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Abstract. We show the non-vanishing of cohomology groups of sufficiently small congruence
lattices in SL(1, D), where D is a quaternion division algebra defined over a number field £
contained inside a solvable extension of a totally real number field. As a corollary, we obtain new
examples of compact, arithmetic, hyperbolic three manifolds, with non-torsion first homology
group, confirming a conjecture of Waldhausen. The proof uses the characterisation of the image
of solvable base change by the author, and the construction of cusp forms with non-zero cusp
cohomology by Labesse and Schwermer.
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1. Introduction

In this paper, we are concerned with the following question in the context of arith-
metic, hyperbolic three manifolds: suppose M is a manifold. Does there exist a
finite cover M’ of M with non-vanishing first Betti number? The class of arith-
metic spaces that we consider arise as follows: let D be a quaternion division
algebra over a number field E. Let G denote the connected, semisimple algebraic
group SL1(D) over E. Denote by G (F) the real Lie group G(E ® R) and fix a
maximal compact subgroup K., of G.. Let s; (resp. 2r,) be the number of real
(resp. complex) places of E at which D splits, and let s = s; + r,. The quotient
space M := G /K with the natural G, (E)-invariant metric, is a symmetric
space isomorphic to H;' x ng, where for a natural number n, H,, denotes the
simply connected hyperbolic space of dimension n.

Let A (resp. A y) denote the ring of adeles (resp. finite adeles) of Q. Let K be
a compact, open subgroup of G(A s ® E), and denote by I'x the corresponding
congruence arithmetic lattice in G (E) defined by the projection to G (E) of
the group G(E) N G (E) K. For sufficiently small congruence subgroups K, 'k
is a torsion-free lattice and I'g \ M is a (compact) Riemannian manifold.

In this note, we prove
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Theorem 1. With the above notation, assume further that E is a finite extension
of a totally real number field F contained inside a solvable extension L of F. For
sufficiently small congruence subgroups I' C G« (E), the cohomology groups

H*(I'\M, C)
are non-zero.
A particular case of interest is the following:

Corollary 1. With notation as in Theorem 1, assume further that E has exactly
one pair of conjugate complex places, and the quaternion division algebra D is
ramified at all the real places of E. For sufficiently small congruence subgroups
I' C Guo(E), the first betti number of the compact, hyperbolic three manifold
['\M is non-zero.

A folklore conjecture (attributed to Waldhausen) is that the first betti number of
a compact, hyperbolic three manifold becomes positive upon going to some finite
cover. The first examples of compact, hyperbolic arithmetic three manifolds Mr
with non-vanishing rational first homology group are due to Millson [M]. Using
geometric arguments, Millson showed the non-vanishing of the first betti number
for sufficiently small congruence subgroups, where the arithmetic structure arises
from rank 4 quadratic forms over a totally real number field F, and of signature
(3, 1) at one archimedean place and anisotropic at all other real places.

Theorem 1 was proved by Labesse and Schwermer [LS, Corollary 6.3], in the
case when there exists a tower of field extensions

E=FD>F_ 1D>---DFk=F,

such that F; |/ F; is either a cyclic extension of prime degree or a non-normal
cubic extension. The theorem of Labesse and Schwermer generalizes the theorem
of Millson, as Millson’s theorem is the special case when E/F is quadratic and
there exists a quaternion division algebra Dy over F satisfying D >~ Dy Qp E
[LM]. The proof of our theorem uses the theorem of Labesse and Schwermer and
a criterion for the descent of an invariant cuspidal representation with respect to
a solvable group of Galois automorphisms proved by the author in [R].

Using a construction of algebraic Hecke characters due to Weil, and the auto-
morphic induction of suitable such characters, Clozel proved novanishing results
for the cohomology groups as in the conclusion of Theorem 1 under the following
assumption: if v is a finite place of E where D is ramified, then the completion
E, of E at v should not contain any quadratic extension of QQ,, where v divides
the rational prime v. In particular, this is the case if either D is unramified at all
finite places of E, or if the Galois closure of E over Q is of odd degree over Q.

A different proof of Corollary 1 (and generalizations to higher dimensional
arithmetical hyperbolic manifolds), using theta functions and a Siegel-Weil type
formula in the case when E/F is quadratic extension was obtained by Li and
Millson [LM].
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Example. We give an example of a lattice satisfying the hypothesis of the corol-
lary and not covered by the results of Labesse-Schwermer. To achieve this, we
need to produce a quartic, primitive extension E (i.e., not containing any quadratic
extension) of QQ with exactly one pair of conjugate complex places. By class field
theory, for any even number S of places of E containing the real places and not
containing the complex place, there exists a unique quaternion division algebra
D which is ramified precisely at the places belonging to S. For such D, we obtain
new examples of compact, hyperbolic three manifolds with non-vanishing first
betti number as in the above corollary.

Let P(x) be an irreducible quartic polynomial over the rationals, and let E be
the quartic field defined by P (x). From the definition of the discriminant D(P)
of P(x) in terms of the roots, it follows that E has exactly one pair of conjugate
complex embeddings if and only if D(P) < 0. The field E is primitive precisely
when the Galois group G of the splitting field defined by P (x) over the rationals
is either A4 or Sy.

For a positive prime a, let P,(x) = x* 4+ ax — a. The discriminant of P, (x)
is —27a* — 2564°, and it is irreducible by Eisenstein’s criterion. The resolvent
polynomial is x* + 4ax + a2, and is irreducible. Hence G contains S3, and it
follows that G ~ S,4. The quartic fields defined by P, (x) have the required prop-
erties.

2. General coefficients

Theorem 1 can be generalized for suitable non-trivial coefficient systems also.
Let F and E be as in the hypothesis of the theorem. Given a finite dimensional
complex representation V of SL,(R ® F), we now define the base change repre-
sentation W (V) of the group G (E) [LS]. We define it first when V is irreducible
and extend it additively. If V is irreducible, then V can be written as,

V >~ ®uerpr) Vo

where P, (F) is the collection of the archimedean places of F', and the component
V, of V at the place v is an irreducible representation of SL,(F,) >~ SL,(R), say
of dimension k(v).

Let Vi (resp. Vi) denote the irreducible, holomorphic (resp. anti-holomor-
phic) representation of SL,(C) of dimension k. Restricted to SU(2) they give
raise to isomorphic representations, which we continue to denote by V. Define
the representation Wy of SL,(C) by Wy, = V;, ® V.

Suppose D is a quaternion algebra over E. We define the base change coeffi-
cients W (V) of G (E), as a tensor product of the representations W (V),, of the
component groups G(E,), as w runs over the collection of archimedean places
of E. Suppose w lies over a place v of F. Define,
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Vi) if wisreal,
Wiy if w is complex.

W(V), x~ {

Restricting the representation W (V) to a torsion-free lattice I" gives rise to a
well defined local system Ly vy on the manifold I"\ M. The extension of Theorem
1 to non-trivial coefficients is the following:

Theorem 2. Let F be a totally real number field, and L be a solvable finite exten-
sion of F. Let E be a finite extension of F contained in L, and D be a quaternion
division algebra over E. Let V be a finite dimensional complex representation of
SLy(R ® F). Then for sufficiently small congruence subgroups I’ C G (E),

H'(T\M, Ly)) # 0.

3. Proof

Let I be a co-compact torsion-free lattice in a connected, real semisimple Lie
group H, and let M be a maximal compact subgroup of H. The space L>(I'\H)
consisting of square integrable functions on I'\ H decomposes as a direct sum of
irreducible admissible representations n of H with finite multiplicity m(n):

L*(T\H) =~ ®,m)n.

Let U be a finite dimensional representation of H. By the Matsushima formula
[BW],

H*(T,U) ~@®mmH*(Hh, M,n® U), (1)

where ) denotes the Lie algebra of H, and the cohomology groups on the right
are the relative Lie algebra cohomology groups defined as in [BW].

We restrict now to the case when H = G (E), and take for U the repre-
sentation W (V) as defined above. Let p denote the representation of G(A ® E)
acting by right translations on the space L*(G (E)\G(A® E)) consisting of square
integrable functions on G(E)\G(A ® E). This decomposes as a direct sum of
irreducible admissible representations 7 of G(A ® E) with finite multiplicity
m(m):

P = ©m ().

With respect to the decomposition G(A ® E) = Go(E)G(Af ® E), write 7 =
oo ® 7y, Where mo (resp. 7 r) is a representation of G (E) (resp. G(Af ® E)).
Let I'kx be a lattice as defined above corresponding to a compact open subgroup
K C G(Ay ® E). Since G is simply connected, we obtain from equation (1) and
strong approximation, the adelic version of Matsushima’s formula:

H*(Tk, W(V)) = @m(m) H* (g, Koo, Too @ W(V)) @ 7f, 2)
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where nf denotes the space of K invariants of the representation space of 7.
Taking a direct limit indexed by the compact open subgroups K C G(A; ® E),
we define and obtain,

H*(G, E; W(V)) : =lim H*(Tg, W(V)) = lim H*(Tx \M, Ly(v))
K K 3)

= EBnm(ﬂ)H*(g, Koo, Tooc @V (V) ® Tr.

Hence in order to prove Theorem 2, it is enough to construct an irreducible repre-
sentation 7t of G(Ag) with m(;r) positive and such that H* (g, Ko, oo @ ¥(V))
1S non-zero.

We can assume that V is irreducible of the form V =~ ®,cp, (r) V). Let D
(resp. D) be the holomorphic (resp. antiholomorphic) discrete series of SL,(RR)
of weight k + 1. We have,

HY(sh(R), SO(2), D ® Vi) = N lfq_.l’ “)
0 otherwise,
where sl;(R) and sl,(C) denotes respectively the Lie algebras of SL,(R) and
SL,(C).

Let S be a finite set of finite places of F, containing all the finite places v
of F dividing a finite place of E at which D ramifies. By [LS, Proposition 2.5],
there exists an irreducible, admissible representation of SL,(A ® F) satisfying
the following properties:

e The multiplicity m(sr) of w occuring in the cuspidal spectrum L%(S Lo (F)\
SL,(A ® F)) consisting of square integrable cuspidal functions on SL,(F)\
SL,(A ® F) is nonzero. Further 7 is stable in the sense of [LL].

e The local component 7, of 7 at an archimedean place v of F is a discrete series
representation, with i, € {D,j(v), Dk_(v)}.

e For any v € S, the local component 7, of & is isomorphic to the Steinberg
representation of SL,(F,).

Let IT be a cuspidal, automorphic representation of GL,(A ® F), such that &
occurs in the restriction of I to SL,(A ® F). Let IT; be the base change of I1
to GL,(A ® L) defined by Langlands in [L]. Since 7 is stable, i.e., IT is not
automorphically induced from a character of a quadratic extension of F, the base
change I, is a cuspidal automorphic representation of GL,(A ® L). We now
quote the following descent theorem for invariant cuspidal representations [R]:

Theorem 3. Let K /k be a solvable extension of number fields, and let ® be a
unitary, cuspidal automorphic representation of GL,(Ag) which is Gal(K /k)-
invariant. Then there exists a G(K / k)-invariant Hecke character W of K, and a
cuspidal automorphic representation 6 of G L,(Ag) such that

0k ~OQ Y,
where Ok is the base change lift of 0 to GL,(A ® K) defined by Langlands in [L].
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Let H be the Galois group of L over E. Since Iy, is H-invariant and cuspidal,
by the above descent theorem, there exists an idele class character x of L, such
that the representation I1; ® x is the base change from E to L of a cuspidal
representation ITg of GL,(A ® E). Let g be a constituent of the restriction of
g to SLy(A ® E), and occuring in the automorphic spectrum of G(Ag) with
non-zero multiplicity m(7wg).

Base change makes sense at the level of L-packets (see [LS]), and let 74 ¢
denote the representation of SL,(C) obtained as base change of the L-packet
{D;", D} (L-packets for complex groups consist of only one element). It is
known that (see [LS]),

H'(sL(C), SU2), m.c ® Wy) # 0. 5)

Let w be an archimedean place of E lying over a real place v of F. Now twist-
ing by a character does not alter the restriction of an automorphic representation
of GL, to SL,. Hence if w is a real place of E, then the local component g ,, of
g at w belongs to {D,:”(U), Dy}, and if w is a complex place of E, then g ,, is
isomorphic to m(y),c.

The local components of the base change to E of 7 continues to be the Stein-
berg representation of SL,(E,), at the places of E where D ramifies. By the
theorem of Jacquet-Langlands ([JL], [LS]) applied to L-packets of SL, and it’s
inner forms, we get an automorphic representation JL(wg) of G over E. At a
place w where D is ramified, the local component J L(;rg),, is isomorphic to the
restriction of the representation Vi, to SU(2), where v is a place of F dividing
w. In particular, the O-th relative Lie cohomology group

H (51, SUy, Vi @ Vi) = (Vi @ Vi)SV@ £ 0, (6)

At a place w of E where D splits, JL(7wg), =~ 7g v, and hence the first relative
Lie algebra cohomology with coefficients in the component of W (V) at w is non-
zero. It follows from equations (4), (5), (6) and by the Kunneth formula for the
relative Lie algebra cohomology that

H’(g, Koo, JL(TE)0o @ (V) # 0.

By Equation (3), this proves Theorem 2.
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