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Abstract. We show the non-vanishing of cohomology groups of sufficiently small congruence
lattices in SL(1,D), where D is a quaternion division algebra defined over a number field E
contained inside a solvable extension of a totally real number field.As a corollary, we obtain new
examples of compact, arithmetic, hyperbolic three manifolds, with non-torsion first homology
group, confirming a conjecture of Waldhausen. The proof uses the characterisation of the image
of solvable base change by the author, and the construction of cusp forms with non-zero cusp
cohomology by Labesse and Schwermer.
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1. Introduction

In this paper, we are concerned with the following question in the context of arith-
metic, hyperbolic three manifolds: suppose M is a manifold. Does there exist a
finite cover M ′ of M with non-vanishing first Betti number? The class of arith-
metic spaces that we consider arise as follows: let D be a quaternion division
algebra over a number fieldE. LetG denote the connected, semisimple algebraic
group SL1(D) over E. Denote byG∞(E) the real Lie groupG(E⊗ R) and fix a
maximal compact subgroup K∞ of G∞. Let s1 (resp. 2r2) be the number of real
(resp. complex) places of E at which D splits, and let s = s1 + r2. The quotient
space M := G∞/K∞ with the natural G∞(E)-invariant metric, is a symmetric
space isomorphic to Hs1

2 × Hr2
3 , where for a natural number n, Hn denotes the

simply connected hyperbolic space of dimension n.
Let A (resp. Af ) denote the ring of adeles (resp. finite adeles) of Q. Let K be

a compact, open subgroup of G(Af ⊗ E), and denote by �K the corresponding
congruence arithmetic lattice in G∞(E) defined by the projection to G∞(E) of
the groupG(E)∩G∞(E)K . For sufficiently small congruence subgroupsK , �K
is a torsion-free lattice and �K\M is a (compact) Riemannian manifold.

In this note, we prove
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Theorem 1. With the above notation, assume further that E is a finite extension
of a totally real number field F contained inside a solvable extension L of F . For
sufficiently small congruence subgroups � ⊂ G∞(E), the cohomology groups

Hs(�\M,C)
are non-zero.

A particular case of interest is the following:

Corollary 1. With notation as in Theorem 1, assume further that E has exactly
one pair of conjugate complex places, and the quaternion division algebra D is
ramified at all the real places of E. For sufficiently small congruence subgroups
� ⊂ G∞(E), the first betti number of the compact, hyperbolic three manifold
�\M is non-zero.

A folklore conjecture (attributed to Waldhausen) is that the first betti number of
a compact, hyperbolic three manifold becomes positive upon going to some finite
cover. The first examples of compact, hyperbolic arithmetic three manifolds M�

with non-vanishing rational first homology group are due to Millson [M]. Using
geometric arguments, Millson showed the non-vanishing of the first betti number
for sufficiently small congruence subgroups, where the arithmetic structure arises
from rank 4 quadratic forms over a totally real number field F , and of signature
(3, 1) at one archimedean place and anisotropic at all other real places.

Theorem 1 was proved by Labesse and Schwermer [LS, Corollary 6.3], in the
case when there exists a tower of field extensions

E = Fl ⊃ Fl−1 ⊃ · · · ⊃ F0 = F,

such that Fi+1/Fi is either a cyclic extension of prime degree or a non-normal
cubic extension. The theorem of Labesse and Schwermer generalizes the theorem
of Millson, as Millson’s theorem is the special case when E/F is quadratic and
there exists a quaternion division algebra D0 over F satisfying D � D0 ⊗F E

[LM]. The proof of our theorem uses the theorem of Labesse and Schwermer and
a criterion for the descent of an invariant cuspidal representation with respect to
a solvable group of Galois automorphisms proved by the author in [R].

Using a construction of algebraic Hecke characters due to Weil, and the auto-
morphic induction of suitable such characters, Clozel proved novanishing results
for the cohomology groups as in the conclusion of Theorem 1 under the following
assumption: if v is a finite place of E where D is ramified, then the completion
Ev of E at v should not contain any quadratic extension of Qp, where v divides
the rational prime v. In particular, this is the case if either D is unramified at all
finite places of E, or if the Galois closure of E over Q is of odd degree over Q.

A different proof of Corollary 1 (and generalizations to higher dimensional
arithmetical hyperbolic manifolds), using theta functions and a Siegel-Weil type
formula in the case when E/F is quadratic extension was obtained by Li and
Millson [LM].
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Example. We give an example of a lattice satisfying the hypothesis of the corol-
lary and not covered by the results of Labesse-Schwermer. To achieve this, we
need to produce a quartic, primitive extensionE (i.e., not containing any quadratic
extension) of Q with exactly one pair of conjugate complex places. By class field
theory, for any even number S of places of E containing the real places and not
containing the complex place, there exists a unique quaternion division algebra
D which is ramified precisely at the places belonging to S. For suchD, we obtain
new examples of compact, hyperbolic three manifolds with non-vanishing first
betti number as in the above corollary.

Let P(x) be an irreducible quartic polynomial over the rationals, and let E be
the quartic field defined by P(x). From the definition of the discriminant D(P )
of P(x) in terms of the roots, it follows that E has exactly one pair of conjugate
complex embeddings if and only if D(P ) < 0. The field E is primitive precisely
when the Galois group G of the splitting field defined by P(x) over the rationals
is either A4 or S4.

For a positive prime a, let Pa(x) = x4 + ax − a. The discriminant of Pa(x)
is −27a4 − 256a3, and it is irreducible by Eisenstein’s criterion. The resolvent
polynomial is x3 + 4ax + a2, and is irreducible. Hence G contains S3, and it
follows that G � S4. The quartic fields defined by Pa(x) have the required prop-
erties.

2. General coefficients

Theorem 1 can be generalized for suitable non-trivial coefficient systems also.
Let F and E be as in the hypothesis of the theorem. Given a finite dimensional
complex representation V of SL2(R ⊗F), we now define the base change repre-
sentation�(V ) of the groupG∞(E) [LS]. We define it first when V is irreducible
and extend it additively. If V is irreducible, then V can be written as,

V � ⊗v∈P∞(F )Vv,

whereP∞(F ) is the collection of the archimedean places ofF , and the component
Vv of V at the place v is an irreducible representation of SL2(Fv) � SL2(R), say
of dimension k(v).

Let Vk (resp. V̄k) denote the irreducible, holomorphic (resp. anti-holomor-
phic) representation of SL2(C) of dimension k. Restricted to SU(2) they give
raise to isomorphic representations, which we continue to denote by Vk. Define
the representation Wk of SL2(C) by Wk = Vk ⊗ V̄k.

Suppose D is a quaternion algebra over E. We define the base change coeffi-
cients �(V ) of G∞(E), as a tensor product of the representations �(V )w of the
component groups G(Ew), as w runs over the collection of archimedean places
of E. Suppose w lies over a place v of F . Define,
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�(V )w �
{
Vk(v) if w is real,

Wk(v) if w is complex.

Restricting the representation �(V ) to a torsion-free lattice � gives rise to a
well defined local system L�(V ) on the manifold�\M . The extension of Theorem
1 to non-trivial coefficients is the following:

Theorem 2. Let F be a totally real number field, and L be a solvable finite exten-
sion of F . Let E be a finite extension of F contained in L, andD be a quaternion
division algebra over E. Let V be a finite dimensional complex representation of
SL2(R ⊗ F). Then for sufficiently small congruence subgroups � ⊂ G∞(E),

Hs(�\M,L�(V )) 	= 0.

3. Proof

Let � be a co-compact torsion-free lattice in a connected, real semisimple Lie
group H , and let M be a maximal compact subgroup of H . The space L2(�\H)
consisting of square integrable functions on �\H decomposes as a direct sum of
irreducible admissible representations η of H with finite multiplicity m(η):

L2(�\H) � ⊕ηm(η)η.

Let U be a finite dimensional representation of H . By the Matsushima formula
[BW],

H ∗(�,U) � ⊕ηm(η)H
∗(h,M, η ⊗ U), (1)

where h denotes the Lie algebra of H , and the cohomology groups on the right
are the relative Lie algebra cohomology groups defined as in [BW].

We restrict now to the case when H = G∞(E), and take for U the repre-
sentation �(V ) as defined above. Let ρ denote the representation of G(A ⊗ E)

acting by right translations on the spaceL2(G(E)\G(A⊗E)) consisting of square
integrable functions on G(E)\G(A ⊗ E). This decomposes as a direct sum of
irreducible admissible representations π of G(A ⊗ E) with finite multiplicity
m(π):

ρ = ⊕πm(π)π.

With respect to the decomposition G(A ⊗ E) = G∞(E)G(Af ⊗ E), write π =
π∞ ⊗πf , where π∞ (resp. πf ) is a representation ofG∞(E) (resp.G(Af ⊗E)).
Let �K be a lattice as defined above corresponding to a compact open subgroup
K ⊂ G(Af ⊗E). SinceG is simply connected, we obtain from equation (1) and
strong approximation, the adelic version of Matsushima’s formula:

H ∗(�K,�(V )) � ⊕πm(π)H
∗(g,K∞, π∞ ⊗�(V ))⊗ πKf , (2)
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where πKf denotes the space of K invariants of the representation space of πf .
Taking a direct limit indexed by the compact open subgroups K ⊂ G(Af ⊗ E),
we define and obtain,

H ∗(G,E;�(V )) : = lim------→
K

H ∗(�K,�(V )) � lim------→
K

H ∗(�K\M,L�(V ))

� ⊕πm(π)H
∗(g,K∞, π∞ ⊗�(V ))⊗ πf .

(3)

Hence in order to prove Theorem 2, it is enough to construct an irreducible repre-
sentation π ofG(AE) withm(π) positive and such thatHs(g,K∞, π∞ ⊗�(V ))

is non-zero.
We can assume that V is irreducible of the form V � ⊗v∈P∞(F )Vk(v). Let D+

k

(resp.D−
k ) be the holomorphic (resp. antiholomorphic) discrete series of SL2(R)

of weight k + 1. We have,

Hq(sl2(R), SO(2),D
±
k ⊗ Vk) =

{
C if q = 1,

0 otherwise,
(4)

where sl2(R) and sl2(C) denotes respectively the Lie algebras of SL2(R) and
SL2(C).

Let S be a finite set of finite places of F , containing all the finite places v
of F dividing a finite place of E at which D ramifies. By [LS, Proposition 2.5],
there exists an irreducible, admissible representation of SL2(A ⊗ F) satisfying
the following properties:

• The multiplicity m0(π) of π occuring in the cuspidal spectrum L2
0(SL2(F )\

SL2(A ⊗ F)) consisting of square integrable cuspidal functions on SL2(F )\
SL2(A ⊗ F) is nonzero. Further π is stable in the sense of [LL].

• The local component πv of π at an archimedean place v of F is a discrete series
representation, with πv ∈ {D+

k(v), D
−
k(v)}.

• For any v ∈ S, the local component πv of π is isomorphic to the Steinberg
representation of SL2(Fv).

Let � be a cuspidal, automorphic representation of GL2(A ⊗ F), such that π
occurs in the restriction of � to SL2(A ⊗ F). Let �L be the base change of �
to GL2(A ⊗ L) defined by Langlands in [L]. Since π is stable, i.e., � is not
automorphically induced from a character of a quadratic extension of F , the base
change �L is a cuspidal automorphic representation of GL2(A ⊗ L). We now
quote the following descent theorem for invariant cuspidal representations [R]:

Theorem 3. Let K/k be a solvable extension of number fields, and let � be a
unitary, cuspidal automorphic representation of GL2(AK) which is Gal(K/k)-
invariant. Then there exists a G(K/k)-invariant Hecke character ψ of K , and a
cuspidal automorphic representation θ of GL2(AK) such that

θK � �⊗ ψ,

where θK is the base change lift of θ toGL2(A⊗K) defined by Langlands in [L].
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LetH be the Galois group ofL overE. Since�L isH -invariant and cuspidal,
by the above descent theorem, there exists an idele class character χ of L, such
that the representation �L ⊗ χ is the base change from E to L of a cuspidal
representation �E of GL2(A ⊗ E). Let πE be a constituent of the restriction of
�E to SL2(A ⊗ E), and occuring in the automorphic spectrum of G(AE) with
non-zero multiplicity m(πE).

Base change makes sense at the level of L-packets (see [LS]), and let πk,C
denote the representation of SL2(C) obtained as base change of the L-packet
{D+

k ,D
−
k } (L-packets for complex groups consist of only one element). It is

known that (see [LS]),

H 1(sl2(C), SU(2), πk,C ⊗Wk) 	= 0. (5)

Letw be an archimedean place ofE lying over a real place v of F . Now twist-
ing by a character does not alter the restriction of an automorphic representation
ofGL2 to SL2. Hence if w is a real place of E, then the local component πE,w of
πE at w belongs to {D+

k(v), D
−
k(v)}, and if w is a complex place of E, then πE,w is

isomorphic to πk(v),C.
The local components of the base change to E of π continues to be the Stein-

berg representation of SL2(Ew), at the places of E where D ramifies. By the
theorem of Jacquet-Langlands ([JL], [LS]) applied to L-packets of SL2 and it’s
inner forms, we get an automorphic representation JL(πE) of G over E. At a
place w whereD is ramified, the local component JL(πE)w is isomorphic to the
restriction of the representation Vk(v) to SU(2), where v is a place of F dividing
w. In particular, the 0-th relative Lie cohomology group

H 0(su2, SU2, Vk ⊗ Vk) = (Vk ⊗ Vk)
SU(2) 	= 0. (6)

At a place w of E where D splits, JL(πE)w � πE,w, and hence the first relative
Lie algebra cohomology with coefficients in the component of�(V ) atw is non-
zero. It follows from equations (4), (5), (6) and by the Kunneth formula for the
relative Lie algebra cohomology that

Hs(g,K∞, JL(πE)∞ ⊗�(V )) 	= 0.

By Equation (3), this proves Theorem 2.

References

[BW] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations
of reductive groups. Ann. Math. Stud. 94, Princeton Univ. Press, 1980

[C] Clozel, L.: On the cuspidal cohomology of arithmetic subgroups of SL(2n) and the first
Betti number of arithmetic 3-manifolds. Duke Math. J. 55(2), 475–486 (1987)

[JL] Jacquet, H., Langlands, R.: Automorphic forms on GL(2). Lect. Notes in Math. 114,
Berlin, Springer 1970



Betti numbers of hyperbolic manifolds 329

[LL] Labesse, J.-P., Langlands, R.: L-indistinguishability for SL(2). Can. J. Math. 31 726–
785 (1979)

[LS] Labesse, J.-P., Schwermer, J.: On liftings and cusp cohomology of arithmetic groups.
Invent. math. 83, 383–401 (1986)

[L] Langlands, R.: Base change for GL(2). Ann. Math. Stud. 96 (1980), Princeton Univ.
Press

[LM] Li, J. S., Millson, J. J.: On the first Betti number of a hyperbolic manifold with an
arithmetic fundamental group. Duke Math. J. 71(2), 365–401 (1993)

[M] Millson, J. J.: On the first Betti number of a constant negatively curved manifold. Ann.
Math. 104, 235–247 (1976)

[R] Rajan, C. S.: On the image and fibres of solvable base change. Math. Res. Letters 9(4),
499–508 (2002)


