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On Strong Multiplicity One

for l-adic Representations

C. S. Rajan

1 Introduction

A basic theme in the study of arithmetical questions is the local-global principle, by

which a global arithmetical object is examined by means of its local behavior at the

various primes. At the representation theoretic level, the problem of strong multiplicity

one is the determination of the multiplicities of the fibres of the global to local map,

especially in situations where we do not have the necessary information at all primes.

Multiplicity one results have been used by Atkin and Lehner to establish an Euler product

indexed by all primes, and the functional equation for newforms. They have also been of

use in problems concerning base change, and other functorial questions in automorphic

forms and Galois representations. Thus it is of fundamental importance not only to study

refinements of strong multiplicity one, but also to understand the possible structural

aspects of strong multiplicity one. In this paper, we obtain a fairly complete picture of

strong multiplicity one for l-adic representations.

Let K be a global field, let GK := Gal(K̄/K) be the Galois group of an algebraic

closure K̄ of K, and let ΣK be the set of nonarchimedean places of K. Let F be a nonar-

chimedean local field of characteristic zero and residue characteristic l. We consider

representations ρ: GK→ GLr(F) satisfying the following hypothesis:

ρ is continuous, unramified outside a finite set S ⊂ ΣK, and semisimple. (*)

Since we will study the representations through the associated characters, and the char-

acters determine the representation only up to their semisimplification, we assume that
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162 C. S. Rajan

the representations are semisimple. For v 6∈ S, we have a well-defined Frobenius conju-

gacy class ρ(σv) in the image group ρ(GK).

We recall the notion of upper density. The upper density ud(P) of a set P of primes

of K, is defined to be the ratio

ud(P) = limsupx→∞#{v ∈ ΣK | Nv ≤ x, v ∈ P}/#{v ∈ ΣK | Nv ≤ x};

here Nv, the norm of v, is the cardinality of the finite set OK/pv, OK is the ring of integers

of K, and pv is the prime ideal of OK corresponding to the finite place v of K. A set P of

primes is said to have a density d(P) if the limit exists as x → ∞ of the ratio #{v ∈ ΣK |
Nv ≤ x, v ∈ P}/#{v ∈ ΣK | Nv ≤ x}, and is equal to d(P).

Suppose ρ1, ρ2 are representations of GK into GLr(F) satisfying (*). Consider the

following set:

SM(ρ1, ρ2) := {v ∈ ΣK − S | Tr(ρ1(σv)) = Tr(ρ2(σv))}.

We will say two representations ρ1 and ρ2 have the strong multiplicity one property if

the upper density of SM(ρ1, ρ2) is positive. We answer in the affirmative the following

conjecture due to D. Ramakrishnan ([Ra1]).

Theorem 1. If the upper density λ of SM(ρ1, ρ2) is strictly greater than 1 − 1/2r2, then

ρ1 ' ρ2.

The result was known for finite groups. There were examples constructed by Serre

([Ra1]), which showed that the above bound is sharp. For unitary, cuspidal automorphic

representations on GL2/K, the corresponding result was established by Ramakrishnan

([Ra2]). The proof was based on the following result of Jacquet and Shalika: If π1 and

π2 are unitary cuspidal automorphic representations on GLn, then π1 ' π̄2 if and only if

L(s, π1 × π2) has a pole at s = 1, where π̄2 denotes the contragredient of π2. In analogy,

it was expected that the obstruction to the proof of the above theorem lies in the Tate

conjectures on the analytical properties of L-functions attached to l-adic cohomologies

of algebraic varieties defined over K. However, we will see below that the proof needs

only the classical Chebotarev density theorem.

Theorem 1 is still not completely satisfactory, as it does not provide any infor-

mation on the relationship between ρ1 and ρ2 possessing the strong multiplicity one

property. The motivating question for this paper was the following: Suppose ρ1 and ρ2

are ‘general’ representations of GK into GL2(F), possessing the strong multiplicity one

property. Does there exist a Dirichlet character χ such that ρ2 ' ρ1 ⊗ χ?

It is this stronger question that provides us with a clue to the solution of this

problem. By the Chebotarev density theorem, if C is a closed analytic subset of the image
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l-adic Representations 163

G of ρ, of strictly smaller dimension than G and stable under conjugation, then {v 6∈ S |
ρ(σv) ∈ C} = o(x/ log x). Conversely, if the density is positive, then dim(C) = dim(G). In

connection with the question of characterising the representations possessing the strong

multiplicity one property, this motivates the introduction of algebraic techniques. The

following result can be considered as a qualitative version of strong multiplicity one,

and provides a vast strengthening of Theorem 1 in general.

Theorem 2. Suppose that the Zariski closureH1 of the image ρ1(GK) inGLr is a connected,

algebraic group. If the upper density of SM(ρ1, ρ2) is positive, then the following hold:

(i) There is a finite Galois extension L of K, such that ρ1 |GL' ρ2 |GL .
(ii) The connected component H0

2 of the Zariski closure of the image ρ2(GK) in GLr

is conjugate to H1. In particular, H0
2 ' H1.

(iii) Assume in addition that ρ1 is absolutely irreducible. Then there is a Dirichlet

character, i.e., a character χ of Gal(L/K) into GL1(F) of finite order, such that ρ2 ' ρ1⊗χ.

Hence in the ‘general case,’ the strong multiplicity one property indicates that

the representations are Dirichlet twists of each other, and the set of primes for which

Tr(ρ1(σv)) = Tr(ρ2(σv)) is not some arbitrary set of primes, but are for a finite set of the

primes which split in some cyclic extension of K. Morever for any pair of representations

satisfying the strong muliplicity one property, the above theorem indicates that the set

of primes for which Tr(ρ1(σv)) = Tr(ρ2(σv)) has a ‘finite’ Galois theoretical interpretation.

Motivated by this result, one can raise the following question for automorphic

representations: Suppose π1, π2 are two irreducible, cuspidal, automorphic representa-

tions of “general type” on GLn/K. Suppose that the set {v ∈ ΣK | π1,v ' π2,v} has positive

density, where π1,v (resp. π2,v) denotes the local component at v of π1 (resp. π2). Does

there exist a Dirichlet character χ, such that π2 ' π1 ⊗ χ? In the case of GL2, a general

type cuspidal automorphic representation should be equivalent to the representation

being nonartinian and nondihedral ([MR]). ForGL1, such a result is true and follows from

Hecke’s results on equidistribution ([R]). However, even forGL1, the known proofs require

the analytic continuation and holomorphicity properties of L(s, θn), for all n,where θ is a

grossencharacter of infinite order restricted to the ideles of norm 1. Thus it is surprising

that the above results can be established for l-adic representations.

LetN, k be positive integers, and let ε: (Z/NZ)∗ → C be a character modN, satis-

fying ε(−1) = (−1)k. Denote byM(N, k, ε) the space of modular forms on Γ0(N) of weight k,

and Nebentypus character ε. For modular forms we refer to [DI]. Given f ∈M(N, k, ε), we

can write f(z) = ∑∞n=0 an(f)e2πinz, Im(z) > 0, where an(f) is the nth Fourier coefficient of

f. Denote by M(N, k, ε)0 the set of eigenforms for the Hecke operators Tp, (p,N) = 1, with

eigenvalue ap(f). We will define two such forms fi ∈M(Ni, ki, εi), i = 1, 2, to be equivalent,
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164 C. S. Rajan

denoted by f1 ∼ f2, if ap(f1) = ap(f2) for almost all primes p. Given any cuspidal eigenform

f as above, it follows from the decomposition of M(N, k, ε) into old and new subspaces

and by the mulitplicity one theorem, that there exists a unique new form equivalent to f.

By a twist of f by a Dirichlet character χ, we mean the form represented by

∞∑
n=0

χ(n)an(f)e2πinz.

We recall the notion of CM forms ([Ri]). f is said to be a CM form, if f is a cusp

form of weight k ≥ 2, and the Fourier coefficients ap(f) vanish for all primes p inert in

some quadratic extension of Q.

Corollary 1. Suppose fi ∈M(Ni, ki, εi)0, i = 1, 2, and f1 is a non-CM cusp form of weight

k1 ≥ 2. Suppose that the set {p ∈ ΣQ, (p,N1N2) = 1 | ap(f1) = ap(f2)} has positive upper

density. Then there exists a Dirichlet character χ of Q, such that f2 ∼ f1⊗χ. In particular,

f2 is also a non-CM cusp form of weight k2 = k1. Hence, apart from finitely many primes,

the set of primes at which the Fourier coefficients of f1 and f2 agree is the set of primes

which split in a cyclic extension of Q.

Proof. Let K0 be the number field generated by the values ap(fi), εi(p), i = 1, 2. Fix a

rational prime l of Q, which splits completely in K0. By Eichler and Shimura, Deligne

[D], and Deligne and Serre [DS], there exists a continuous l-adic representation ρi: GQ →
GL(2,Ql), i = 1, 2 associated to the forms fi satisfying the following properties for i = 1, 2:

(i) ρi is semisimple.

(ii) For primes p satisfying (p,Nil) = 1, ρi is unramified at p, and Tr(ρi(σp)) = ap(fi)
and det(ρi(σp)) = εi(p)pki−1.

By our hypothesis, it is known ([S1, Proposition 17]) that ρ1(GK) is an open subgroup inside

GL(2,Ql). If f2 is not a non-CM form, then the image ρ2(GK) is contained in the normaliser

of a Cartan subgroup insideGL(2), provided that k2 ≥ 2; if k2 = 1, then the image ρ2(GK) is

a finite group. Since the associated l-adic representation determines the form uniquely,

the corollary follows from Theorem 2.

Suppose E1 and E2 are elliptic curves defined over a number field K. Let S denote

the finite set consisting of the ramified places of E1 and E2. For a rational prime l, let

ρi: GK → GL(2,Ql), i = 1, 2, denote, respectively, the l-adic representations associated

to the elliptic curves Ei. The representations ρi, i = 1, 2 are unramified outside S. For

v ∈ ΣK − S, (l,Nv) = 1, let av(Ei) i = 1, 2 denote the trace Tr(ρi(σv)) of the Frobenius σv at v.

We have the following corollary.

Corollary 2. Suppose E1 is a non-CM elliptic curve. Suppose that the set {v ∈ ΣK − S |
av(E1) = av(E2)} has positive upper density. Then there exists a quadratic Dirichlet char-
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l-adic Representations 165

acter χ of GK such that E2 is isogeneous to E1 ⊗ χ; i.e., E2 is isogeneous to a K-form of E1.

In particular, E2 is also a non-CM elliptic curve.

Proof. By Faltings’ proof of the Tate conjectures ([F]), the l-adic representation of an

elliptic curve determines the elliptic curve up to isogeny. By [S2], the image of the Galois

group is known to be an open subgroup inside GL(2,Ql) if E does not have CM, and is

contained in the normaliser of a split torus if E has CM. Since the only automorphisms of

a non-CM elliptic curve are multiplication by {±1}, the corollary follows from Theorem 2.

We remark that this corollary also follows from [S2, Lemma 7] and [S1, Theo-

rem 10].

The method of proof of the theorems is in essence a suitable ‘algebraization’ of

the Chebotarev density theorem. The proof of the theorems is an algebraic adaptation

of the methods developed by Serre to deal with lacunarity questions of the coefficients

of L-series attached to l-adic representations of GK ([S1, Section 6]). It is to be expected

that this method of algebraization would be of use in studying other distribution-related

questions concerning motives.

2 Proofs

Let F be a nonarchimedean local field of characteristic zero and residue characteristic l.

Let M be an algebraic group defined over F. Suppose

ρ: GK→M(F)

is a continuous representation of the Galois group GK. We will always assume our l-adic

representations are such that there exists a finite set S of nonarchimedean places of K,

and that ρ is unramified at all places v ∈ ΣK − S. Denote by G the image ρ(GK). G is then

an l-adic, compact, analytic subgroup of M(F). For v ∈ ΣK − S, we have a well-defined

Frobenius conjugacy class ρ(σv) in the image G.

Suppose C is a subset of G, closed under conjugation by G. Define for a real

number x ≥ 2,

πC(x) := #{v ∈ ΣK − S, Nv ≤ x | ρ(σv) ⊂ C}.

We are interested in the growth of πC(x) as x → ∞. The basic result we need is the

following ([S3]): Suppose C is also a closed subset of Haar measure zero in G; then

πC(x) = o
(

x

log x

)
as x→∞. (1)
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166 C. S. Rajan

Remark. It is known that if C is a closed analytic subset of G, of strictly smaller di-

mension than the dimension of G, then C has no interior points, and consequently is of

Haar measure zero. Conversely, let C be such that {v 6∈ S | ρ(σv) ∈ C} is of positive density.

By the above result, we have dim(C) = dim(G). If everything were algebraic, then we can

conclude that C consists essentially of connected components of G. This motivates us to

introduce algebraic methods in the proof. The key point of the proof is to interpret the

density as counting the number of connected components of an algebraic group, which

allows us to change fields and work over C.

Suppose X is an algebraic subscheme of M defined over F, and stable under the

adjoint action of M on itself. Let

C = X(F) ∩ ρ(GK).

C is then a closed, analytic subset of G, stable under conjugation by G. Let H denote the

algebraic envelope of G inside M, i.e., the smallest algebraic subgroup H of M, defined

over F, such thatG ⊂ H(F).H is also the Zariski closure ofG insideM. LetH0 be the identity

component of H, and letΦ = H/H0 be the finite group of connected components of H. For

φ ∈ Φ, let Hφ denote the corresponding connected component of H, Gφ = G ∩Hφ(F), and

Cφ = C ∩Gφ.

Theorem 3. With notation as above, let Ψ = {φ ∈ Φ | Hφ ⊂ X}. Then

πC(x) = |Ψ||Φ|
x

log x
+ o

(
x

log x

)
, as x→∞.

Hence the density of the set of primes v of K with ρ(σv) ∈ C is precisely |Ψ|/|Φ|.

Proof. Suppose C ∩ Gφ contains an open subset of Gφ. By Zariski density, the Zariski

closure of C ∩Gφ is precisely Hφ. Since X is an algebraic subscheme of M, such that X(F)

contains C, we have Hφ ⊂ X. Hence C ∩Gφ = Gφ. Decompose C = Cin ∪ C′, where

Cin = ∪φ∈ΨGφ, and

C′ = ∪φ∈Φ−ΨCφ.

C′ defines a closed, analytic subset of G, having no interior point, and stable under

conjugation. By (1), it follows that

πC′ (x) = o
(

x

log x

)
as x→∞.

Moreover, Cin = ∪φ∈ΨGφ. Let φ = 0 correspond to the identity component of H. Let E be
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l-adic Representations 167

the fixed field of G0 acting on K̄. E is a finite Galois extension of K, with Galois group

isomorphic to G/G0. Let C̄in denote the image of Cin inside G/G0. By the above result and

by Chebotarev density theorem, we obtain for x→∞,

πC(x) = πCin (x)+ πC′ (x)
= πC̄in (x)+ o

(
x

log x

)
= |C̄in|
|G/G0|

x

log x
+ o

(
x

log x

)
.

Since |C̄in|/|G/G0| = |Ψ|/|Φ|, the theorem follows.

Suppose ρi: GK→ GLr(F), i = 1, 2 are semisimple representations ofGK, satisfying

(*). Let ρ denote the semisimple representation ρ1× ρ2: GK→ GLr(F)×GLr(F). Let H (resp.

H1, H2) be the algebraic envelope of G := ρ(GK) (resp. Gi = ρi(GK), i = 1, 2). By our

hypothesis, H (resp. H1, H2) are reductive subgroups of GLr × GLr (resp. GLr). Let p1, p2

be, respectively, the projections to the first and second factors of GLr × GLr. H1 × H2 is

an algebraic subgroup of GLr ×GLr such that G ⊂ (H1 ×H2)(F). Hence H ⊂ H1 ×H2. Since

pi(G) = Gi for i = 1, 2, it follows from the definition of Hi that pi(H) = Hi, i = 1, 2.

We apply the theorem proved above with M = GLr × GLr, and X = {(g1, g2) ∈
GLr ×GLr | Tr(g1) = Tr(g2)}. We see that λ = |Ψ|/|Φ| is the density of SM(ρ1, ρ2), where

Ψ = {φ ∈ H/H0 | Hφ ⊂ X}.

To count the connected components of the algbraic groupH by the Lefschetz principle,we

can work over C. Let J be a maximal compact subgroup of H(C). For φ ∈ Φ, let Jφ = Hφ ∩ J.
Jφ is a connected component of J, and we have Φ ' H/H0 ' J/J0. Since H is reductive, Jφ

is Zariski dense in Hφ, and so

Ψ = {φ ∈ Φ | Jφ ⊂ X}.

Proof of Theorem 1. Any nonempty open subset of Jφ is Zariski dense in Hφ. Hence for

φ ∈ Φ − Ψ, we have that Jφ ∩ X is a proper, real analytic subvariety of the connected

component Jφ, and is of Haar measure zero. Let dµ be the normalised Haar measure on

J. If ρ1 6= ρ2, then by orthogonality relations,

∫
J

|Tr(ρ1( j))− Tr(ρ2( j))|2dµ( j) ≥ 2. (2)

 at T
ata Institute of F

undam
ental R

esearch on S
eptem

ber 6, 2010 
http://im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org


168 C. S. Rajan

But for φ ∈ Ψ, j ∈ Jφ, Tr(ρ1( j)) = Tr(ρ2( j)). Hence∫
J

|Tr(ρ1( j))− Tr(ρ2( j))|2dµ( j) =
∑

φ∈Φ−Ψ

∫
J

|Tr(ρ1( j))− Tr(ρ2( j))|2dµ( j)

≤ (1− λ)4r2. (3)

Hence λ ≤ 1− 1/2r2.

Remark ([S1, Section 6]). Let L(s, ρ) = ∑m∈MK
a(m)Nm−s be the formal Dirichlet series

associated to ρ, where MK is the set of all nonzero ideals in OK. We have a(pv) = Tr(ρ(σv))

for v ∈ ΣK − S. Let

Pρ(x) = {v ∈ ΣK − S | a(pv) = 0},
Mρ(x) = {m ∈MK | a(m) 6= 0}.

It is shown in [S1] that if there is some λ < 1 and δ > 0 such that

|Pρ(x)| = λx/ log x+O (x/(log x)1+δ
)
, as x→∞, then

|Mρ(x)| ∼ γρx/(log x)λ as x→∞,

where γρ is a positive constant. Applying Theorem 3 to the case M = GLr, X = {g ∈ GLr |
Tr(g) = 0}, and arguing as above, we can conclude that λ ≤ 1− 1/r2 ([S1, Proposition 16]).

Suppose that the Zariski closure of the image ρ(GK) is a connected algebraic group.

Since Tr(1) 6= 0, we can conclude from Theorem 3 that {v ∈ ΣK − S | Tr(ρ(σv)) = 0} is of zero

density. This is Corollary 2, Proposition 15 of [S1]. Thus, in this case, we can conclude

that the associated Dirichlet series L(s, ρ) is ‘not lacunar’; i.e., there is a positive propor-

tion of Fourier coefficients a(m) which are nonzero.

Example. By equating the inequalities corresponding to (2) and (3) in the proof of the

above remark, it can be deduced that the sharp bound of 1 − 1/r2 is attained precisely

when the representation ρ is absolutely irreducible, and the image of ρ inside PGLr(F) is

a finite group of cardinality r2 ([S1, Section 6.5]). Consider the representations ρ1 = ρ⊗ Id
and ρ2 = ρ⊗sgn of the groupG×{±1},which can again be considered as representations

ofGK. It can be seen that SM(ρ1, ρ2) is of density precisely 1−1/2r2. This was the example

given by Serre to illustrate the sharpness of the bound. See [Ra1, p. 442]. Conversely, it

can be seen by examining the proof of the theorem that these are the only examples where

the above sharp bound is attained.
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l-adic Representations 169

Proof of Theorem 2. (i) Suppose the upper density λ of SM(ρ1, ρ2) is positive. Then there

exists φ ∈ Φ, such that the corresponding connected component Jφ ⊂ X. Since we have

assumedH1 is connected, the projection onto the first factor ofHφ isH1. Hence an element

of the form (1, j) is in Jφ, for some j belonging to the maximal compact subgroup J2 of

H2(C), which we can assume to be contained in some group Ur of unitary matrices inside

GLr(C). But there is precisely only one element in Ur which has trace r, and that is the

identity matrix 1r! Hence (1r, 1r) ∈ Jφ, and so Jφ is the identity component of J. Thus the

elements ( j1, j2) ∈ J0 satisfy the relation Tr( j1) = Tr( j2), and by Zariski density, H0 ⊂ X.

By going to a normal subgroup of finite index in GK, corresponding to a finite

Galois extension L of K, we can assume that ρ(GL) ⊂ H0(F). It follows then for g ∈ GL that

Tr(ρ1(g)) = Tr(ρ2(g)). Since ρ1 and ρ2 are assumed to be semisimple, ρ1|GL is conjugate to

ρ2|GL inside GLr(F).

(ii) Since ρ1(GL) is open inside G1, and H1 is connected, it follows that ρ1(GL) is

Zariski dense inside H1. By (i) above, we have that H0
2 is conjugate to H1.

(iii) Suppose in addition that ρ1 is absolutely irreducible. Since H1 is connected,

the Zariski closure of any open subgroup inside G is again H1. It follows that ρ1|GL is

absolutely irreducible. We can also assume that ρ1|GL = ρ2|GL . By Schur’s lemma, the

commutant of ρ1(GL) inside the algebraic group GLr/F is a form of GL1. By Hilbert’s

theorem 90, the commutant of ρ1(GL) inside GLr(F) consists of precisely the scalar

matrices.

For σ ∈ GK, let T (σ) = ρ1(σ)−1ρ2(σ). Since ρ1|GL = ρ2|GL, T (σ) = Id for σ ∈ GL. It

can also be checked that T (σ) is equivariant with respect to the representation ρ1|GL, and

hence is given by a scalar matrix χ(σ). Since χ(σ) is a scalar matrix, it follows that for

σ, τ ∈ GK, χ(στ) = χ(σ)χ(τ); i.e., χ is a character of Gal(L/K) into the group of invertible

elements F∗ of F, and ρ2(σ) = χ(σ)ρ1(σ) for all σ ∈ GK.

Remark. In [L, p. 210], Langlands introduces the ‘motivic’ group H over the complex

numbers associated to an isobaric automorphic representation π of GLn/K. Langlands

further suggests that distribution questions concerning π can be studied in terms of the

image of the normalised Haar measure of J on the spaceX of conjugacy classes of J,where J

is a maximal compact subgroup ofH(C). With respect to this measure, X has total measure

one. In analogy with the Chebotarev density theorem and Sato-Tate conjectures, it is to

be expected that for a given motive, the Frobenius conjugacy classes in the corresponding

space X are equidistributed with respect to this measure. It is interesting to note that

to conclude the proof of the above theorems, we have to finally make recourse to the

compact Lie group J, which should correspond to the group introduced by Langlands.

Moreover, since it is the group of connected components of H which is of interest in the

above results for questions related to distribution properties of motives or automorphic
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170 C. S. Rajan

representations, we need the full motivic Galois group H, rather than just the Mumford-

Tate group corresponding to a motive.

We have the following result,which can be considered as a converse to Corollary 2,

Proposition 15 of [S1], and also as a generalisation of the example of CM forms ([Ri]).

Theorem 4. Suppose ρ satisfies the hypothesis (*) and is absolutely irreducible. Assume

moreover that there is a finite extension L ofK such that ρ|GL is not absolutely irreducible.

Then the set {v ∈ ΣK − S | Tr(ρ(σv)) = 0} is of positive density.

Proof. We apply a theorem of Burnside ([Fe,Theorem 6.9, p. 36]), i.e., given an irreducible

representation ρ of a finite group G into GL(r, E), r > 1, E a field of characteristic zero.

Then there exist elements g ∈ G, such that Tr(ρ(g)) = 0. We divide the proof into the

following three cases.

Case (i): Image of GK is finite, or, equivalently, H0 = 1. By hypothesis, r > 1, and

the theorem follows from the result of Burnside and the Chebotarev density theorem.

Suppose H0 6= 1. Let GL := ρ−1(G ∩ H0(F)), and let L be the corresponding finite,

normal extension of K defined as the fixed field of GL acting on F̄. GL is normal in GK and

Φ ' H/H0 ' GK/GL. Applying Theorem 3 to the case M = GLr, X = {g ∈ GLr | Tr(g) = 0},
we conclude that in order to prove the theorem, it is enough to exhibit a φ ∈ Φ, such that

Gφ ⊂ X(F) ⊂ X(F̄). We consider the representations over F̄, and will continue to denote by

ρ the corresponding action of H (or GK).

By hypothesis, ρ|GL is not irreducible (absolutely). Let q denote the cardinality

of the finite set Q consisting of the isotypical components of ρ|GL.
Case (ii): q > 1. It is known that the isotypical components of ρ|GL are conjugate

under the action of GK. Thus the finite group Φ acts by permutations on the set Q. Since

ρ is irreducible, this action is transitive on Q. Let Φ′ be the isotropy group of a fixed

element in Q. Φ′ is a proper subgroup of Φ, as q > 1. Since a finite group cannot be

written as a union of conjugates of a proper subgroup (a theorem of Jordan), there exists

an element φ ∈ Φ, which acts without fixed points on Q. It follows that the elements

g ∈ Gφ act without fixing any of the isotypical components of ρ|GL. Since q > 1, this

implies that the elements belonging to Gφ are of trace zero, and so the theorem is proved

in this case.

Case (iii): q = 1. We can express F̄r = V ⊗W, where (V, ρV ) denotes an irreducible

representation of GL (or equivalently of H0), and ρ|GL ' ρV ⊗ Id. For g′ ∈ GK, let ρg
′

denote the representation of GK, sending g 7→ ρ(g′gg′−1), g ∈ GK. By assumption, there

exists an automorphism A(g′) of V, such that A(g′) ⊗ Id gives an equivalence between

ρ|GL and ρg
′ |GL. Now ρ(g′) also provides an equivalence between ρ|GL and ρg

′ |GL. Since V

is irreducible, the map g′ 7→ σ(g′) := ρ(g′)(A(g′) ⊗ Id)−1 can be considered as a projective
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representation σ̄ of the finite group Φ ' GK/GL into PGL(W). By Schur theory, σ̄ lifts to

a representation ˜̄σ of the universal central extension Φ̃ of Φ. Φ̃ is finite, and since ρ is

irreducible, ˜̄σ is also irreducible. By Burnside’s theorem, there exists an element φ̃0 ∈ Φ̃,
such that Tr( ˜̄σ(φ̃0)) = 0. Let φ̃0 7→ φ0 ∈ Φ. For g ∈ Gφ0 , Id ⊗ ˜̄σ(φ̃0) and σ(g) differ only up

to a scalar matrix, and so Tr(σ(g)) = 0. Since ρ(g) = σ(g)(A(g)⊗ Id), and Tr is multiplicative

on tensor products, we obtain that for g ∈ Gφ0 , Tr(ρ(g)) = 0. This concludes the proof of

the theorem.

Remark. In Case (ii) above, ρ will be isomorphic to an induced representation from a

proper subgroup of GK, after an extension by scalars of the field F. Choose an isotypical

component ρ′ of ρ|GL, and let F′ be a finite extension of F over which ρ′ is defined. Let

GM be the subgroup of finite index in GK, fixing ρ′, and let ρM denote the corresponding

representation of GM. Then GM is of index q in GK and ρ ' IKM(ρM), where IKM(ρM) denotes

the representation of GK obtained by induction from the representation ρM of GM.
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in Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., Ore-

 at T
ata Institute of F

undam
ental R

esearch on S
eptem

ber 6, 2010 
http://im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org


172 C. S. Rajan

gon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Symp. Pure Math. 33, Amer. Math. Soc.,

Providence, 1979, 205–246.

[MR] M. Ram Murty and C. S. Rajan, “Stronger multiplicity one theorems for forms of general

type on GL2” in Analytic Number Theory (Allerton Park, IL, 1995) Vol. 2, Proceedings of a

Conference in Honor of Heini Halberstam, B. C. Berndt, H. G. Diamond, and A. J. Hildebrand,

eds., Progr. Math. 139, Birkhäuser, Boston, 1996, 669–683.
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