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On Strong Multiplicity One
for l-adic Representations

C. S. Rajan

1 Introduction

A basic theme in the study of arithmetical questions is the local-global principle, by
which a global arithmetical object is examined by means of its local behavior at the
various primes. At the representation theoretic level, the problem of strong multiplicity
one is the determination of the multiplicities of the fibres of the global to local map,
especially in situations where we do not have the necessary information at all primes.
Multiplicity one results have been used by Atkin and Lehner to establish an Euler product
indexed by all primes, and the functional equation for newforms. They have also been of
use in problems concerning base change, and other functorial questions in automorphic
forms and Galois representations. Thus it is of fundamental importance not only to study
refinements of strong multiplicity one, but also to understand the possible structural
aspects of strong multiplicity one. In this paper, we obtain a fairly complete picture of
strong multiplicity one for l-adic representations.

Let K be a global field, let Gk := Gal(K/K) be the Galois group of an algebraic
closure K of K, and let ¢ be the set of nonarchimedean places of K. Let F be a nonar-
chimedean local field of characteristic zero and residue characteristic l. We consider

representations p: Gx — GL.(F) satisfying the following hypothesis:
p is continuous, unramified outside a finite set S C X, and semisimple. (*)

Since we will study the representations through the associated characters, and the char-

acters determine the representation only up to their semisimplification, we assume that
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the representations are semisimple. For v ¢ S, we have a well-defined Frobenius conju-
gacy class p(o,) in the image group p(Gg).

We recall the notion of upper density. The upper density ud(P) of a set P of primes
of K, is defined to be the ratio

ud(P) = limsup, _,  #{ve Zx | Nv <x, ve P}/#{ve Zx | Nv < x};

here Nv, the norm of v, is the cardinality of the finite set Ox/p,, Ox is the ring of integers
of K, and p, is the prime ideal of Ok corresponding to the finite place v of K. A set P of
primes is said to have a density d(P) if the limit exists as x — oo of the ratio #{v € X |
Nv < x, v e P}/#{v e Zx | Nv < x}, and is equal to d(P).

Suppose p;, p, are representations of Gx into GL.(F) satisfying (*). Consider the

following set:
SMlp1, p2) :={v e Zx — S | Tr(p1(oy)) = Tr(pz(ov))}.

We will say two representations p; and p, have the strong multiplicity one property if
the upper density of SM(py, p2) is positive. We answer in the affirmative the following

conjecture due to D. Ramakrishnan ([Rall).

Theorem 1. If the upper density A of SM(p1, p2) is strictly greater than 1 — 1/2r2, then
P1 X P2. O

The result was known for finite groups. There were examples constructed by Serre
([Rall), which showed that the above bound is sharp. For unitary, cuspidal automorphic
representations on GL,/K, the corresponding result was established by Ramakrishnan
([Ra2]). The proof was based on the following result of Jacquet and Shalika: If 7; and
7, are unitary cuspidal automorphic representations on GL,,, then 7; >~ 7, if and only if
L(s,7m; x 7,) has a pole at s = 1, where 7, denotes the contragredient of 7,. In analogy,
it was expected that the obstruction to the proof of the above theorem lies in the Tate
conjectures on the analytical properties of L-functions attached to l-adic cohomologies
of algebraic varieties defined over K. However, we will see below that the proof needs
only the classical Chebotarev density theorem.

Theorem 1 is still not completely satisfactory, as it does not provide any infor-
mation on the relationship between p; and p, possessing the strong multiplicity one
property. The motivating question for this paper was the following: Suppose p; and p;
are ‘general’ representations of Gg into GL,(F), possessing the strong multiplicity one
property. Does there exist a Dirichlet character x such that p; >~ p; ® X?

It is this stronger question that provides us with a clue to the solution of this

problem. By the Chebotarev density theorem, if C is a closed analytic subset of the image
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G of p, of strictly smaller dimension than G and stable under conjugation, then {v ¢ S |
ploy,) € C} = o(x/log x). Conversely, if the density is positive, then dim(C) = dim(G). In
connection with the question of characterising the representations possessing the strong
multiplicity one property, this motivates the introduction of algebraic techniques. The
following result can be considered as a qualitative version of strong multiplicity one,

and provides a vast strengthening of Theorem 1 in general.

Theorem 2. Suppose that the Zariski closure H; of the image p;(Gx) in GL, is a connected,
algebraic group. If the upper density of SM(py, p2) is positive, then the following hold:

(i) There is a finite Galois extension L of K, such that p; |g, ~ p2|g, .

(ii) The connected component HY of the Zariski closure of the image p,(Gk) in GL,
is conjugate to H;. In particular, HJ ~ H;.

(iii) Assume in addition that p; is absolutely irreducible. Then there is a Dirichlet

character, i.e., a character x of Gal(L/K) into GL,(F) of finite order, such that p; >~ p; ® x. O

Hence in the ‘general case,’” the strong multiplicity one property indicates that
the representations are Dirichlet twists of each other, and the set of primes for which
Tr(py(0y)) = Tr(pz(oy)) is not some arbitrary set of primes, but are for a finite set of the
primes which split in some cyclic extension of K. Morever for any pair of representations
satisfying the strong muliplicity one property, the above theorem indicates that the set
of primes for which Tr(p; (0,)) = Tr(p2(0,)) has a ‘finite’ Galois theoretical interpretation.

Motivated by this result, one can raise the following question for automorphic
representations: Suppose 7y, 7, are two irreducible, cuspidal, automorphic representa-
tions of “general type” on GL, /K. Suppose that the set {v € ¢ | m;, =~ 72,} has positive
density, where m;, (resp. 7z,) denotes the local component at v of m; (resp. 7). Does
there exist a Dirichlet character x, such that m; >~ m; ® x? In the case of GL,, a general
type cuspidal automorphic representation should be equivalent to the representation
being nonartinian and nondihedral ([MR]). For GL;, such a result is true and follows from
Hecke's results on equidistribution ([R]). However, even for GL;, the known proofs require
the analytic continuation and holomorphicity properties of L(s, ™), for all n, where 0 is a
grossencharacter of infinite order restricted to the ideles of norm 1. Thus it is surprising
that the above results can be established for l-adic representations.

Let N, k be positive integers, and let e: (Z/NZ)* — C be a character mod N, satis-
fying e(—1) = (—1)*. Denote by M(N, k, €) the space of modular forms on I',(N) of weight k,
and Nebentypus character €. For modular forms we refer to [DI]. Given f € M(N, k, €), we
can write f(z) = Y o2 a,(f)e?™? Im(z) > 0, where a,(f) is the nth Fourier coefficient of
f. Denote by M(N, k, €)° the set of eigenforms for the Hecke operators T,, (p,N) = 1, with

eigenvalue a,(f). We will define two such forms f; € M(Nj, ki, €i), i = 1,2, to be equivalent,
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denoted by f; ~ f, if a,(f;) = a,(f;) for almost all primes p. Given any cuspidal eigenform
f as above, it follows from the decomposition of M(N, k, €) into old and new subspaces
and by the mulitplicity one theorem, that there exists a unique new form equivalent to f.

By a twist of f by a Dirichlet character x, we mean the form represented by

D xman(fe?™™.

n=0
We recall the notion of CM forms ([Ri]). f is said to be a CM form, if f is a cusp
form of weight k > 2, and the Fourier coefficients a,(f) vanish for all primes p inert in

some quadratic extension of Q.

Corollary 1. Suppose f; € M(N;, ki, €)°, 1= 1,2, and f; is a non-CM cusp form of weight
ki > 2. Suppose that the set {p € Zq, (p,N1Nz) =1 | a,(f;) = a,(f2)} has positive upper
density. Then there exists a Dirichlet character x of Q, such that f, ~ f; ® x. In particular,
f, is also a non-CM cusp form of weight k; = k;. Hence, apart from finitely many primes,
the set of primes at which the Fourier coefficients of f; and f, agree is the set of primes

which split in a cyclic extension of Q. O

Proof. Let Ko be the number field generated by the values a,(f;), €ilp), i = 1,2. Fix a
rational prime 1 of Q, which splits completely in Ky. By Eichler and Shimura, Deligne
[D], and Deligne and Serre [DS], there exists a continuous l-adic representation p;: Gq —
GL(2,Q)),1 =1, 2 associated to the forms f; satisfying the following properties fori =1, 2:
(i) p; is semisimple.
(i) For primes p satisfying (p, N;l) = 1, p; is unramified at p, and Tr(pi(op)) = ay,(f;)
and det(pi(op)) = eilp)pkit.
By our hypothesis, it is known ([S1, Proposition 17]) that p;(Gk) is an open subgroup inside
GL(2,Qy). If f, is not a non-CM form, then the image p,(Gy) is contained in the normaliser
of a Cartan subgroup inside GL(2), provided that k; > 2;if ky = 1, then the image p2(Gy) is
a finite group. Since the associated l-adic representation determines the form uniquely,

the corollary follows from Theorem 2. ]

Suppose E; and E; are elliptic curves defined over a number field K. Let S denote
the finite set consisting of the ramified places of E; and E,. For a rational prime 1, let
pi: Gx — GL(2,Q1), 1 = 1,2, denote, respectively, the l-adic representations associated
to the elliptic curves E;. The representations p;, i = 1,2 are unramified outside S. For
veXx—S, (I,Nv)=1,leta,(E;)1=1,2 denote the trace Tr(p;(c,)) of the Frobenius o, at v.

We have the following corollary.

Corollary 2. Suppose E; is a non-CM elliptic curve. Suppose that the set {v € Ly — S |

a,(E;) = a,(E2)} has positive upper density. Then there exists a quadratic Dirichlet char-
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acter x of G such that E;, is isogeneous to E; ® x; i.e., E is isogeneous to a K-form of E;.

In particular, E, is also a non-CM elliptic curve. O

Proof. By Faltings’ proof of the Tate conjectures ([F]), the l-adic representation of an
elliptic curve determines the elliptic curve up to isogeny. By [S2], the image of the Galois
group is known to be an open subgroup inside GL(2,Q) if E does not have CM, and is
contained in the normaliser of a split torus if E has CM. Since the only automorphisms of
anon-CM elliptic curve are multiplication by {£1}, the corollary follows from Theorem 2.

We remark that this corollary also follows from [S2, Lemma 7] and [S1, Theo-
rem 10]. ]

The method of proof of the theorems is in essence a suitable ‘algebraization’ of
the Chebotarev density theorem. The proof of the theorems is an algebraic adaptation
of the methods developed by Serre to deal with lacunarity questions of the coefficients
of L-series attached to l-adic representations of Gg ([S1, Section 6]). It is to be expected
that this method of algebraization would be of use in studying other distribution-related

questions concerning motives.

2 Proofs

Let F be a nonarchimedean local field of characteristic zero and residue characteristic 1.

Let M be an algebraic group defined over F. Suppose
p: Gx = MI(F)

is a continuous representation of the Galois group Gx. We will always assume our l-adic
representations are such that there exists a finite set S of nonarchimedean places of K,
and that p is unramified at all places v € Zx — S. Denote by G the image p(Gk). G is then
an l-adic, compact, analytic subgroup of M(F). For v € Zx — S, we have a well-defined
Frobenius conjugacy class p(o,) in the image G.

Suppose C is a subset of G, closed under conjugation by G. Define for a real

number x > 2,
melx) :=#{ve Xy —S, Nv<x|ploy,) C C}.

We are interested in the growth of 7c(x) as x — oo. The basic result we need is the

following ([S3]): Suppose C is also a closed subset of Haar measure zero in G; then

X
e (x) =o<—> as x — oo. (1)
log x
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Remark. It is known that if C is a closed analytic subset of G, of strictly smaller di-
mension than the dimension of G, then C has no interior points, and consequently is of
Haar measure zero. Conversely, let C be such that {v & S | p(o,) € C} is of positive density.
By the above result, we have dim(C) = dim(G). If everything were algebraic, then we can
conclude that C consists essentially of connected components of G. This motivates us to
introduce algebraic methods in the proof. The key point of the proof is to interpret the
density as counting the number of connected components of an algebraic group, which

allows us to change fields and work over C.

Suppose X is an algebraic subscheme of M defined over F, and stable under the

adjoint action of M on itself. Let
C = X(F) N p(Gy).

C is then a closed, analytic subset of G, stable under conjugation by G. Let H denote the
algebraic envelope of G inside M, i.e., the smallest algebraic subgroup H of M, defined
over F, such that G ¢ H(F). His also the Zariski closure of G inside M. Let H® be the identity
component of H, and let ® = H/H° be the finite group of connected components of H. For
¢ € @, let H® denote the corresponding connected component of H, G* = G N H*(F), and
C* =CnG*.

Theorem 3. With notation as above, let ¥ = {¢ € ® | H® ¢ X}. Then

7r(x)—|w| x +0 x as x — oo
M7 0] log x logx /)’ '

Hence the density of the set of primes v of K with p(c,) € C is precisely [V|/|D]|. O

Proof. Suppose C N G* contains an open subset of G®. By Zariski density, the Zariski
closure of C N G* is precisely H?. Since X is an algebraic subscheme of M, such that X(F)
contains C, we have H® c X. Hence C N G® = G®. Decompose C = C;, U C’, where

Cin = U¢elyG¢, and

C' = Upea_wC?.

C’ defines a closed, analytic subset of G, having no interior point, and stable under

conjugation. By (1), it follows that

X

Ticr(X) = 0 (

as x — oo.
log x>

Moreover, Ci, = UpeyG?. Let ¢ = 0 correspond to the identity component of H. Let E be
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the fixed field of G° acting on K. E is a finite Galois extension of K, with Galois group
isomorphic to G/G°. Let Ci, denote the image of Cy, inside G/G°. By the above result and

by Chebotarev density theorem, we obtain for x — oo,

mic(x) = 7ic,, (x) + e (%)

=me () 4o ——
G log x

Gl x pof X
" 1G/GO log x log x/°

Since |Cin|/|G/G°| = |¥|/|®|, the theorem follows. [ |

Suppose pi: Gx — GL.(F), 1 = 1,2 are semisimple representations of Gy, satisfying
(*). Let p denote the semisimple representation p; x pz: Gx — GL.(F) x GL.(F). Let H (resp.
H;, Hz) be the algebraic envelope of G := p(Gk) (resp. Gi = pi(Gk), i = 1,2). By our
hypothesis, H (resp. H;, Hz) are reductive subgroups of GL, x GL, (resp. GL,). Let p1, p2
be, respectively, the projections to the first and second factors of GL, x GL,. H; x H; is
an algebraic subgroup of GL, x GL, such that G  (H; x H)(F). Hence H C H; x H,. Since
pi(G) = G; for i = 1,2, it follows from the definition of H; that p;(H) = Hi, i =1, 2.

We apply the theorem proved above with M = GL, x GL,, and X = {(g1,92) €
GL, x GL; | Tr(g1) = Tr(g2)}. We see that A = [V|/|D| is the density of SM(p;, p2), where

Y= {¢p e H/H® | H® c X}.

To count the connected components of the algbraic group H by the Lefschetz principle, we
can work over C. Let ] be a maximal compact subgroup of H(C). For ¢ € @, let J® = H*N].
J® is a connected component of ], and we have ® ~ H/H® ~ J/J°. Since H is reductive, J¢

is Zariski dense in H®, and so

Y={ped|]®cX].

Proof of Theorem 1. Any nonempty open subset of J® is Zariski dense in H?. Hence for
¢ € ® — ¥, we have that J® N X is a proper, real analytic subvariety of the connected
component ], and is of Haar measure zero. Let du be the normalised Haar measure on

J. If p; # p2, then by orthogonality relations,

[ 6010 = Trpatinanci = 2. 2
J

0T0Z ‘9 Jaqwialdas uo yoseasay [ejuswepun4 Jo aynnsu) erel 1e Bio speuinolpioyxo-uiwiy/:dny woiy papeojumoq


http://imrn.oxfordjournals.org

168 C. S. Rajan

Butfor ¢ € ¥, j e J® Tr(p:1(j)) = Tr(p2(j)). Hence

J ITr(p1 () — Trip2(DPdui) = Y J|TT(01(i))—TT(Pz(i))lde(i)
J

pev—w ]
< (1 — N4, (3)
Hence A <1 —1/272. ]
Remark ([S1, Section 6]). Let L(s,p) = } .y, a(m)Nm™ be the formal Dirichlet series

associated to p, where M is the set of all nonzero ideals in Ox. We have a(p,) = Tr(p(oy))
forve Xy —S. Let

Py(x) = {ve Zx — S| alp,) =0},
M,(x) = {m € My | a(m) # 0}.

It is shown in [S1] that if there is some A < 1 and § > O such that

IPo(x)| = Ax/log x + O (x/(log )'*®),  asx — oo, then

IM,(x)] ~ vox/(log x)*  asx — oo,

where v, is a positive constant. Applying Theorem 3 to the case M = GL,, X = {g € GL, |
Tr(g) = 0}, and arguing as above, we can conclude that A <1 — 1/r? ([S1, Proposition 16]).

Suppose that the Zariski closure of the image p(Gy) is a connected algebraic group.
Since Tr(1) # 0, we can conclude from Theorem 3 that {v € Xx — S | Tr(p(o,)) = 0} is of zero
density. This is Corollary 2, Proposition 15 of [S1]. Thus, in this case, we can conclude
that the associated Dirichlet series L(s, p) is ‘not lacunar’; i.e., there is a positive propor-

tion of Fourier coefficients a(m) which are nonzero.

Example. By equating the inequalities corresponding to (2) and (3) in the proof of the
above remark, it can be deduced that the sharp bound of 1 — 1/72 is attained precisely
when the representation p is absolutely irreducible, and the image of p inside PGL.(F) is
a finite group of cardinality r? ([S1, Section 6.5]). Consider the representations p; = p®Id
and p; = p®sgn of the group G x {1}, which can again be considered as representations
of Gg. It can be seen that SM(p;, p,) is of density precisely 1 —1/2r2. This was the example
given by Serre to illustrate the sharpness of the bound. See [Ral, p. 442]. Conversely, it
can be seen by examining the proof of the theorem that these are the only examples where

the above sharp bound is attained.

0T0Z ‘9 Jaqwialdas uo yoseasay [ejuswepun4 Jo aynnsu) erel 1e Bio speuinolpioyxo-uiwiy/:dny woiy papeojumoq


http://imrn.oxfordjournals.org

l-adic Representations 169

Proof of Theorem 2. (i) Suppose the upper density A of SM(py, p2) is positive. Then there
exists ¢ € @, such that the corresponding connected component J® C X. Since we have
assumed H; is connected, the projection onto the first factor of H® is H;. Hence an element
of the form (1, j) is in J®, for some j belonging to the maximal compact subgroup J, of
H»(C), which we can assume to be contained in some group U, of unitary matrices inside
GL,(C). But there is precisely only one element in U, which has trace r, and that is the
identity matrix 1,! Hence (1,,1,) € J%, and so J® is the identity component of J. Thus the
elements (j;, j,) € J° satisfy the relation Tr(j;) = Tr(j,), and by Zariski density, H® C X.

By going to a normal subgroup of finite index in Gk, corresponding to a finite
Galois extension L of K, we can assume that p(Gy) c H°(F). It follows then for g € Gy that
Tr(p1(g)) = Tr(p2(g)). Since p; and p; are assumed to be semisimple, p;|g, is conjugate to
p2lg, inside GL.(F).

(ii) Since p;(Gy) is open inside G;, and H; is connected, it follows that p;(Gy) is
Zariski dense inside H;. By (i) above, we have that HJ is conjugate to H;.

(iii) Suppose in addition that p; is absolutely irreducible. Since H; is connected,
the Zariski closure of any open subgroup inside G is again H;. It follows that p;|g, is
absolutely irreducible. We can also assume that p;|g, = p2lg, . By Schur’s lemma, the
commutant of p;(Gy) inside the algebraic group GL,/F is a form of GL,. By Hilbert's
theorem 90, the commutant of p;(Gy) inside GL.(F) consists of precisely the scalar
matrices.

For ¢ € Gy, let T(0) = p1(0)~p2(0). Since pilg, = p2lg,, T(o) = Id for o € Gi. It
can also be checked that T(o) is equivariant with respect to the representation p;|g,, and
hence is given by a scalar matrix x(o). Since x(o) is a scalar matrix, it follows that for
o, T € Gy, xlo1) = x(o)x(1); i.e., x is a character of Gal(L/K) into the group of invertible
elements F* of F, and p,(0) = x(o)p1(0) for all o € Gg. [ |

Remark. In [L, p. 210], Langlands introduces the ‘motivic’ group H over the complex
numbers associated to an isobaric automorphic representation 7 of GL,/K. Langlands
further suggests that distribution questions concerning 7t can be studied in terms of the
image of the normalised Haar measure of ] on the space X of conjugacy classes of |, where ]
is a maximal compact subgroup of H(C). With respect to this measure, X has total measure
one. In analogy with the Chebotarev density theorem and Sato-Tate conjectures, it is to
be expected that for a given motive, the Frobenius conjugacy classes in the corresponding
space X are equidistributed with respect to this measure. It is interesting to note that
to conclude the proof of the above theorems, we have to finally make recourse to the
compact Lie group J, which should correspond to the group introduced by Langlands.
Moreover, since it is the group of connected components of H which is of interest in the

above results for questions related to distribution properties of motives or automorphic
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representations, we need the full motivic Galois group H, rather than just the Mumford-

Tate group corresponding to a motive.

We have the following result, which can be considered as a converse to Corollary 2,

Proposition 15 of [S1], and also as a generalisation of the example of CM forms ([Ri]).

Theorem 4. Suppose p satisfies the hypothesis (*) and is absolutely irreducible. Assume
moreover that there is a finite extension L of K such that p|G; is not absolutely irreducible.

Then the set {v € Xx — S | Tr(p(o,)) = 0} is of positive density. O

Proof. We apply a theorem of Burnside ([Fe, Theorem 6.9, p. 36]), i.e., given an irreducible
representation p of a finite group G into GL(r,E), r > 1, E a field of characteristic zero.
Then there exist elements g € G, such that Tr(p(g)) = 0. We divide the proof into the
following three cases.

Case (i): Image of Gy is finite, or, equivalently, H® = 1. By hypothesis, r > 1, and
the theorem follows from the result of Burnside and the Chebotarev density theorem.

Suppose H° # 1. Let Gp := p~}(G N H°(F)), and let L be the corresponding finite,
normal extension of K defined as the fixed field of G; acting on F. G is normal in Gx and
® ~ H/H® ~ Gx/Gr. Applying Theorem 3 to the case M = GL,, X = {g € GL, | Tr(g) = 0},
we conclude that in order to prove the theorem, it is enough to exhibit a ¢ € @, such that
G® ¢ X(F) c X(F). We consider the representations over F, and will continue to denote by
p the corresponding action of H (or Gg).

By hypothesis, p|Gy is not irreducible (absolutely). Let q denote the cardinality
of the finite set Q consisting of the isotypical components of p|Gy.

Case (ii): g > 1. It is known that the isotypical components of p|G are conjugate
under the action of Gk. Thus the finite group ® acts by permutations on the set Q. Since
p is irreducible, this action is transitive on Q. Let @’ be the isotropy group of a fixed
element in Q. @’ is a proper subgroup of ®, as q > 1. Since a finite group cannot be
written as a union of conjugates of a proper subgroup (a theorem of Jordan), there exists
an element ¢ € ®, which acts without fixed points on Q. It follows that the elements
g € G? act without fixing any of the isotypical components of p|G;. Since q > 1, this
implies that the elements belonging to G® are of trace zero, and so the theorem is proved
in this case.

Case (iii): ¢ = 1. We can express F' = V @ W, where (V, py) denotes an irreducible
representation of G; (or equivalently of H%), and p|G; ~ pyv ® Id. For ¢’ € Gy, let p¥
denote the representation of Gy, sending g +— plg'gg’™"), g € Gk. By assumption, there
exists an automorphism A(g’) of V, such that A(g') ® Id gives an equivalence between
|G and pY|G;. Now p(g’) also provides an equivalence between p|G. and pY|G|. Since V

is irreducible, the map ¢’ — ol(g’) := p(g')(A(g’) ® Id)~! can be considered as a projective
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representation ¢ of the finite group ® ~ Gy/G into PGL(W). By Schur theory, ¢ lifts to
a representation o of the universal central extension @ of ®. ® is finite, and since p is
irreducible, & is also irreducible. By Burnside's theorem, there exists an element ¢;0 €,
such that Tr(6(¢g)) = 0. Let ¢ — dg € @. For g € G, Id ® 6(do) and olg) differ only up
to a scalar matrix, and so Tr(o(g)) = 0. Since p(g) = o(g)(A(g) ® 1d), and Tr is multiplicative
on tensor products, we obtain that for g € G%0, Tr(p(g)) = 0. This concludes the proof of
the theorem. ]

Remark. In Case (ii) above, p will be isomorphic to an induced representation from a
proper subgroup of Gg, after an extension by scalars of the field F. Choose an isotypical
component p’ of p|Gr, and let F be a finite extension of F over which p’ is defined. Let
Gm be the subgroup of finite index in Gk, fixing p’, and let ppm denote the corresponding
representation of Gpy. Then Gy, is of index q in Gk and p ~ I‘,ﬁ,t(pM), where I',fA(pM) denotes

the representation of Gk obtained by induction from the representation py of Gum.
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