}\mathsf{s}(\mathsf{\Pi}))}{\mathsf{L}'_{1,\nu}(\mathsf{s},\mathsf{A}\mathsf{s}(\mathsf{\Pi}))}.$$
(3.4)

Write

$$F(s,\Pi) = G(s,\Pi)Q(s,\Pi)P_0(s,\Pi),$$
(3.5)

where

- (i) the function $G(s,\Pi)$ is the ratio of the L-factors at the Archimedean places; it is a ratio of products of Gamma functions of the form $\Gamma(as + b)$ for some suitable constants a, b;
- (ii) the function

$$Q(s,\Pi) = \frac{\prod_{i=1}^{n} (1 - \alpha_{i} q_{\nu_{i}}^{-s})}{\prod_{j=1}^{m} (1 - \beta_{j} q_{\nu_{j}}^{-s})}, \quad \nu_{i}, \nu_{j} \in T' := T \setminus \{\nu_{0}\}$$
(3.6)

is a ratio of the L-factors at the finite set of places of T not equal to ν_0 ; it is a ratio of products of distinct functions of the form $(1 - \beta q_{\nu}^{-s}), \beta \neq 0$, where $\nu \in T' := T \setminus \{\nu_0\}$, and q_{ν} is the number of elements of the residue field; by our assumption on K, $(p, q_{\nu}) = 1$;

(iii) the function

$$P_0(s,\Pi) = \frac{L_2(s, As(\pi))}{L_1(s, As(\pi))}$$
(3.7)

is a ratio of products of functions of the form $(1 - \alpha q_{v_0}^{-s})$.

By Propositions 2.2 and 2.5, the functions $P_0(s,\Pi)$ and $P_0(s,\Pi^{\vee})$ are regular and nonvanishing in the region $\text{Re}(s) \ge 1/2$.

We claim the following.

Claim 3.2. Let γ_0 be a pole (resp., zero) of $P_0(s, \Pi)$. The function $F(s, \Pi)$ has a pole (resp., zero) at all but finitely many elements of the form $\gamma_0 + 2\pi i k / \log q_{\nu_0}$, $k \in \mathbb{Z}$.

Proof. Suppose that the function $F(s,\Pi)$ is regular at points of the form $\gamma_0 + 2\pi i l/\log q_{\nu_0}$ for integers $l \in C$, where C is an infinite subset of the integers. Since G(s) can contribute only finitely many zeros on any line with real part constant, these poles have to be cancelled by zeros of $Q(s,\Pi)$. Since T is finite, and the local L-factors are polynomial functions in q_{ν}^{-s} , there are a $\nu \in T', \gamma \in \mathbb{C}$, and a function $f: C \to \mathbb{Z}$ such that

$$\gamma_0 + \frac{2\pi i l}{\log q_{\nu_0}} = \gamma + \frac{2\pi i f(l)}{\log q_{\nu}}$$
(3.8)

for infinitely many $l \in C$. Taking the difference of any two elements, we get $\log q_{\nu_0} / \log q_{\nu} \in \mathbb{Q}$. This is not possible as q_{ν_0} and q_{ν} are coprime integers. Hence, all but finitely many poles of the form $\gamma_0 + 2\pi i k / \log q_{\nu_0}$, $k \in \mathbb{Z}$, are poles of $F(s, \Pi)$.

Since $P_0(s,\Pi)$ is regular in the region $Re(s)\geq 1/2$, we obtain $Re(\gamma_0)<1/2$. From the global functional equations given by Propositions 2.4 and 2.6, $F(s,\Pi)$ satisfies a functional equation

$$F(s,\Pi) = \eta(s,\Pi)F(1-s,\Pi^{\vee}), \qquad (3.9)$$

where $\eta(s,\Pi)$ is an entire nonvanishing function. Hence, $F(s,\Pi^{\vee})$ has infinitely many poles of the form $1 - \gamma_0 + 2\pi i k / \log q_{\nu_0}$ with $k \in \mathbb{Z}$. Since $P_0(s,\Pi^{\vee})$ is regular in the region $\text{Re}(s) \ge 1/2$, these poles have to be poles of $G(s,\Pi^{\vee})Q(s,\Pi^{\vee})$. Arguing as in proof of the above claim, we obtain a contradiction. Arguing similarly with the zeros instead of poles, we obtain that $P_0(s,\Pi)$ is an entire nonvanishing function, and hence it is a constant. Since the L-factors are normalised, we obtain a proof of Theorem 1.6.

Remark 3.3. The method of proof of Theorem 1.6 is a general method allowing us to establish an equality for two possibly different definitions of L-factors at "bad" places. This requires a global functional equation, equality of the L-factors at all good places, and regularity in the region $\operatorname{Re}(s) \geq 1/2$ for the "bad" L-factors. The method is illustrated in [16] in the context of functoriality, but allowing the use of cyclic base change. It is used by Kable in [12] to prove, for a square-integrable representation, that the Rankin-Selberg L-factor $L(s, \pi \times \overline{\pi})$ factorizes as a product of $L_1(s, \operatorname{As}(\pi))$ times $L_1(s, \operatorname{As}(\pi \otimes \widetilde{\omega}))$, where $\widetilde{\omega}$ is an extension of $\omega_{E/F}$, the quadratic character corresponding to the extension E/F. A proof of strong multiplicity one in the Selberg class using similar arguments is given in [13].

Remark 3.4. It has been shown by Henniart [10] using similar global methods, that for any irreducible, admissible representation π of $GL_{n}(E)$, the equality $L(s, As(\pi)) = L_{2}(s, As(\pi))$. Henniart's proof uses cyclic base change and the inductivity of γ -factors to go from square-integrable to all irreducible, admissible representations. Since we do not know inductivity of the Rankin-Selberg γ -factors $\gamma_{1}(s, As(\pi), \psi)$, we cannot derive a similar statement for the Rankin-Selberg L-factors.

Remark 3.5. Using cyclic base change as in [16] or [10], it is possible to show that the ϵ -factors $\epsilon_1(s, As(\pi), \psi)$ and $\epsilon_2(s, As(\pi), \psi_0)$ are equal up to a root of unity, when π is square-integrable.

4 Applications

4.1 Analytic characterisation of distinguished representations

The proofs of Theorems 1.2 and 1.3 use the following proposition relating the concept of distinguishedness with the analytical properties of the (Rankin-Selberg) Asai L-function [1, Corollary 1.5].

Proposition 4.1. Let π be a square-integrable representation of $GL_n(E)$. Then π is distinguished with respect to $GL_n(F)$ if and only if $L_1(s, As(\pi))$ has a pole at s = 0.

4.2 Base change for U(3) and proof of Theorem 1.2

Let $W_{E/F}$ be the relative Weil group of E/F defined as the semidirect product of $E^* \rtimes Gal(E/F)$ for the natural action of Gal(E/F) on E^* . The Langlands dual group of U(n) is given by ${}^LU(n) = GL_n(\mathbb{C}) \rtimes W_{E/F}$, where $W_{E/F}$ acts via the projection to Gal(E/F), and the nontrivial element $\sigma \in Gal(E/F)$ acts by $\sigma(g) = J({}^tg^{-1})J^{-1}$ on $GL_n(\mathbb{C})$. The Langlands dual group of $R_{E/F}(GL_n)$ is given by

$${}^{L}\mathsf{R}_{\mathsf{E}/\mathsf{F}}(\mathsf{U}(\mathfrak{n})) = \left[\operatorname{GL}_{\mathfrak{n}}(\mathbb{C}) \times \operatorname{GL}_{\mathfrak{n}}(\mathbb{C})\right] \rtimes W_{\mathsf{E}/\mathsf{F}}.$$
(4.1)

Here again the action of $W_{E/F}$ is via the projection to Gal(E/F), and σ acts by $(g,h) \mapsto (J^{t}h^{-1}J^{-1}, J^{t}g^{-1}J^{-1})$.

There are two natural mappings from the L-group of U(n) to the L-group of $GL_n(E)$, called the stable and the unstable base change maps. At the L-group level, the stable base change map, which corresponds to the restriction of parameters from the Weil group W_F of F to the Weil group W_E of E, is given by the diagonal embedding ψ : ${}^{L}U(n) \rightarrow {}^{L}R_{E/F}(U(n))$. The unstable base change map is defined by first choosing a character $\tilde{\omega}$ of E^{*} extending the quadratic character $\omega_{E/F}$ of F^{*} associated to the quadratic extension E/F. At the level of L-groups, the unstable base change corresponds to the homomorphism ψ' : ${}^{L}U(n) \rightarrow {}^{L}R_{E/F}(U(n))$ given by $\psi'(g \times w) = (\tilde{\omega}(w)g, \tilde{\omega}(w)^{-1}g) \times w$ for $w \in E^*$, $g \in GL_n(\mathbb{C})$, and $\psi'(1, \sigma) = (1, -1) \times \sigma$. The base change lift for n = 3 has been established by Rogawski [17].

Proof of Theorem 1.2. By [6, Corollary 4.6], a supercuspidal representation π of $GL_3(E)$ is a stable base change lift from U(3) if and only if the Langlands-Shahidi Asai L-function $L_2(s, As(\pi))$ has a pole at s = 0. By Theorem 1.6, this amounts to saying that the Rankin-Selberg Asai L-function $L_1(s, As(\pi))$ has a pole at s = 0. Now Theorem 1.2 follows by appealing to Proposition 4.1.

Remark 4.2. If π is a square-integrable representation such that $\pi^{\vee} \cong \bar{\pi}$, and the central character of π has trivial restriction to F^{*}, then Kable [12] has proved that π is distinguished or distinguished with respect to $\omega_{E/F}$, the quadratic character associated to the extension E/F (see [9, 15] for earlier results in this direction). The given conditions on π are expected to be necessary for π to be in the image of the base change map from U(n). Thus Kable's result can be thought of as a weaker version of the conjecture stated in the introduction. On the other hand, it is expected that U(n)-distinguished representations of GL_n(E) are base change lifts from GL_n(F). This has been proved in several cases [8, 15].

4.3 Proof of Theorem 1.3

We now prove Theorem 1.3 regarding the reducibility of representations of U(n, n) parabolically induced from $GL_n(E)$. In [6, 7], Goldberg proves that for a discrete series representation π with $\pi^{\vee} \cong \bar{\pi}$, $I(\pi)$ is irreducible if and only if $L_2(s, As(\pi))$ has a pole at s = 0 (see also [11]). By [7, Theorem 3.4], $R(\pi) \simeq (\mathbb{Z}/2\mathbb{Z})^r$, where r is the number of inequivalent representations π_i satisfying $\pi_i^{\vee} \simeq \bar{\pi}_i$, and the Plancherel measure $\mu(s, \pi_i)$ does not have zero at s = 0. By [18, Corollary 3.6], the latter condition amounts to knowing that the Asai L-functions $L_2(s, As(\pi_i))$ are regular at s = 0.

Theorem 1.3 follows from the following claim.

Claim 4.3. An irreducible, square-integrable representation π of $GL_n(E)$ is $\omega_{E/F}$ distinguished if and only if $\pi^{\vee} \simeq \bar{\pi}$ and $L_2(s, As(\pi))$ is regular at s = 0.

Proof. By [6, Corollary 5.7],

$$L(s, \pi \times \bar{\pi}) = L_2(s, As(\pi)) L_2(s, As(\pi \otimes \tilde{\omega})),$$
(4.2)

where $\tilde{\omega}$ is a character of E^* which restricts to $\omega_{E/F}$ on F^* . Now $L(s, \pi \times \bar{\pi})$ has a pole at s = 0 if and only if $\pi^{\vee} \simeq \bar{\pi}$. Hence, $\pi^{\vee} \simeq \bar{\pi}$ and $L_2(s, As(\pi))$ is regular at s = 0 is equivalent to saying that $L_2(s, As(\pi \otimes \tilde{\omega}))$ has a pole at s = 0. By Theorem 1.6 this is the same as saying that $L_1(s, As(\pi \otimes \tilde{\omega}))$ has a pole at s = 0. By Proposition 4.1, the latter condition is equivalent to saying that π is $\omega_{E/F}$ distinguished. This proves the claim and hence Theorem 1.3.

Remark 4.4. The R-group in this context is also computed in terms of the Langlands parameters by Prasad [14, Proposition 2.1]. According to this computation, $R(\pi)$ is a product of r copies of $\mathbb{Z}/2\mathbb{Z}$'s, where r is the number of π_i 's such that $\pi_i^{\vee} \cong \bar{\pi_i}$, and $c(\sigma_i) = -1$,

where σ_i is the Langlands parameter of π_i . Here $c(\sigma_i) \in \{\pm 1\}$ denotes the constant introduced by Rogawski [17, Lemma 15.1.1]. Also $c(\sigma_i) = (-1)^{n_i-1}$ if and only if σ_i can be extended to a parameter for $U(n_i)$. Together with Theorem 1.3, this gives an evidence for the conjecture stated in the introduction.

4.4 Distinguishedness of Steinberg representation of GL(n)

We now prove Theorem 1.5. Let G = GL(n). For a representation π of $GL_n(E)$, let $I(\pi)$ be the parabolically induced representation of U(n, n). If π is a discrete series representation such that $\pi^{\vee} \ncong \bar{\pi}$, then $I(\pi)$ is known to be irreducible [6]. Suppose $\pi^{\vee} \cong \bar{\pi}$. Let a and b be integers such that ab = n, such that π is the unique square-integrable constituent of the representation induced from $\pi_1 \otimes \cdots \otimes \pi_b$, where $\pi_i = \pi_0 \otimes ||_E^{(b+1-2i)/2}$, and π_0 a supercuspidal representation of $GL_a(E)$. Then $\pi_0^{\vee} \cong \bar{\pi_0}$. We have the following result of Goldberg [6, Section 7].

Proposition 4.5. The representation $I(\pi)$ of U(n,n) is irreducible if and only if $L_2(s, As(\pi_0))$ (resp., $L_2(s, As(\pi_0 \otimes \widetilde{\omega}))$) has a pole at s = 0 if b is odd (resp., even). Here $\widetilde{\omega}$ is a character of E^{*} that restricts to $\omega_{E/F}$.

Now if π is the Steinberg representation of $GL_n(E)$, then a = 1, b = n, and π_0 is the trivial character. Thus $I(\pi)$ is irreducible when n is odd and reducible when n is even. By the corollary to Theorem 1.3, π is $\omega_{E/F}$ -distinguished when n is even, and π is not $\omega_{E/F}$ -distinguished when n is odd.

Since $\pi^{\vee} \cong \bar{\pi}$ and $\omega_{\pi} = 1$, we know that π is either distinguished or ω_{E/F^-} distinguished, but not both (see [12, Theorem 7] and [1, Corollary 1.6]). Therefore, it follows that when n is odd (resp., even), π is distinguished (resp., ω_{E/F^-} distinguished), and that π is not distinguished with respect to any other character. This finishes the proof of Theorem 1.5.

Acknowledgments

The first named author would like to thank Dipendra Prasad for many helpful suggestions. We thank F. Shahidi and G. Henniart for bringing to our notice the preprint [10].

References

U. K. Anandavardhanan, A. C. Kable, and R. Tandon, *Distinguished representations and poles of twisted tensor* L-*functions*, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2875–2883.

- 854 U. K. Anandavardhanan and C. S. Rajan
- [2] J. Arthur and L. Clozel, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, New Jersey, 1989.
- [3] Y. Z. Flicker, Twisted tensors and Euler products, Bull. Soc. Math. France 116 (1988), no. 3, 295–313.
- [4] ——, On distinguished representations, J. reine angew. Math. 418 (1991), 139–172.
- [5] ——, On zeroes of the twisted tensor L-function, Math. Ann. 297 (1993), no. 2, 199–219.
- [6] D. Goldberg, Some results on reducibility for unitary groups and local Asai L-functions, J. reine angew. Math. 448 (1994), 65–95.
- [7] —, R-groups and elliptic representations for unitary groups, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1267–1276.
- [8] J. Hakim and F. Murnaghan, Tame supercuspidal representations of GL(n) distinguished by a unitary group, Compositio Math. 133 (2002), no. 2, 199–244.
- [9] —, Two types of distinguished supercuspidal representations, Int. Math. Res. Not. 2002 (2002), no. 35, 1857–1889.
- [10] G. Henniart, Correspondance de Langlands et fonctions L des carrés extérieur et symétrique, preprint, 2003, Institut des Hautes Études Scientifiques.
- [11] A. Ichino, On the local theta correspondence and R-groups, Compositio Math. 140 (2004), no. 2, 301–316.
- [12] A. C. Kable, Asai L-functions and Jacquet's conjecture, Amer. J. Math. 126 (2004), no. 4, 789–820.
- [13] M. R. Murty and V. K. Murty, Strong multiplicity one for Selberg's class, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 4, 315–320.
- [14] D. Prasad, Theta correspondence for unitary groups, Pacific J. Math. 194 (2000), no. 2, 427–438.
- [15] —, On a conjecture of Jacquet about distinguished representations of GL(n), Duke Math.
 J. 109 (2001), no. 1, 67–78.
- [16] C. S. Rajan, On Langlands functoriality—reduction to the semistable case, Algebraic Groups and Arithmetic (S. G. Dani and G. Prasad, eds.), Tata Institute of Fundamental Research, Bombay, 2004, pp. 199–219.
- [17] J. D. Rogawski, Automorphic Representations of Unitary Groups in Three Variables, Annals of Mathematics Studies, vol. 123, Princeton University Press, New Jersey, 1990.
- [18] F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273–330.

U. K. Anandavardhanan: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India E. meil address: anand@math.tifn.res.in

E-mail address: an and @math.tifr.res.in

C. S. Rajan: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

E-mail address: rajan@math.tifr.res.in