DOI: 10.1007/s00208-004-0552-z

On the non-vanishing of the first Betti number of hyperbolic three manifolds

C. S. Rajan

Received: 19 September 2003 / Revised version: 18 February 2004 /

Published online: 5 May 2004 - © Springer-Verlag 2004

Abstract. We show the non-vanishing of cohomology groups of sufficiently small congruence lattices in SL(1,D), where D is a quaternion division algebra defined over a number field E contained inside a solvable extension of a totally real number field. As a corollary, we obtain new examples of compact, arithmetic, hyperbolic three manifolds, with non-torsion first homology group, confirming a conjecture of Waldhausen. The proof uses the characterisation of the image of solvable base change by the author, and the construction of cusp forms with non-zero cusp cohomology by Labesse and Schwermer.

Mathematics Subject Classification (2000): 11F75, 22E40, 57M50

1. Introduction

In this paper, we are concerned with the following question in the context of arithmetic, hyperbolic three manifolds: suppose M is a manifold. Does there exist a finite cover M' of M with non-vanishing first Betti number? The class of arithmetic spaces that we consider arise as follows: let D be a quaternion division algebra over a number field E. Let G denote the connected, semisimple algebraic group $SL_1(D)$ over E. Denote by $G_{\infty}(E)$ the real Lie group $G(E \otimes \mathbb{R})$ and fix a maximal compact subgroup K_{∞} of G_{∞} . Let s_1 (resp. $2r_2$) be the number of real (resp. complex) places of E at which D splits, and let $s = s_1 + r_2$. The quotient space $M := G_{\infty}/K_{\infty}$ with the natural $G_{\infty}(E)$ -invariant metric, is a symmetric space isomorphic to $\mathcal{H}_2^{s_1} \times \mathcal{H}_3^{r_2}$, where for a natural number n, \mathcal{H}_n denotes the simply connected hyperbolic space of dimension n.

Let \mathbb{A} (resp. \mathbb{A}_f) denote the ring of adeles (resp. finite adeles) of \mathbb{Q} . Let K be a compact, open subgroup of $G(\mathbb{A}_f \otimes E)$, and denote by Γ_K the corresponding congruence arithmetic lattice in $G_{\infty}(E)$ defined by the projection to $G_{\infty}(E)$ of the group $G(E) \cap G_{\infty}(E)K$. For sufficiently small congruence subgroups K, Γ_K is a torsion-free lattice and $\Gamma_K \setminus M$ is a (compact) Riemannian manifold.

In this note, we prove

324 C. S. Rajan

Theorem 1. With the above notation, assume further that E is a finite extension of a totally real number field F contained inside a solvable extension L of F. For sufficiently small congruence subgroups $\Gamma \subset G_{\infty}(E)$, the cohomology groups

$$H^s(\Gamma \backslash M, \mathbb{C})$$

are non-zero.

A particular case of interest is the following:

Corollary 1. With notation as in Theorem 1, assume further that E has exactly one pair of conjugate complex places, and the quaternion division algebra D is ramified at all the real places of E. For sufficiently small congruence subgroups $\Gamma \subset G_{\infty}(E)$, the first betti number of the compact, hyperbolic three manifold $\Gamma \backslash M$ is non-zero.

A folklore conjecture (attributed to Waldhausen) is that the first betti number of a compact, hyperbolic three manifold becomes positive upon going to some finite cover. The first examples of compact, hyperbolic arithmetic three manifolds M_{Γ} with non-vanishing rational first homology group are due to Millson [M]. Using geometric arguments, Millson showed the non-vanishing of the first betti number for sufficiently small congruence subgroups, where the arithmetic structure arises from rank 4 quadratic forms over a totally real number field F, and of signature (3, 1) at one archimedean place and anisotropic at all other real places.

Theorem 1 was proved by Labesse and Schwermer [LS, Corollary 6.3], in the case when there exists a tower of field extensions

$$E = F_l \supset F_{l-1} \supset \cdots \supset F_0 = F$$
,

such that F_{i+1}/F_i is either a cyclic extension of prime degree or a non-normal cubic extension. The theorem of Labesse and Schwermer generalizes the theorem of Millson, as Millson's theorem is the special case when E/F is quadratic and there exists a quaternion division algebra D_0 over F satisfying $D \simeq D_0 \otimes_F E$ [LM]. The proof of our theorem uses the theorem of Labesse and Schwermer and a criterion for the descent of an invariant cuspidal representation with respect to a solvable group of Galois automorphisms proved by the author in [R].

Using a construction of algebraic Hecke characters due to Weil, and the automorphic induction of suitable such characters, Clozel proved novanishing results for the cohomology groups as in the conclusion of Theorem 1 under the following assumption: if v is a finite place of E where D is ramified, then the completion E_v of E at v should not contain any quadratic extension of \mathbb{Q}_p , where v divides the rational prime v. In particular, this is the case if either D is unramified at all finite places of E, or if the Galois closure of E over \mathbb{Q} is of odd degree over \mathbb{Q} .

A different proof of Corollary 1 (and generalizations to higher dimensional arithmetical hyperbolic manifolds), using theta functions and a Siegel-Weil type formula in the case when E/F is quadratic extension was obtained by Li and Millson [LM].

Example. We give an example of a lattice satisfying the hypothesis of the corollary and not covered by the results of Labesse-Schwermer. To achieve this, we need to produce a quartic, primitive extension E (i.e., not containing any quadratic extension) of \mathbb{Q} with exactly one pair of conjugate complex places. By class field theory, for any even number S of places of E containing the real places and not containing the complex place, there exists a unique quaternion division algebra D which is ramified precisely at the places belonging to S. For such D, we obtain new examples of compact, hyperbolic three manifolds with non-vanishing first betti number as in the above corollary.

Let P(x) be an irreducible quartic polynomial over the rationals, and let E be the quartic field defined by P(x). From the definition of the discriminant D(P) of P(x) in terms of the roots, it follows that E has exactly one pair of conjugate complex embeddings if and only if D(P) < 0. The field E is primitive precisely when the Galois group E0 of the splitting field defined by E1 over the rationals is either E3 or E4.

For a positive prime a, let $P_a(x) = x^4 + ax - a$. The discriminant of $P_a(x)$ is $-27a^4 - 256a^3$, and it is irreducible by Eisenstein's criterion. The resolvent polynomial is $x^3 + 4ax + a^2$, and is irreducible. Hence G contains S_3 , and it follows that $G \simeq S_4$. The quartic fields defined by $P_a(x)$ have the required properties.

2. General coefficients

Theorem 1 can be generalized for suitable non-trivial coefficient systems also. Let F and E be as in the hypothesis of the theorem. Given a finite dimensional complex representation V of $SL_2(\mathbb{R} \otimes F)$, we now define the base change representation $\Psi(V)$ of the group $G_{\infty}(E)$ [LS]. We define it first when V is irreducible and extend it additively. If V is irreducible, then V can be written as,

$$V \simeq \otimes_{v \in P_{\infty}(F)} V_v,$$

where $P_{\infty}(F)$ is the collection of the archimedean places of F, and the component V_v of V at the place v is an irreducible representation of $SL_2(F_v) \simeq SL_2(\mathbb{R})$, say of dimension k(v).

Let V_k (resp. \bar{V}_k) denote the irreducible, holomorphic (resp. anti-holomorphic) representation of $SL_2(\mathbb{C})$ of dimension k. Restricted to SU(2) they give raise to isomorphic representations, which we continue to denote by V_k . Define the representation W_k of $SL_2(\mathbb{C})$ by $W_k = V_k \otimes \bar{V}_k$.

Suppose D is a quaternion algebra over E. We define the base change coefficients $\Psi(V)$ of $G_{\infty}(E)$, as a tensor product of the representations $\Psi(V)_w$ of the component groups $G(E_w)$, as w runs over the collection of archimedean places of E. Suppose w lies over a place v of F. Define,

326 C. S. Rajan

$$\Psi(V)_w \simeq egin{cases} V_{k(v)} & ext{if } w ext{ is real,} \ W_{k(v)} & ext{if } w ext{ is complex.} \end{cases}$$

Restricting the representation $\Psi(V)$ to a torsion-free lattice Γ gives rise to a well defined local system $\mathcal{L}_{\Psi(V)}$ on the manifold $\Gamma \backslash M$. The extension of Theorem 1 to non-trivial coefficients is the following:

Theorem 2. Let F be a totally real number field, and L be a solvable finite extension of F. Let E be a finite extension of F contained in L, and D be a quaternion division algebra over E. Let V be a finite dimensional complex representation of $SL_2(\mathbb{R} \otimes F)$. Then for sufficiently small congruence subgroups $\Gamma \subset G_{\infty}(E)$,

$$H^s(\Gamma \backslash M, \mathcal{L}_{\Psi(V)}) \neq 0.$$

3. Proof

Let Γ be a co-compact torsion-free lattice in a connected, real semisimple Lie group H, and let M be a maximal compact subgroup of H. The space $L^2(\Gamma \backslash H)$ consisting of square integrable functions on $\Gamma \backslash H$ decomposes as a direct sum of irreducible admissible representations η of H with finite multiplicity $m(\eta)$:

$$L^2(\Gamma \backslash H) \simeq \bigoplus_{\eta} m(\eta) \eta$$
.

Let U be a finite dimensional representation of H. By the Matsushima formula [BW],

$$H^*(\Gamma, U) \simeq \bigoplus_{\eta} m(\eta) H^*(\mathfrak{h}, M, \eta \otimes U), \tag{1}$$

where \mathfrak{h} denotes the Lie algebra of H, and the cohomology groups on the right are the relative Lie algebra cohomology groups defined as in [BW].

We restrict now to the case when $H = G_{\infty}(E)$, and take for U the representation $\Psi(V)$ as defined above. Let ρ denote the representation of $G(\mathbb{A} \otimes E)$ acting by right translations on the space $L^2(G(E)\backslash G(\mathbb{A} \otimes E))$ consisting of square integrable functions on $G(E)\backslash G(\mathbb{A} \otimes E)$. This decomposes as a direct sum of irreducible admissible representations π of $G(\mathbb{A} \otimes E)$ with finite multiplicity $m(\pi)$:

$$\rho = \bigoplus_{\pi} m(\pi)\pi$$
.

With respect to the decomposition $G(\mathbb{A} \otimes E) = G_{\infty}(E)G(\mathbb{A}_f \otimes E)$, write $\pi = \pi_{\infty} \otimes \pi_f$, where π_{∞} (resp. π_f) is a representation of $G_{\infty}(E)$ (resp. $G(\mathbb{A}_f \otimes E)$). Let Γ_K be a lattice as defined above corresponding to a compact open subgroup $K \subset G(\mathbb{A}_f \otimes E)$. Since G is simply connected, we obtain from equation (1) and strong approximation, the adelic version of Matsushima's formula:

$$H^*(\Gamma_K, \Psi(V)) \simeq \bigoplus_{\pi} m(\pi) H^*(\mathfrak{g}, K_{\infty}, \pi_{\infty} \otimes \Psi(V)) \otimes \pi_f^K, \tag{2}$$

where π_f^K denotes the space of K invariants of the representation space of π_f . Taking a direct limit indexed by the compact open subgroups $K \subset G(\mathbb{A}_f \otimes E)$, we define and obtain,

$$H^{*}(G, E; \Psi(V)) := \varinjlim_{K} H^{*}(\Gamma_{K}, \Psi(V)) \simeq \varinjlim_{K} H^{*}(\Gamma_{K} \backslash M, \mathcal{L}_{\Psi(V)})$$

$$\simeq \bigoplus_{\pi} m(\pi) H^{*}(\mathfrak{g}, K_{\infty}, \pi_{\infty} \otimes \Psi(V)) \otimes \pi_{f}.$$
(3)

Hence in order to prove Theorem 2, it is enough to construct an irreducible representation π of $G(\mathbb{A}_E)$ with $m(\pi)$ positive and such that $H^s(\mathfrak{g}, K_\infty, \pi_\infty \otimes \Psi(V))$ is non-zero.

We can assume that V is irreducible of the form $V \simeq \bigotimes_{v \in P_{\infty}(F)} V_{k(v)}$. Let D_k^+ (resp. D_k^-) be the holomorphic (resp. antiholomorphic) discrete series of $SL_2(\mathbb{R})$ of weight k+1. We have,

$$H^{q}(\mathfrak{sl}_{2}(\mathbb{R}), SO(2), D_{k}^{\pm} \otimes V_{k}) = \begin{cases} \mathbb{C} & \text{if } q = 1, \\ 0 & \text{otherwise,} \end{cases}$$
 (4)

where $\mathfrak{sl}_2(\mathbb{R})$ and $\mathfrak{sl}_2(\mathbb{C})$ denotes respectively the Lie algebras of $SL_2(\mathbb{R})$ and $SL_2(\mathbb{C})$.

Let S be a finite set of finite places of F, containing all the finite places v of F dividing a finite place of E at which D ramifies. By [LS, Proposition 2.5], there exists an irreducible, admissible representation of $SL_2(\mathbb{A} \otimes F)$ satisfying the following properties:

- The multiplicity $m_0(\pi)$ of π occurring in the cuspidal spectrum $L_0^2(SL_2(F)\setminus SL_2(\mathbb{A}\otimes F))$ consisting of square integrable cuspidal functions on $SL_2(F)\setminus SL_2(\mathbb{A}\otimes F)$ is nonzero. Further π is stable in the sense of [LL].
- The local component π_v of π at an archimedean place v of F is a discrete series representation, with $\pi_v \in \{D_{k(v)}^+, D_{k(v)}^-\}$.
- For any $v \in S$, the local component π_v of π is isomorphic to the Steinberg representation of $SL_2(F_v)$.

Let Π be a cuspidal, automorphic representation of $GL_2(\mathbb{A} \otimes F)$, such that π occurs in the restriction of Π to $SL_2(\mathbb{A} \otimes F)$. Let Π_L be the base change of Π to $GL_2(\mathbb{A} \otimes L)$ defined by Langlands in [L]. Since π is stable, i.e., Π is not automorphically induced from a character of a quadratic extension of F, the base change Π_L is a *cuspidal* automorphic representation of $GL_2(\mathbb{A} \otimes L)$. We now quote the following descent theorem for invariant cuspidal representations [R]:

Theorem 3. Let K/k be a solvable extension of number fields, and let Θ be a unitary, cuspidal automorphic representation of $GL_2(\mathbf{A}_K)$ which is Gal(K/k)-invariant. Then there exists a G(K/k)-invariant Hecke character ψ of K, and a cuspidal automorphic representation θ of $GL_2(\mathbf{A}_K)$ such that

$$\theta_K \simeq \Theta \otimes \psi$$
,

where θ_K is the base change lift of θ to $GL_2(\mathbb{A} \otimes K)$ defined by Langlands in [L].

328 C. S. Rajan

Let H be the Galois group of L over E. Since Π_L is H-invariant and cuspidal, by the above descent theorem, there exists an idele class character χ of L, such that the representation $\Pi_L \otimes \chi$ is the base change from E to L of a cuspidal representation Π_E of $GL_2(\mathbb{A} \otimes E)$. Let π_E be a constituent of the restriction of Π_E to $SL_2(\mathbb{A} \otimes E)$, and occurring in the automorphic spectrum of $G(\mathbb{A}_E)$ with non-zero multiplicity $m(\pi_E)$.

Base change makes sense at the level of L-packets (see [LS]), and let $\pi_{k,\mathbb{C}}$ denote the representation of $SL_2(\mathbb{C})$ obtained as base change of the L-packet $\{D_k^+, D_k^-\}$ (L-packets for complex groups consist of only one element). It is known that (see [LS]),

$$H^1(\mathfrak{sl}_2(\mathbb{C}), SU(2), \pi_{k,\mathbb{C}} \otimes W_k) \neq 0.$$
 (5)

Let w be an archimedean place of E lying over a real place v of E. Now twisting by a character does not alter the restriction of an automorphic representation of GL_2 to SL_2 . Hence if w is a real place of E, then the local component $\pi_{E,w}$ of π_E at w belongs to $\{D_{k(v)}^+, D_{k(v)}^-\}$, and if w is a complex place of E, then $\pi_{E,w}$ is isomorphic to $\pi_{k(v)}$. \mathbb{C} .

The local components of the base change to E of π continues to be the Steinberg representation of $SL_2(E_w)$, at the places of E where D ramifies. By the theorem of Jacquet-Langlands ([JL], [LS]) applied to L-packets of SL_2 and it's inner forms, we get an automorphic representation $JL(\pi_E)$ of G over E. At a place w where D is ramified, the local component $JL(\pi_E)_w$ is isomorphic to the restriction of the representation $V_{k(v)}$ to SU(2), where v is a place of F dividing w. In particular, the 0-th relative Lie cohomology group

$$H^{0}(\mathfrak{su}_{2}, SU_{2}, V_{k} \otimes V_{k}) = (V_{k} \otimes V_{k})^{SU(2)} \neq 0.$$
 (6)

At a place w of E where D splits, $JL(\pi_E)_w \simeq \pi_{E,w}$, and hence the first relative Lie algebra cohomology with coefficients in the component of $\Psi(V)$ at w is non-zero. It follows from equations (4), (5), (6) and by the Kunneth formula for the relative Lie algebra cohomology that

$$H^s(\mathfrak{g},K_\infty,JL(\pi_E)_\infty\otimes\Psi(V))\neq 0.$$

By Equation (3), this proves Theorem 2.

References

- [BW] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups and representations of reductive groups. Ann. Math. Stud. 94, Princeton Univ. Press, 1980
- [C] Clozel, L.: On the cuspidal cohomology of arithmetic subgroups of SL(2n) and the first Betti number of arithmetic 3-manifolds. Duke Math. J. **55**(2), 475–486 (1987)
- [JL] Jacquet, H., Langlands, R.: Automorphic forms on GL(2). Lect. Notes in Math. 114, Berlin, Springer 1970

- [LL] Labesse, J.-P., Langlands, R.: L-indistinguishability for SL(2). Can. J. Math. **31** 726–785 (1979)
- [LS] Labesse, J.-P., Schwermer, J.: On liftings and cusp cohomology of arithmetic groups. Invent. math. 83, 383–401 (1986)
- [L] Langlands, R.: Base change for GL(2). Ann. Math. Stud. 96 (1980), Princeton Univ. Press
- [LM] Li, J. S., Millson, J. J.: On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group. Duke Math. J. **71**(2), 365–401 (1993)
- [M] Millson, J. J.: On the first Betti number of a constant negatively curved manifold. Ann. Math. 104, 235–247 (1976)
- [R] Rajan, C. S.: On the image and fibres of solvable base change. Math. Res. Letters 9(4), 499–508 (2002)