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The Density of Ramified Primes in Semisimple
p-adic Galois Representations
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1 Introduction

Let L be a number field. Consider a continuous, semisimple p-adic Galois representation
p:GL — GL(K)

of the absolute Galois group G of L and with K a finite extension of Q,,. In [R] in the case
when n = 2 and L = Q examples of such representations were constructed which were
ramified at infinitely many primes, which had open image, and which had determinant
¢, the p-adic cyclotomic character (see also the last section of [KR]). We say that such
representations are infinitely ramified. One may ask if in these examples of [R] the set

of ramified primes is of small density.

Theorem 1. Let p : Gt — GL,(K) be a continuous, semisimple representation. Then the

set of primes S, that ramify in p is of density zero. O

The semisimplicity assumption is crucial as, using Kummer theory (see the ex-
ercise of [S2, III-12]), one can construct examples of continuous, reducible, indecompos-
able representations p : Gi — GL2(Q,,) that are ramified at all primes. Note that as in
[R] infinitely ramified representations, though not motivic themselves, arise as limits of
motivic p-adic representations.

After Theorem 1, we know that the set of primes that are unramified in a con-
tinuous, semisimple representation p : Gi — GL,(K) is of density 1. Hence many of the

results (e.g., the strong multiplicity 1 results of [Ra]), which are available in the classi-
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cal case when p is assumed to be finitely ramified, extend to this more general situation.
After Theorem 1, it also makes good sense to talk of compatible systems of continuous,
semisimple Galois representations in the sense of [S2] without imposing the condition

that these be finitely ramified. We raise the following question.

Question 1. Given two compatible continuous, semisimple representations p : Gy —
GLn(Qg) and p’ : GL — GL, (Q,/) with £ # {’| is the set of primes at which either p or p’
ramifies finite?

2 Proof of theorem
2.1

Let p be as in Theorem 1. As p is continuous, we can regard p as taking values in GL, (0),
where O is the ring of integers of K. We denote the maximal ideal of Ox by m, and we
denote by p;, the reduction mod m™ of p.

We define S, » to be the set of primes q of L which satisfy the following conditions:

(1) g is of degree 1 over Q (this assumption is merely for notational convenience;
we denote abusively the prime of Q lying below it by q);

(2) q is unramified in p; and not equal to p;

(3) pnlp, is unramified, but there exists a “lift” of p,|p,, with D, the decompo-
sition group at q corresponding to a place above q in Q, to a representation pq of Dy
to GL, (K) that is ramified at g; by a lift we mean some conjugate of pq which reduces
modm™ to p,|p,. Note that by (2) any such lift p4 factors through G4, the quotient of
D4 which is the Galois group of the maximal tamely ramified extension of Q4.

Let ¢, n be the upper density of the set S, ».
Proposition 1. Given any ¢ > 0, there is an integer N, such thatc, » < e forn > N,. O

We claim that the proposition implies Theorem 1. To see this, first observe that
the primes of L which do not lie above primes of Q which split in the extension L/Q
are of density zero. To prove the theorem, it is enough to show that given any ¢ > 0 the
upper density of the set S, of ramified primes for p is less than ¢. Consider the N, that
the proposition provides. Further, note that in pn, only finitely many primes ramify.
From this it readily follows that the upper density of S, is less than ¢. Hence we have

Theorem 1. Thus it only remains to prove the proposition.

2.2 Tame inertia

Proposition 1 relies on the structure of the Galois group G4 of the maximal tamely
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ramified extension of Q. This is used to calculate the densities c, , for large enough n.
The concept of largeness of n for our purposes is independent of the representation p and
the prime q and depends only on K and the dimension of the representation. Roughly, the
idea of the proof of Proposition 1 is that for these large n only semistable (i.e., the image
of inertia is unipotent) lifts intervene in the calculation of the c, ., and the conjugacy
classes in the image of p,, of the Frobenius classes associated to the primes in S, ,, lie in
the O/m™-valued points of an analytically defined subset of im(p) of smaller dimension.
We flesh out this idea below. We implicitly use the fact that although one cannot speak of
eigenvalues of an element of GL,,(A), for a general ring A, its characteristic polynomial
makes good sense.

The group G is topologically generated by two elements o, and 1,4 that satisfy
the relation

0qTq0, =14 (1)

and such that o4 induces the Frobenius on residue fields and 74 (topologically) generates

the tame inertia subgroup.

2.3 Reduction to the semistable case

Lemma 1. Let 6 : G4 — GL;,,(K) be any continuous representation. Then the roots of the
characteristic polynomial of 8(t4) are roots of unity. Further, the order of these roots of

unity is bounded by a constant depending only on K. O

Proof. Using Krasner's lemma, we know that there are only finitely many degree m ex-
tensions of K. Let K’ be the finite extension of K which is the compositum of all the
degree m extensions of K. By extending scalars to K’, we can assume that 8(14) is upper

triangular. Let 04, ..., 0., be the diagonal entries. Using equation (1), we deduce that

[01,...,0,m) ={09,...,09).

From this it follows that the 0; are roots of unity (of order dividing g™ — 1). Hence the
last statement of the lemma follows from the fact that there are only finitely many roots

of unity in K’. [ |

Corollary 1. Let 8 : G4 — GL(K) be any continuous representation. Assume that the
characteristic polynomial of 8(t,) is not equal to (x — 1)™. Then there exists an integer
N(m,K) depending only on m and K such that the reduction modulo mN(™X) of any

conjugate of 0 into GL.,(0O) is ramified. O
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Proof. Choose N(m,K) such that if ¢ € K'* is a root of unity satisfying (¢ — 1)™ =
0 (mod mN(™K)) ‘then ¢ = 1 for K’ as in the proof of Lemma 1. Then the corollary follows

by considering reductions of characteristic polynomials. |

Corollary 2. In a continuous, semisimple representation of p : G — GL,,(K), the set of

primes q for which p(t4) is not unipotent is finite. O

Corollary 3. Any continuous, semisimple abelian representation of Gi — GL,(K) is
finitely ramified. 0

2.4 The GL, case

At this point, for the sake of exposition, we briefly indicate the proof of Theorem 1 when
m = 2 and p(Gr) is open in GL,(K) with determinant ¢ the p-adic cyclotomic character.
(Note that in the case when the Lie algebra of p(Gr) is abelian the ramification set is
finite by Corollary 3.)

Consider S, » forn > N(2,K),andletq € S;, ».Let pq be any lift of p,,|p, to GL2(K)
which is ramified at q. By the above considerations, it follows that pq(t4) is unipotent,
which we can assume to be upper triangular. Since pq(04) normalises pq(t4), we can
assume that

e 0q(Tq) is of the form (] }) and pq(t4) is nontrivial,

e pq(0q) is of the form (o E)

Observe that « # B because of relation (1). Thus we can further assume by
conjugating by an element of the form ((1) 13) € GL;(K) that pq(0q) is of the form (g‘g).
Then we see from equation (1) that af~! = q.

Consider the invariant functions tr and det defined on the space of conjugacy
classes of GL;(0) or GL,(O/m™) given by the trace and determinant functions. We see
from our work that primes q € S, » for n > N(2,K) are such that the conjugacy classes

pn (Frobg) satisfy the relation
tr? = (1 4 det)®.

From this we conclude, using the fact that the image of p is open in GL;(K), Cebotarev
density theorem, and the second paragraph of [S1, p. 586], that c,, — 0 as n — oo.
Proposition 1 follows in this case, and the proof of Theorem 1 is complete in the special

case of open image in GL,(K) with determinant «. |

2.5 The general case

We reduce the general situation to the case when im(p) is a semisimple p-adic Lie group
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contained in GLm(Q,,) for some M. First, by Weil restriction of scalars, we may assume
that K = Q,, (with possibly a different m). Let G be the Zariski closure of the image of p.
Since p is semisimple, G is reductive; let Z be the centre of the connected component of
G.Letps : GL — (G/Z)(Q, ) be the corresponding representation. Because of Corollary 2,
we see that the ramification set of p and p; differs by a finite set, and thus we can work
with ps. Now embed G/Z into GLm /Q,, for some M. Thus we have reduced to the case
when im(p) is a semisimple p-adic Lie group contained in GLm (Q,,) for some M.

We look at S, ,, forn > N(M, Q,,), and we let q € S, . Let pq be any lift of p,|p,
to GLm (K) which is ramified at q. By Corollary 1, we can assume that pq(T4) is unipotent
(and nontrivial), which we can further assume to be upper triangular.

Consider the canonical filtration of p,(74) acting on the vector space QPM, with
the dimension of the corresponding graded components my,..., m;. By conjugating by
an element in the Levi, over a finite extension of Q,, of the corresponding parabolic
subgroup defined by pq(74) (of the form GL,, x - - - X GLyy,, ), we can assume that pq(Gq)
is upper triangular.

Lemma 2. If f4(x) is the characteristic polynomial of pq(04), then fq(x) and f4(qgx) have

a common root. O

Proof. Let U be the subgroup of unipotent upper triangular matrices of SLm(Q,,), and
let

u=uo-u'os---o1

be the descending central filtration. Let i be the smallest integer such that pq(tq) ¢ UM .
By looking at the conjugation action of p4 (o) on U'/U'"! and using relation (1),it follows
that there are two eigenvalues aq, Bq of pq(0q) such that aqBq ' = q. Hence we have

the lemma. m

Consider p/ = p® ¢ : G — GLM(QP) X GLI(Qp). Let G’ = G x GL;. Choose
an integral model for p’, that is, p’(Gr) € GLm(Z,) x GL1(Z,), induced by the chosen
integral model of p, and denote by p/, its reduction mod m™. We normalise the isomor-
phism of class field theory so that a uniformiser is sent to the arithmetic Frobenius. (So
¢(Frobq) = q.)

Let

(A,b) € GLm(Q,) x GL1(Q,),

and let f(x) be the characteristic polynomial of A. Let F be the invariant polynomial func-

tion on GLm x GL; with Z,-coefficients defined by the resultant of the two polynomials
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f(x) and f(bx).
By choosing b different from the ratios of eigenvalues of an element of G, we
deduce that no connected component of G’ is contained inside the variety F = 0. Thus

we see that {F = 0} N G’ is a subvariety of smaller dimension than the dimension of G’.
Lemma 3. The image p’(Gy) is an open subgroup of G'(Q,,) = G(Q,,) x GL;1(Q,)- O

Proof. Since im(p) is a semisimple p-adic group, we deduce from Chevalley’s theorem
(see [Bo, Gorollary 7.9]) that im(p) is open in G(Q,, ). From this we further deduce that
the commutator subgroup of im(p) is of finite index in im(p). Thus the intersection of
the fixed fields of the kernel of p and ¢ is a finite extension of Q. Certainly im(¢) is open

in Q;, and hence the lemma follows. [ |
From the openness of im(p’), we see that

lim ln;&pdﬁ)l
is a nonzero positive constant, where d is the dimension of G’.

On the other hand, using the notation and results of [S1, Section 3], if we denote
by Y, the elements x € im(p/) that satisfy F(x) = 0 (modp™), then from the second
paragraph of [S1, p. 586] it follows that Yol = O(p™d—2)) where & is a positive constant.
By Lemma 2, we see that p/ (Frob,) € Y, for q € So.n. Then applying the Cebotarev

density theorem we conclude that

[Ynl
Con < —
P [im(py)|
and hence ¢, » — 0 as n — oo. This finishes the proof of Proposition 1 and hence of
Theorem 1. |

Remarks. To prove Theorem 1, instead of defining S, , the way we did, we could have
have worked with the smaller subset consisting of primes that are unramified in p,,
but ramified in the p of Theorem 1. In the notation of [S1, p. 586], we would then be
working with Y,, rather than \E By [S1, Section 3, Theorem 8], we obtain a better estimate
cpn = O(p~ ™). This may be useful to get more precise quantitative versions of Theorem 1.
We have defined S, ,, the way we have for its use in [K].

An analog of Theorem 1 is valid for function fields of curves over finite fields of
characteristic { # p, and the same proof works. On the other hand, for function fields of
characteristic p, Theorem 1 is false, and in this case there are examples of semisimple p-
adic Galois representations ramified at all places. It is easy to construct such examples

using the fact that the Galois group in this case has p-cohomological dimension less
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than or equal to 1 (see [S3, Chapter I1.2, Proposition 3]).
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