The Density of Ramified Primes in Semisimple
\(p\)-adic Galois Representations

Chandrashekhar Khare and C. S. Rajan

1 Introduction

Let \(L\) be a number field. Consider a continuous, semisimple \(p\)-adic Galois representation
\[\rho : G_L \rightarrow GL_m(K) \]
of the absolute Galois group \(G_L\) of \(L\) and with \(K\) a finite extension of \(Q_p\). In [R] in the case when \(n = 2\) and \(L = Q\) examples of such representations were constructed which were ramified at infinitely many primes, which had open image, and which had determinant \(\varepsilon\), the \(p\)-adic cyclotomic character (see also the last section of [KR]). We say that such representations are infinitely ramified. One may ask if in these examples of [R] the set of ramified primes is of small density.

Theorem 1. Let \(\rho : G_L \rightarrow GL_m(K)\) be a continuous, semisimple representation. Then the set of primes \(S_\rho\) that ramify in \(\rho\) is of density zero.

The semisimplicity assumption is crucial as, using Kummer theory (see the exercise of [S2, III-12]), one can construct examples of continuous, reducible, indecomposable representations \(\rho : G_L \rightarrow GL_2(Q_p)\) that are ramified at all primes. Note that as in [R] infinitely ramified representations, though not motivic themselves, arise as limits of motivic \(p\)-adic representations.

After Theorem 1, we know that the set of primes that are unramified in a continuous, semisimple representation \(\rho : G_L \rightarrow GL_m(K)\) is of density 1. Hence many of the results (e.g., the strong multiplicity 1 results of [Ra]), which are available in the classi-
After Theorem 1, it also makes good sense to talk of compatible systems of continuous, semisimple Galois representations in the sense of [S2] without imposing the condition that these be finitely ramified. We raise the following question.

Question 1. Given two compatible continuous, semisimple representations \(\rho : G_L \to \text{GL}_m(\mathbb{Q}_\ell) \) and \(\rho' : G_L \to \text{GL}_m(\mathbb{Q}_{\ell'}) \) with \(\ell \neq \ell' \), is the set of primes at which either \(\rho \) or \(\rho' \) ramifies finite?

2 Proof of theorem

2.1

Let \(\rho \) be as in Theorem 1. As \(\rho \) is continuous, we can regard \(\rho \) as taking values in \(\text{GL}_m(O) \), where \(O \) is the ring of integers of \(K \). We denote the maximal ideal of \(O_K \) by \(m \), and we denote by \(\rho_n \) the reduction mod \(m^n \) of \(\rho \).

We define \(S_{\rho,n} \) to be the set of primes \(q \) of \(L \) which satisfy the following conditions:

1. \(q \) is of degree 1 over \(\mathbb{Q} \) (this assumption is merely for notational convenience; we denote abusively the prime of \(\mathbb{Q} \) lying below it by \(q \));
2. \(q \) is unramified in \(\rho_1 \) and not equal to \(p \);
3. \(\rho_n|_{D_q} \) is unramified, but there exists a “lift” of \(\rho_n|_{D_q} \), with \(D_q \) the decomposition group at \(q \) corresponding to a place above \(q \) in \(\overline{Q} \), to a representation \(\overline{\rho}_q \) of \(D_q \) to \(\text{GL}_m(K) \) that is ramified at \(q \); by a lift we mean some conjugate of \(\overline{\rho}_q \) which reduces mod \(m^n \) to \(\rho_n|_{D_q} \). Note that by (2) any such lift \(\overline{\rho}_q \) factors through \(G_q \), the quotient of \(D_q \) which is the Galois group of the maximal tamely ramified extension of \(\mathbb{Q}_q \). Let \(c_{\rho,n} \) be the upper density of the set \(S_{\rho,n} \).

Proposition 1. Given any \(\varepsilon > 0 \), there is an integer \(N_\varepsilon \) such that \(c_{\rho,n} < \varepsilon \) for \(n > N_\varepsilon \). \(\square \)

We claim that the proposition implies Theorem 1. To see this, first observe that the primes of \(L \) which do not lie above primes of \(\mathbb{Q} \) which split in the extension \(L/\mathbb{Q} \) are of density zero. To prove the theorem, it is enough to show that given any \(\varepsilon > 0 \) the upper density of the set \(S_\rho \) of ramified primes for \(\rho \) is less than \(\varepsilon \). Consider the \(N_\varepsilon \) that the proposition provides. Further, note that in \(\rho_{N_\varepsilon} \) only finitely many primes ramify. From this it readily follows that the upper density of \(S_\rho \) is less than \(\varepsilon \). Hence we have Theorem 1. Thus it only remains to prove the proposition.

2.2 Tame inertia

Proposition 1 relies on the structure of the Galois group \(G_q \) of the maximal tamely
ramified extension of \mathbb{Q}_q. This is used to calculate the densities $c_{\rho,n}$ for large enough n. The concept of largeness of n for our purposes is independent of the representation ρ and the prime q and depends only on K and the dimension of the representation. Roughly, the idea of the proof of Proposition 1 is that for these large n only semistable (i.e., the image of inertia is unipotent) lifts intervene in the calculation of the $c_{\rho,n}$, and the conjugacy classes in the image of ρ_n of the Frobenius classes associated to the primes in $S_{\rho,n}$ lie in the \mathbb{O}/m^n-valued points of an analytically defined subset of $\text{im}(\rho)$ of smaller dimension.

We flesh out this idea below. We implicitly use the fact that although one cannot speak of eigenvalues of an element of $\text{GL}_m(A)$, for a general ring A, its characteristic polynomial makes good sense.

The group G_q is topologically generated by two elements σ_q and τ_q that satisfy the relation

$$\sigma_q \tau_q \sigma_q^{-1} = \tau_q^q$$ \hspace{1cm} (1)

and such that σ_q induces the Frobenius on residue fields and τ_q (topologically) generates the tame inertia subgroup.

2.3 Reduction to the semistable case

Lemma 1. Let $\theta : G_q \to \text{GL}_m(K)$ be any continuous representation. Then the roots of the characteristic polynomial of $\theta(\tau_q)$ are roots of unity. Further, the order of these roots of unity is bounded by a constant depending only on K.

Proof. Using Krasner’s lemma, we know that there are only finitely many degree m extensions of K. Let K' be the finite extension of K which is the compositum of all the degree m extensions of K. By extending scalars to K', we can assume that $\theta(\tau_q)$ is upper triangular. Let $\theta_1, \ldots, \theta_m$ be the diagonal entries. Using equation (1), we deduce that

$$\{\theta_1, \ldots, \theta_m\} = \{\theta_1^q, \ldots, \theta_m^q\}.$$

From this it follows that the θ_i are roots of unity (of order dividing $q^m - 1$). Hence the last statement of the lemma follows from the fact that there are only finitely many roots of unity in K'.

Corollary 1. Let $\theta : G_q \to \text{GL}_m(K)$ be any continuous representation. Assume that the characteristic polynomial of $\theta(\tau_q)$ is not equal to $(x - 1)^m$. Then there exists an integer $N(m,K)$ depending only on m and K such that the reduction modulo $m^N(m,K)$ of any conjugate of θ into $\text{GL}_m(\mathbb{O})$ is ramified.
Proof. Choose $N(m, K)$ such that if \(\zeta \in K'^\times \) is a root of unity satisfying \((\zeta - 1)^m \equiv 0 \pmod{mN(m, K)} \), then \(\zeta = 1 \) for \(K' \) as in the proof of Lemma 1. Then the corollary follows by considering reductions of characteristic polynomials.

\[\square \]

Corollary 2. In a continuous, semisimple representation of \(\rho : G_L \to GL_m(K) \), the set of primes \(q \) for which \(\rho(\tau_q) \) is not unipotent is finite.

\[\square \]

Corollary 3. Any continuous, semisimple abelian representation of \(G_L \to GL_m(K) \) is finitely ramified.

\[\square \]

2.4 The \(GL_2 \) case

At this point, for the sake of exposition, we briefly indicate the proof of Theorem 1 when \(m = 2 \) and \(\rho(G_L) \) is open in \(GL_2(K) \) with determinant \(\varepsilon \) the \(p \)-adic cyclotomic character. (Note that in the case when the Lie algebra of \(\rho(G_L) \) is abelian the ramification set is finite by Corollary 3.)

Consider \(S_{\rho, n} \) for \(n > N(2, K) \), and let \(q \in S_{\rho, n} \). Let \(\tilde{\rho}_q \) be any lift of \(\rho_n|_{D_q} \) to \(GL_2(K) \) which is ramified at \(q \). By the above considerations, it follows that \(\tilde{\rho}_q(\tau_q) \) is unipotent, which we can assume to be upper triangular. Since \(\tilde{\rho}_q(\sigma_q) \) normalises \(\tilde{\rho}_q(\tau_q) \), we can assume that

- \(\tilde{\rho}_q(\tau_q) \) is of the form \(\left(\begin{array}{cc} 1 & * \\ 0 & 1 \end{array} \right) \) and \(\tilde{\rho}_q(\tau_q) \) is nontrivial,
- \(\tilde{\rho}_q(\sigma_q) \) is of the form \(\left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array} \right) \).

Observe that \(\alpha \neq \beta \) because of relation (1). Thus we can further assume by conjugating by an element of the form \(\left(\begin{array}{cc} 1 & 1 \\ 0 & y \end{array} \right) \in GL_2(K) \) that \(\tilde{\rho}_q(\sigma_q) \) is of the form \(\left(\begin{array}{cc} \alpha & 0 \\ 0 & \beta \end{array} \right) \). Then we see from equation (1) that \(\alpha \beta^{-1} = q \).

Consider the invariant functions tr and det defined on the space of conjugacy classes of \(GL_2(0) \) or \(GL_2(0/m^n) \) given by the trace and determinant functions. We see from our work that primes \(q \in S_{\rho, n} \) for \(n > N(2, K) \) are such that the conjugacy classes \(\rho_n(\text{Frob}_{q}) \) satisfy the relation

\[\text{tr}^2 = (1 + \text{det})^2. \]

From this we conclude, using the fact that the image of \(\rho \) is open in \(GL_2(K) \), Cebotarev density theorem, and the second paragraph of [S1, p. 586], that \(c_{\rho, n} \to 0 \) as \(n \to \infty \).

Proposition 1 follows in this case, and the proof of Theorem 1 is complete in the special case of open image in \(GL_2(K) \) with determinant \(\varepsilon \).

\[\square \]

2.5 The general case

We reduce the general situation to the case when \(\text{im}(\rho) \) is a semisimple \(p \)-adic Lie group.
contained in \(\text{GL}_M(\mathbb{Q}_p) \) for some \(M \). First, by Weil restriction of scalars, we may assume that \(K = \mathbb{Q}_p \) (with possibly a different \(M \)). Let \(G \) be the Zariski closure of the image of \(\rho \). Since \(\rho \) is semisimple, \(G \) is reductive; let \(Z \) be the centre of the connected component of \(G \). Let \(\rho_\alpha : G_1 \to (G/Z)(\mathbb{Q}_p) \) be the corresponding representation. Because of Corollary 2, we see that the ramification set of \(\rho \) and \(\rho_\alpha \) differs by a finite set, and thus we can work with \(\rho_\alpha \). Now embed \(G/Z \) into \(\text{GL}_M/\mathbb{Q}_p \) for some \(M \). Thus we have reduced to the case when \(\text{im}(\rho) \) is a semisimple \(p \)-adic Lie group contained in \(\text{GL}_M(\mathbb{Q}_p) \) for some \(M \).

We look at \(S_{\rho,n} \) for \(n > N(M,\mathbb{Q}_p) \), and we let \(q \in S_{\rho,n} \). Let \(\tilde{\rho}_q \) be any lift of \(\rho_n|_{D_q} \) to \(\text{GL}_M(K) \) which is ramified at \(q \). By Corollary 1, we can assume that \(\tilde{\rho}_q(\tau_q) \) is unipotent (and nontrivial), which we can further assume to be upper triangular.

Consider the canonical filtration of \(\tilde{\rho}_q(\tau_q) \) acting on the vector space \(\mathbb{Q}_p^M \), with the dimension of the corresponding graded components \(m_1,\ldots,m_i \). By conjugating by an element in the Levi, over a finite extension of \(\mathbb{Q}_p \), of the corresponding parabolic subgroup defined by \(\tilde{\rho}_q(\tau_q) \) (of the form \(\text{GL}_{m_1} \times \cdots \times \text{GL}_{m_i} \)), we can assume that \(\tilde{\rho}_q(G_q) \) is upper triangular.

Lemma 2. If \(f_q(x) \) is the characteristic polynomial of \(\tilde{\rho}_q(\sigma_q) \), then \(f_q(x) \) and \(f_q(qx) \) have a common root.

Proof. Let \(U \) be the subgroup of unipotent upper triangular matrices of \(\text{SL}_M(\mathbb{Q}_p) \), and let

\[
U = U^0 \supset U^1 \supset \cdots \supset 1
\]

be the descending filtration. Let \(i \) be the smallest integer such that \(\tilde{\rho}_q(\tau_q) \notin U^{i+1} \).

By looking at the conjugation action of \(\tilde{\rho}_q(\sigma_q) \) on \(U^i/U^{i+1} \) and using relation (1), it follows that there are two eigenvalues \(\alpha_q, \beta_q \) of \(\tilde{\rho}_q(\sigma_q) \) such that \(\alpha_q \beta_q^{-1} = q \). Hence we have the lemma.

Consider \(\rho' = \rho \oplus \varepsilon : G_1 \to \text{GL}_M(\mathbb{Q}_p) \times \text{GL}_1(\mathbb{Q}_p) \). Let \(G' = G \times \text{GL}_1 \). Choose an integral model for \(\rho' \), that is, \(\rho'(G_1) \subset \text{GL}_M(\mathbb{Z}_p) \times \text{GL}_1(\mathbb{Z}_p) \), induced by the chosen integral model of \(\rho \), and denote by \(\rho'_n \) its reduction mod \(m^n \). We normalise the isomorphism of class field theory so that a uniformiser is sent to the arithmetic Frobenius. (So \(\varepsilon(\text{Frob}_q) = q \).)

Let

\[
(A, b) \in \text{GL}_M(\mathbb{Q}_p) \times \text{GL}_1(\mathbb{Q}_p),
\]

and let \(f(x) \) be the characteristic polynomial of \(A \). Let \(F \) be the invariant polynomial function on \(\text{GL}_M \times \text{GL}_1 \) with \(\mathbb{Z}_p \)-coefficients defined by the resultant of the two polynomials
f(x) and f(bx).

By choosing b different from the ratios of eigenvalues of an element of G, we deduce that no connected component of G' is contained inside the variety \(F = 0 \). Thus we see that \((F = 0) \cap G' \) is a subvariety of smaller dimension than the dimension of G'.

Lemma 3. The image \(\rho'(G_L) \) is an open subgroup of \(G'(Q_p) = G(Q_p) \times GL_1(Q_p) \). \(\square \)

Proof. Since \(\text{im}(\rho) \) is a semisimple \(p \)-adic group, we deduce from Chevalley's theorem (see [Bo, Corollary 7.9]) that \(\text{im}(\rho) \) is open in \(G(Q_p) \). From this we further deduce that the commutator subgroup of \(\text{im}(\rho) \) is of finite index in \(\text{im}(\rho) \). Thus the intersection of the fixed fields of the kernel of \(\rho \) and \(\epsilon \) is a finite extension of \(Q \). Certainly \(\text{im}(\epsilon) \) is open in \(Q_p^* \), and hence the lemma follows. \(\blacksquare \)

From the openness of \(\text{im}(\rho') \), we see that

\[
\lim_{n \to \infty} \frac{|\text{im}(\rho'_n)|}{p^{nd}}
\]

is a nonzero positive constant, where \(d \) is the dimension of \(G' \).

On the other hand, using the notation and results of [S1, Section 3], if we denote by \(\widetilde{Y}_n \) the elements \(x \in \text{im}(\rho'_n) \) that satisfy \(F(x) \equiv 0 \pmod{p^n} \), then from the second paragraph of [S1, p. 586] it follows that \(|\widetilde{Y}_n| = O(p^{n(d-\delta)}) \), where \(\delta \) is a positive constant. By Lemma 2, we see that \(\rho'_n(\text{Frob}_q) \in \widetilde{Y}_n \) for \(q \in S_{\rho,n} \). Then applying the Cebotarev density theorem we conclude that

\[
c_{\rho,n} \leq \frac{|\widetilde{Y}_n|}{|\text{im}(\rho'_n)|},
\]

and hence \(c_{\rho,n} \to 0 \) as \(n \to \infty \). This finishes the proof of Proposition 1 and hence of Theorem 1. \(\blacksquare \)

Remarks. To prove Theorem 1, instead of defining \(S_{\rho,n} \) the way we did, we could have have worked with the smaller subset consisting of primes that are unramified in \(\rho_n \), but ramified in the \(\rho \) of Theorem 1. In the notation of [S1, p. 586], we would then be working with \(Y_n \) rather than \(\widetilde{Y}_n \). By [S1, Section 3, Theorem 8], we obtain a better estimate \(c_{\rho,n} = O(p^{-n}) \). This may be useful to get more precise quantitative versions of Theorem 1. We have defined \(S_{\rho,n} \) the way we have for its use in [K].

An analog of Theorem 1 is valid for function fields of curves over finite fields of characteristic \(\ell \neq p \), and the same proof works. On the other hand, for function fields of characteristic \(p \), Theorem 1 is false, and in this case there are examples of semisimple \(p \)-adic Galois representations ramified at all places. It is easy to construct such examples using the fact that the Galois group in this case has \(p \)-cohomological dimension less...
than or equal to 1 (see [S3, Chapter II.2, Proposition 3]).

References

Khare: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India; shekhar@math.tifr.res.in

Rajan: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India; rajan@math.tifr.res.in