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The Density of Ramified Primes in Semisimple

p-adic Galois Representations

Chandrashekhar Khare and C. S. Rajan

1 Introduction

Let L be a number field. Consider a continuous, semisimple p-adic Galois representation

ρ : GL −→ GLm(K)

of the absolute Galois groupGL of L and with K a finite extension ofQp. In [R] in the case

when n = 2 and L = Q examples of such representations were constructed which were

ramified at infinitely many primes, which had open image, and which had determinant

ε, the p-adic cyclotomic character (see also the last section of [KR]). We say that such

representations are infinitely ramified. One may ask if in these examples of [R] the set

of ramified primes is of small density.

Theorem 1. Let ρ : GL → GLm(K) be a continuous, semisimple representation. Then the

set of primes Sρ that ramify in ρ is of density zero. �

The semisimplicity assumption is crucial as, using Kummer theory (see the ex-

ercise of [S2 , III-12]), one can construct examples of continuous, reducible, indecompos-

able representations ρ : GL → GL2(Qp) that are ramified at all primes. Note that as in

[R] infinitely ramified representations, though notmotivic themselves, arise as limits of

motivic p-adic representations.

After Theorem 1, we know that the set of primes that are unramified in a con-

tinuous, semisimple representation ρ : GL → GLm(K) is of density 1. Hence many of the

results (e.g., the strong multiplicity 1 results of [Ra]), which are available in the classi-
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602 Khare and Rajan

cal case when ρ is assumed to be finitely ramified, extend to this more general situation.

After Theorem 1, it also makes good sense to talk of compatible systems of continuous,

semisimple Galois representations in the sense of [S2] without imposing the condition

that these be finitely ramified. We raise the following question.

Question 1. Given two compatible continuous, semisimple representations ρ : GL →

GLm(Q�) and ρ
′ : GL → GLm(Q� ′) with � �= � ′, is the set of primes at which either ρ or ρ ′

ramifies finite?

2 Proof of theorem

2.1

Let ρ be as inTheorem 1. As ρ is continuous, we can regard ρ as taking values in GLm(O),

where O is the ring of integers of K. We denote the maximal ideal of OK by m, and we

denote by ρn the reduction modmn of ρ.

Wedefine Sρ,n to be the set of primesq of Lwhich satisfy the following conditions:

(1) q is of degree 1 overQ (this assumption is merely for notational convenience;

we denote abusively the prime of Q lying below it by q);

(2) q is unramified in ρ1 and not equal to p;

(3) ρn|Dq is unramified, but there exists a “lift” of ρn|Dq , with Dq the decompo-

sition group at q corresponding to a place above q in Q, to a representation ρ̃q of Dq

to GLm(K) that is ramified at q; by a lift we mean some conjugate of ρ̃q which reduces

modmn to ρn|Dq . Note that by (2) any such lift ρ̃q factors through Gq, the quotient of

Dq which is the Galois group of the maximal tamely ramified extension of Qq.

Let cρ,n be the upper density of the set Sρ,n.

Proposition 1. Given any ε > 0, there is an integer Nε such that cρ,n < ε for n > Nε. �

We claim that the proposition implies Theorem 1. To see this, first observe that

the primes of L which do not lie above primes of Q which split in the extension L/Q

are of density zero. To prove the theorem, it is enough to show that given any ε > 0 the

upper density of the set Sρ of ramified primes for ρ is less than ε. Consider the Nε that

the proposition provides. Further, note that in ρNε only finitely many primes ramify.

From this it readily follows that the upper density of Sρ is less than ε. Hence we have

Theorem 1. Thus it only remains to prove the proposition.

2.2 Tame inertia

Proposition 1 relies on the structure of the Galois group Gq of the maximal tamely
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Infinitely Ramified Galois Representations 603

ramified extension ofQq. This is used to calculate the densities cρ,n for large enough n.

The concept of largeness of n for our purposes is independent of the representation ρ and

the prime q and depends only on K and the dimension of the representation. Roughly, the

idea of the proof of Proposition 1 is that for these large n only semistable (i.e., the image

of inertia is unipotent) lifts intervene in the calculation of the cρ,n, and the conjugacy

classes in the image of ρn of the Frobenius classes associated to the primes in Sρ,n lie in

the O/mn-valued points of an analytically defined subset of im(ρ) of smaller dimension.

We flesh out this idea below.We implicitly use the fact that although one cannot speak of

eigenvalues of an element of GLm(A), for a general ring A, its characteristic polynomial

makes good sense.

The group Gq is topologically generated by two elements σq and τq that satisfy

the relation

σqτqσ
−1
q = τ

q
q (1)

and such that σq induces the Frobenius on residue fields and τq (topologically) generates

the tame inertia subgroup.

2.3 Reduction to the semistable case

Lemma 1. Let θ : Gq → GLm(K) be any continuous representation. Then the roots of the

characteristic polynomial of θ(τq) are roots of unity. Further, the order of these roots of

unity is bounded by a constant depending only on K. �

Proof. Using Krasner’s lemma, we know that there are only finitely many degree m ex-

tensions of K. Let K ′ be the finite extension of K which is the compositum of all the

degreem extensions of K. By extending scalars to K ′, we can assume that θ(τq) is upper

triangular. Let θ1 , . . . , θm be the diagonal entries. Using equation (1), we deduce that

{θ1 , . . . , θm} = {θ
q
1 , . . . , θ

q
m}.

From this it follows that the θi are roots of unity (of order dividing qm! − 1). Hence the

last statement of the lemma follows from the fact that there are only finitely many roots

of unity in K ′. �

Corollary 1. Let θ : Gq → GLm(K) be any continuous representation. Assume that the

characteristic polynomial of θ(τq) is not equal to (x − 1)m. Then there exists an integer

N(m,K) depending only on m and K such that the reduction modulomN(m,K) of any

conjugate of θ into GLm(O) is ramified. �

 at T
ata Institute of F

undam
ental R

esearch on S
eptem

ber 6, 2010 
http://im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org


604 Khare and Rajan

Proof. Choose N(m,K) such that if ζ ∈ K ′∗ is a root of unity satisfying (ζ − 1)m ≡
0 (modmN(m,K) ), then ζ = 1 for K ′ as in the proof of Lemma 1.Then the corollary follows

by considering reductions of characteristic polynomials. �

Corollary 2. In a continuous, semisimple representation of ρ : GL → GLm(K), the set of

primes q for which ρ(τq) is not unipotent is finite. �

Corollary 3. Any continuous, semisimple abelian representation of GL → GLm(K) is

finitely ramified. �

2.4 The GL2 case

At this point, for the sake of exposition, we briefly indicate the proof of Theorem 1 when

m = 2 and ρ(GL) is open in GL2(K) with determinant ε the p-adic cyclotomic character.

(Note that in the case when the Lie algebra of ρ(GL) is abelian the ramification set is

finite by Corollary 3.)

Consider Sρ,n forn > N(2, K), and let q ∈ Sρ,n. Let ρ̃q be any lift of ρn|Dq to GL2(K)

which is ramified at q. By the above considerations, it follows that ρ̃q(τq) is unipotent,

which we can assume to be upper triangular. Since ρ̃q(σq) normalises ρ̃q(τq), we can

assume that

• ρ̃q(τq) is of the form (
1 ∗
0 1
) and ρ̃q(τq) is nontrivial,

• ρ̃q(σq) is of the form (
α ∗
0 β ).

Observe that α �= β because of relation (1). Thus we can further assume by

conjugating by an element of the form ( 1 10 y ) ∈ GL2(K) that ρ̃q(σq) is of the form (
α 0
0 β ).

Then we see from equation (1) that αβ−1 = q.

Consider the invariant functions tr and det defined on the space of conjugacy

classes of GL2(O) or GL2(O/mn) given by the trace and determinant functions. We see

from our work that primes q ∈ Sρ,n for n > N(2, K) are such that the conjugacy classes

ρn(Frobq) satisfy the relation

tr2 = (1+ det)2 .

From this we conclude, using the fact that the image of ρ is open in GL2(K), Cebotarev

density theorem, and the second paragraph of [S1, p. 586], that cρ,n → 0 as n → ∞.

Proposition 1 follows in this case, and the proof of Theorem 1 is complete in the special

case of open image in GL2(K) with determinant ε. �

2.5 The general case

We reduce the general situation to the case when im(ρ) is a semisimple p-adic Lie group
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Infinitely Ramified Galois Representations 605

contained in GLM(Qp) for someM. First, byWeil restriction of scalars, we may assume

that K = Qp (with possibly a differentm). Let G be the Zariski closure of the image of ρ.

Since ρ is semisimple, G is reductive; let Z be the centre of the connected component of

G. Let ρs : GL → (G/Z)(Qp) be the corresponding representation. Because of Corollary 2,

we see that the ramification set of ρ and ρs differs by a finite set, and thus we can work

with ρs. Now embed G/Z into GLM /Qp for some M. Thus we have reduced to the case

when im(ρ) is a semisimple p-adic Lie group contained in GLM(Qp) for someM.

We look at Sρ,n for n > N(M,Qp), and we let q ∈ Sρ,n. Let ρ̃q be any lift of ρn|Dq

to GLM(K)which is ramified at q. By Corollary 1,we can assume that ρ̃q(τq) is unipotent

(and nontrivial), which we can further assume to be upper triangular.

Consider the canonical filtration of ρ̃q(τq) acting on the vector space QMp , with

the dimension of the corresponding graded components m1 , . . . ,mi. By conjugating by

an element in the Levi, over a finite extension of Qp, of the corresponding parabolic

subgroup defined by ρ̃q(τq) (of the form GLm1× · · · ×GLmi), we can assume that ρ̃q(Gq)

is upper triangular.

Lemma 2. If fq(x) is the characteristic polynomial of ρ̃q(σq), then fq(x) and fq(qx) have

a common root. �

Proof. Let U be the subgroup of unipotent upper triangular matrices of SLM(Qp), and

let

U = U0 ⊃ U1 ⊃ · · · ⊃ 1

be the descending central filtration. Let i be the smallest integer such that ρ̃q(τq) /∈ Ui+1 .
By looking at the conjugation action of ρ̃q(σq) onUi/Ui+1 andusing relation (1), it follows

that there are two eigenvalues αq, βq of ρ̃q(σq) such that αqβq
−1 = q. Hence we have

the lemma. �

Consider ρ ′ = ρ ⊕ ε : GL → GLM(Qp) × GL1(Qp). Let G
′ = G × GL1 . Choose

an integral model for ρ ′, that is, ρ ′(GL) ⊂ GLM(Zp) × GL1(Zp), induced by the chosen

integral model of ρ, and denote by ρ ′
n its reduction modmn. We normalise the isomor-

phism of class field theory so that a uniformiser is sent to the arithmetic Frobenius. (So

ε(Frobq) = q.)

Let

(A,b) ∈ GLM(Qp)× GL1(Qp),

and let f(x) be the characteristic polynomial ofA. Let F be the invariant polynomial func-

tion on GLM×GL1 with Zp-coefficients defined by the resultant of the two polynomials
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606 Khare and Rajan

f(x) and f(bx).

By choosing b different from the ratios of eigenvalues of an element of G, we

deduce that no connected component of G ′ is contained inside the variety F = 0. Thus

we see that {F = 0} ∩G ′ is a subvariety of smaller dimension than the dimension of G ′.

Lemma 3. The image ρ ′(GL) is an open subgroup of G ′(Qp) = G(Qp)× GL1(Qp). �

Proof. Since im(ρ) is a semisimple p-adic group, we deduce from Chevalley’s theorem

(see [Bo , Corollary 7.9]) that im(ρ) is open in G(Qp). From this we further deduce that

the commutator subgroup of im(ρ) is of finite index in im(ρ). Thus the intersection of

the fixed fields of the kernel of ρ and ε is a finite extension ofQ. Certainly im(ε) is open

in Q∗
p, and hence the lemma follows. �

From the openness of im(ρ ′), we see that

lim
n→∞

|im(ρ ′
n)|

pnd

is a nonzero positive constant, where d is the dimension of G ′.

On the other hand, using the notation and results of [S1 , Section 3], if we denote

by Ỹn the elements x ∈ im(ρ ′
n) that satisfy F(x) ≡ 0 (modpn), then from the second

paragraph of [S1, p. 586] it follows that |Ỹn| = O(pn(d−δ) ), where δ is a positive constant.

By Lemma 2, we see that ρ ′
n(Frobq) ∈ Ỹn for q ∈ Sρ,n. Then applying the Cebotarev

density theorem we conclude that

cρ,n ≤ |Ỹn|

|im(ρ ′
n)|

,

and hence cρ,n → 0 as n → ∞. This finishes the proof of Proposition 1 and hence of

Theorem 1. �

Remarks. To prove Theorem 1, instead of defining Sρ,n the way we did, we could have

have worked with the smaller subset consisting of primes that are unramified in ρn,

but ramified in the ρ of Theorem 1. In the notation of [S1, p. 586], we would then be

working with Yn rather than Ỹn. By [S1, Section 3,Theorem 8],we obtain a better estimate

cρ,n = O(p
−n).Thismay be useful to getmore precise quantitative versions ofTheorem 1.

We have defined Sρ,n the way we have for its use in [K].

An analog of Theorem 1 is valid for function fields of curves over finite fields of

characteristic � �= p, and the same proof works. On the other hand, for function fields of

characteristic p,Theorem 1 is false, and in this case there are examples of semisimple p-

adic Galois representations ramified at all places. It is easy to construct such examples

using the fact that the Galois group in this case has p-cohomological dimension less
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Infinitely Ramified Galois Representations 607

than or equal to 1 (see [S3, Chapter II.2, Proposition 3]).
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