SU$_2 \otimes$ U$_1$ gauge model of electroweak interaction with $(V+A)$ strangeness-changing charged current

L K PANDIT
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

MS received 9 June 1982

Abstract. We construct a model of renormalizable electroweak interaction with $(V+A)$ strangeness-changing charged current in the framework of the minimal spontaneously broken SU$_3 \otimes$ U$_1$ gauge theory, taking our motivation from the recently reported measurement of the electron asymmetry in polarized Σ^--hyperon β-decay by Keller and co-workers. The model avoids strangeness-changing but admits charm-changing pieces in the neutral current. Several phenomenological consequences of the model are discussed together with a comparison with the standard model of electroweak interaction.

Keywords. Electroweak interaction; gauge theory; strangeness-changing charged current; charm-changing neutral current; quarks; leptons; intermediate bosons.

1. Introduction

A measurement of the electron asymmetry in the β-decay of polarized Σ^--hyperons has been reported recently by Keller et al (1982). This measurement has introduced a controversial issue of crucial importance for the theory of weak interactions, since according to it the strangeness-changing charged current should have a $(V+A)$ structure contrary to the results of earlier experiments on Λ decay in conformity with a $(V-A)$ structure (cf. Particle Data Group 1980). The $(V-A)$ structure for the charged strangeness-preserving hadronic, as well as for the charged electronic and muonic currents has been well established over the years* and so this structure has been carried over into the standard model of electroweak interaction arising in a renormalizable spontaneously broken SU$_2 \otimes$ U$_1$ gauge theory (Weinberg 1967; Salam 1968; Glashow et al 1970; Kobayashi and Maskawa 1973). While the controversial issue raised by the latest experiment referred to above can only be settled by further experimentation, a question that naturally comes up is whether it is possible to construct a model of electroweak interaction, within the standard framework of SU$_2 \otimes$ U$_1$ gauge theory, in such a way that the strangeness-changing piece of the charged current turns out to have a $(V+A)$ structure while agreement with established experiments is maintained in all the other respects.

The present paper describes such a model**. Two important additional features of the model are: (i) to meet the requirement of anomaly cancellations, essential for

*For a review, see the monograph by Marshak et al (1969). We shall follow this monograph for notations regarding the space-time metric, Dirac matrices, etc.

**A brief preliminary account was given in Pandit (1982).
renormalizability, we are forced to introduce at least one more pair of leptons and
of quarks (this could have been avoided only if the tauonic charged current had
also turned out experimentally to be of \((V + A)\) structure; (ii) while there are no
strangeness-changing pieces in the neutral current, there do appear charm-changing*
pieces that are of considerable experimental interest.

In the next section we describe our modified scheme for electroweak interaction.
Some features of the effective charged-current weak interactions implied by the
model are discussed in § 3. The same is done for the neutral current phenomena in
§ 4. Comparisons with the results of the standard model are made in appropriate
places. It will be seen that there are several features of experimental interest in the
model presented here.

2. The model

We follow the, by now quite well known, procedure** of setting up the \(SU_2 \otimes U_1\)
geasure spontaneously broken by the introduction of one complex doublet of
scalar fields. Conventional notation will be used, and we shall avoid repeating
well-documented details.

We denote by \(Y\) the \(U_1\) 'charge' and by \(T_3\) the diagonal generator of \(SU_2\). The
electric charge (in units of protonic charge) will be taken to be

\[
Q = T_3 + Y. \tag{1}
\]

Using the notation \(u_{L,R} = \frac{1}{2} (1 \pm \gamma_5) u\), etc., we make (for reasons explained below)
the following assignments of the quarks and leptons to \(SU_2 \otimes U_1\) representations:

Quark-doublets:

\[
\begin{bmatrix}
 u'_L \\
 d_L \\
 c'_R \\
 s_R \\
 t'_R \\
 g'_R
\end{bmatrix}, \quad \begin{bmatrix}
 i'_L \\
 b_L \\
 h_L
\end{bmatrix}, \quad \text{with } Y = 1/6; \tag{2a}
\]

Lepton-doublelets:

\[
\begin{bmatrix}
 \nu_{eL} \\
 \nu_{\mu L} \\
 \nu_{\tau L} \\
 \nu_{\sigma L}
\end{bmatrix}, \quad \begin{bmatrix}
 \nu_{eR} \\
 \nu_{\mu R} \\
 \nu_{\tau R} \\
 \nu_{\sigma R}
\end{bmatrix}, \quad \text{with } Y = -1/2, \tag{2b}
\]

the singlets:

\[
\begin{bmatrix}
 u'_R \\
 c'_L \\
 t'_R \\
 s_L \\
 b_R \\
 h_R
\end{bmatrix}, \quad \begin{bmatrix}
 \nu_{eR} \\
 \nu_{\mu R} \\
 \nu_{\tau R} \\
 \nu_{\sigma L}
\end{bmatrix}, \quad \text{with } Y = \pm 2/3; \tag{3a}
\]

\[
\begin{bmatrix}
 d_R \\
 s_L \\
 b_R \\
 h_R
\end{bmatrix}, \quad \begin{bmatrix}
 \nu_{eR} \\
 \nu_{\mu R} \\
 \nu_{\tau R} \\
 \nu_{\sigma L}
\end{bmatrix}, \quad \text{with } Y = -1/3; \tag{3b}
\]

\[
\begin{bmatrix}
 \nu_{eR} \\
 \nu_{\mu R} \\
 \nu_{\tau R} \\
 \nu_{\sigma L}
\end{bmatrix}, \quad \text{with } Y = 0; \tag{3c}
\]

\[
\begin{bmatrix}
 e_R \\
 \mu_R \\
 \tau_R \\
 \sigma_L
\end{bmatrix}, \quad \text{with } Y = -1. \tag{3d}
\]

*Charm-changing neutral current in the context of the WP-model have been considered in the

**An excellent account may be found in Tuls Dass (1973).
We have introduced additional quarks g and h ($Q = 2/3, -1/3$) and leptons ν_{σ}, \(\sigma (Q = 0, -1) \) to achieve anomaly cancellations as explained below. By u', c', t' and g' we denote a general Kobayashi-Maskawa type mixture of the $Q = 2/3$ quarks u, c, t and g. For a first uncluttered survey of the dominant features of the model we shall, however, use here the following Cabibbo-angle mixture:

\[
\begin{align*}
u' &\simeq (\cos \theta) u + (\sin \theta)c, \\
c' &\simeq (- \sin \theta)u + (\cos \theta)c, \\
t' &\simeq t, g' \simeq g
\end{align*}
\]

(4)

It will be understood, of course, that each quark comes in three colours which will, however, not be indicated explicitly in our expressions.

We have been led to make the assignments displayed in (2) and (3) for the following reasons: (i) we must put d_L and s_R in the respective doublets (equation (2a)), because we must have the well-established $(V - A)$ structure for the strangeness-preserving piece of the charged current and we wish to have $(V + A)$ structure for the strangeness-changing piece (in view of the result of Keller et al (1982)). (ii) We must also make sure that we do not end up having a strangeness-changing piece in the neutral current. To ensure this we must not allow mixing of the d and s quark fields (the GIM trick, Glashow et al 1970, will not work because of the opposite chiralities of the above two doublets). (iii) So, instead of mixing the d and s, as in the standard model, we must now appropriately mix the u and c (equation (4)) in order to introduce the Cabibbo angle effects in the hadronic pieces of the charged current. (iv) Since the $(V - A)$ structures of the charged electronic and muonic currents are well established (cf: Marshak et al 1969) the electronic and muonic doublets must be left-handed (L) as in (2b). (v) Now, however, we must take care of anomaly cancellations*, essential for renormalizability. The anomaly from the (u'_L, d_L) doublet is cancelled by that arising from the (ν_{eL}, e_L) doublet; but, since the doublets (c'_R, s_R) and $(\nu_{\mu L}, \mu_L)$ have opposite chiralities, they cannot mutually cancel their respective anomalies. For cancellation we must have another right-handed (R) doublet of leptons and a left-handed (L) doublet of quarks. However, we cannot employ the leptons ν_τ and τ for this purpose since recent experiments** indicate that the charged tauonic current is most likely $(V - A)$. Hence we are forced to introduce a new pair of leptons (ν_σ, σ) to form the desired R-doublet, and also a new pair of quarks (g, h) to go along with these. The assignments of (2) and (3) are thus mandatory for constructing a model of renormalisable electroweak interaction that keeps within the standard $SU_2 \otimes U_1$ gauge framework and realises our objective.

Following the pattern of the standard theory we obtain the electroweak interaction expressed in conventional notation as:

\[
- L_{\text{int}} = e \left(A_\mu \frac{e^\text{em}}{\mu} + \frac{2}{\sin (2\theta_W)} Z_\mu \left(J_\mu^3 - \sin^2 \theta_W J^\text{em}_\mu \right) + \frac{1}{\sqrt{2} \sin \theta_W} \left(W^+_\mu J^{\mu+\tau}_\mu + \text{h.c.} \right) \right).
\]

(5)

*For a general discussion on the treatment of anomalies, see Georgi and Glashow (1972).
**For a review and references see Perl (1980).
Here J_{μ}^{em} is the current of the electric charge Q and J_{μ}^{a}, $a = 1, 2, 3$, is the current of the generator T_a of SU$_3$. As in the standard model, we have

$$m_W \simeq 37.3 \text{ GeV}/\sin \theta_W, \ m_Z = m_W/\cos \theta_W.$$ \hspace{1cm} (6)

Assuming (4) as expressing the dominant approximation to the possible mixings, and employing the notation L_{ρ} for $\gamma_{\rho} (1 + \gamma_5)$ and R_{ρ} for $\gamma_{\rho} (1 - \gamma_5)$, we have for the fermionic parts of the various currents:

$$(-i) J_{\rho}^{em} = - [\bar{e} \gamma_{\rho} e + \bar{\mu} \gamma_{\rho} \mu + \bar{\tau} \gamma_{\rho} \tau + \bar{\sigma} \gamma_{\rho} \sigma]$$
$$+ \frac{1}{3} [\bar{u} \gamma_{\rho} u + \bar{c} \gamma_{\rho} c + \bar{t} \gamma_{\rho} t + \bar{g} \gamma_{\rho} g]$$
$$- \frac{1}{6} [\bar{d} \gamma_{\rho} d + \bar{s} \gamma_{\rho} s + \bar{b} \gamma_{\rho} b + \bar{h} \gamma_{\rho} h],$$ \hspace{1cm} (7)

$$(-2i) J_{\rho}^{3+12} \simeq \bar{\nu}_{e} L_{\rho} e + \bar{\nu}_{\mu} L_{\rho} \mu + \bar{\nu}_{\tau} L_{\rho} \tau + \bar{\nu}_{\sigma} R_{\rho} \sigma$$
$$+ \bar{\nu}_{L_{\rho}} b + \bar{\nu}_{\rho} L_{\rho} h + \cos \theta [\bar{u} L_{\rho} d + \bar{c} R_{\rho} s]$$
$$- \sin \theta [\bar{u} R_{\rho} s - \bar{c} L_{\rho} d],$$ \hspace{1cm} (8)

$$(-4i) J_{\rho}^{3} \simeq [\bar{e} L_{\rho} e + \bar{\mu} L_{\rho} \mu + \bar{\tau} L_{\rho} \tau + \bar{\sigma} R_{\rho} \sigma]$$
$$- [\bar{d} L_{\rho} d + \bar{s} R_{\rho} s + \bar{b} L_{\rho} b + \bar{h} L_{\rho} h]$$
$$+ \bar{\nu}_{L_{\rho}} t + \bar{\nu}_{\rho} L_{\rho} g + \cos^2 \theta [\bar{u} L_{\rho} u + \bar{c} R_{\rho} c]$$
$$+ \sin^2 \theta [\bar{u} R_{\rho} u + \bar{c} L_{\rho} c] + \sin 2\theta [\bar{u} \gamma_{\rho} \gamma_5 e + \bar{c} \gamma_{\rho} \gamma_5 s].$$ \hspace{1cm} (9)

Note that the neutral current has no strangeness-changing piece, but does have a substantial pure axial-vector charm-changing piece (the last term of (9)) proportional to $\sin 2\theta$.

In the next two sections we shall discuss some of the main immediate consequences of our model of relevance to present day experiments.

3. Effective charged-current weak interactions

3.1 μ-decay

For purposes of normalisation we put down the effective four-fermion interaction responsible for muon decay which is, as it must be, the same as in the standard theory:

$$L_{\text{eff}} = - \frac{G}{\sqrt{2}} (\bar{\nu}_{\mu} \gamma_{\rho} (1 + \gamma_5) \mu) (\bar{e} \gamma_{\rho} (1 + \gamma_5) \nu_{\mu}) + \text{h.c.}$$ \hspace{1cm} (10)
The Fermi coupling constant G is given by

$$
G = \frac{e^2}{\sqrt{2} \cdot 8m_W^2 \sin^2 \theta_W}.
$$

3.2 τ-decays

The τ-decays will continue to be described as in the standard model.

3.3 Semi-leptonic decays of ordinary hadrons

Using the old SU$_3$ notation of Cabibbo theory (cf. Marshak et al. 1969) the semi-leptonic decays of the old strange and non-strange hadrons will be described by the effective interaction

$$
L_{\text{eff}} = i \frac{G}{\sqrt{2}} \left[\bar{\nu}_\mu L_\mu \nu_\mu + \bar{e} L_\mu e_\mu \right] \left[\cos \theta (V^{1+12}_\rho + A^{1+12}_\rho) + \sin \theta (-V^{4+15}_\rho + A^{4+15}_\rho) \right] + \text{h.c.}
$$

3.4 Leptonic processes involving charmed hadrons

The effective interaction operative is

$$
L_{\text{eff}} = -\frac{G}{\sqrt{2}} \left[\bar{\nu}_\mu L_\mu \nu_\mu + (\bar{e} L_\mu e) + \ldots \right] \\
[\cos \theta \bar{s} R_\rho c + (\sin \theta) \bar{d} L_\rho c] + \text{h. c.}
$$
The only differences from the standard model come in the change of sign of the \(\sin \theta \) term and in the \(\cos \theta \) term having \((V + A)\) instead of the usual \((V - A)\) structure for the hadronic current. Measurements of semi-leptonic decay rates of charmed hadrons are not sensitive to these changes and so for this purpose our model is not distinguished from the standard model.

Where differences, although rather subtle, do occur from the standard model is in the phenomena of dimuon* production (signalling charm production) in the collisions of high energy \(\nu_\mu \) and \(\bar{\nu}_\mu \) with nucleons. In this connection it should be noted that in the \(\nu_\mu \) collision the production is off the valence \(d \)-quark with the standard factor \(\sin \theta \) and the standard \((V - A)\) interaction, whereas it is off the sea \(s \)-quark with the standard factor \(\cos \theta \) but modified \((V + A)\) interaction. In \(\bar{\nu}_\mu \) collision the production is off sea quarks \(\bar{d} \) and \(\bar{s} \)—the dominant \(\cos \theta \) factor occurring for \(\bar{s} \) quark with the modified \((V + A)\) interaction. It will thus be very interesting to look for these subtle differences in experimental studies through the so called \(\gamma \)-distribution studies, specially in \(\bar{\nu}_\mu \) collisions.

3.5 Nonleptonic decays

The effective interactions for \(|\Delta S| = 1\) parity-conserving (pc) and parity-violating (pv) processes are, respectively,

\[
L_{\text{eff}}\left(|\Delta S| = 1, \text{pc}\right) = \frac{G}{\sqrt{2}} \sin \theta \cos \theta \left(\frac{1}{2}\right) \left[\{u \gamma_\mu d, \bar{s} \gamma_\mu u\} - \{\bar{u} \gamma_\mu \gamma_5 d, \bar{s} \gamma_\mu \gamma_5 u\}\right] + \text{h.c.,} \tag{14}
\]

\[
L_{\text{eff}}\left(|\Delta S| = 1, \text{pv}\right) = \frac{G}{\sqrt{2}} \sin \theta \cos \theta \left(\frac{1}{2}\right) \left\{\bar{u} \gamma_\mu \gamma_5 d, \bar{s} \gamma_\mu \gamma_5 u\right\} - \{\bar{u} \gamma_\mu d, \bar{s} \gamma_\mu \gamma_5 u\} + \text{h.c.,} \tag{15}
\]

where we have used the notation \(\{A, B\} = AB + BA\). The expressions (14) and (15) differ from those in the standard model in the crucial \((-\) sign present in their right hand sides. While the isospin properties are not changed, the \(SU_3\) properties in the limit of exact \(SU_3\) symmetry are now crucially altered as a result. Also, as a result, the short-distance QCD enhancement and suppression behaviours of the different effective operators will get modified (see in this connection, e. g. the review by Lee (1975)). Nonleptonic decays are well-known for their having remained largely intractable on account of the complications arising due to the hadronic strong interactions. We propose to go into all related questions elsewhere.

Interesting modifications will appear also in the description of the nonleptonic decays of charmed hadrons. The dominant interaction proportional to \(\cos^2 \theta\) again arises from the current \(\times\) current interaction using charged currents (with the same strangeness and charm selection rules as in the standard model), whereas the subdominant part proportional to \(\cos \theta \sin \theta\) will now receive a contribution also from

*For a recent review see Fisk (1981).
the charm-changing piece in the neutral current. We relegate a discussion of charmed hadron decays also to a separate occasion since strong interaction complications are present here too and will require detailed problematic considerations typical of nonleptonic processes.

4. Effective neutral-current weak interactions

We now discuss some typical weak neutral current effects. For a review of experiments and references see, e.g. Winter (1979).

4.1 Neutrino-electron scattering

\[
L_{\text{eff}} = - \frac{G_F}{\sqrt{2}} \left[\gamma_\mu \gamma_\lambda \left(1 + \gamma_5 \right) \nu_\mu \cdot \bar{e} \gamma_\lambda \left(C_V + C_A \gamma_5 \right) e \right] \\
+ \bar{\nu}_e \gamma_\lambda \left(1 + \gamma_5 \right) \nu_e \cdot \bar{e} \gamma_\lambda \left(C_V' + C_A' \gamma_5 \right) e, \tag{16}
\]

where

\[
C_V = - \frac{1}{2} + 2 \sin^2 \theta_W, \quad C_A = - \frac{1}{2}, \quad C_V' = C_V + 1, \quad C_A' = C_A + 1. \tag{17}
\]

The effective interaction is the same as in the standard model.

4.2 The process \(\bar{e}e \rightarrow \mu\bar{\mu} \)

From (9) it is clear that for the \(Z^0 \) contribution for this process also our model does not differ from the standard model.

4.3 Parity violation in atomic physics

This arises, as is well-known, from the coupling of the neutral axial-vector current of the electron with the vector parts of the neutral currents of the \(u \) and \(d \) quarks. In these parts our model does not differ from the standard model and so we obtain the same result.

4.4 Asymmetry in deep inelastic polarized \(e \)-deuteron scattering

In the notation of Cahn and Gilman (1978), the asymmetry parameter according to our model is given by

\[
A_{eD} = - \frac{G_F}{2(\sqrt{2})\pi a} \left(\frac{9}{10} \right) \left(1 - \frac{20}{9} \sin^2 \theta_W \right) \\
+ \left(1 - 4 \sin^2 \theta_W \right) \left(1 - \frac{4}{3} \sin^2 \theta \right) \left[1 - \frac{(1 - y)^2}{1 + (1 - y)^2} \right]. \tag{18}
\]

The difference from the standard model appears here through the occurrence of the additional factor \([1 - (4/3) \sin^2 \theta] \) in the second term. For \(\sin \theta \approx 0.2 \), this factor is
\(\approx 0.95 \), so that the difference is hardly distinguishable by the present experiments (Prescott et al 1978, 1979)

4.5 Parameters characterising flavour-preserving neutral current \((\nu_{\mu} - N)\) interactions

Using the currently standard notation, the relevant effective interaction can be written as

\[
L_{\text{eff}} = - \frac{G}{\sqrt{2}} (\bar{\nu}_\mu L_{\alpha} \nu_\mu) [u_L (\bar{u} L_{\alpha} u) + u_R (\bar{u} R_{\alpha} u) + d_L (\bar{d} L_{\alpha} d) + d_R (\bar{d} R_{\alpha} d)],
\]

where

\[
u_L = \frac{1}{2} (1 - \sin^2 \theta) - \frac{3}{2} \sin^2 \theta W, \quad u_R = \frac{1}{2} \sin^2 \theta - \frac{3}{2} \sin^2 \theta W;
\]

\[
d_L = - \frac{1}{2} + \frac{1}{2} \sin^2 \theta W, \quad d_R = \frac{1}{2} \sin^2 \theta W
\]

The expressions for \(d_L\) and \(d_R\) are the same as in the standard model, whereas the expressions for \(u_L\) and \(u_R\) differ by the small correction terms \(- \frac{1}{2} \sin^2 \theta\) and \(\frac{1}{2} \sin^2 \theta\), respectively. So these parameters do not significantly differ from those in the standard model.

4.6. Processes involving charm-changing neutral current

According to (9), there is a pure axial-vector charm-changing piece in the neutral current. This will lead to \(|\Delta C| = 1\) as well as \(|\Delta C| = 2\) current \(\times\) current effective interactions with interesting consequences (totally absent in the standard model). We write the charm-changing neutral current as

\[
g_L \bar{u} \gamma_5 \frac{1}{2} (1 + \gamma_5) c + g_R \bar{u} \gamma_5 \frac{1}{2} (1 - \gamma_5) c + \text{h.c.}
\]

where

\[
g_L = - g_R = \sin \theta \cos \theta.
\]

For normalization purposes it should be noted that this current leads to the \(|\Delta C| = 1\) effective interaction

\[
L_{\text{eff}} (|\Delta C| = 1) = - \frac{G}{\sqrt{2}} \bar{\nu}_\mu \gamma_\lambda (1 + \gamma_\mu) \nu_\mu + \ldots [g_L \bar{u} \gamma_5 \frac{1}{2} (1 + \gamma_5) c
\]

\[
+ g_R \bar{u} \gamma_5 \frac{1}{2} (1 - \gamma_5) c] + \text{h.c.}
\]

Recently a detailed theoretical analysis of the effects of a charm-changing neutral current for arbitrary \(g_L\) and \(g_R\) has been carried out by Buccella and Oliver (1980) and we shall use their results in the following discussion.

Experimental searches for a charm-changing neutral current in neutrino-nucleon
reactions look for the ‘wrong sign’ lepton in the reaction products. In the approximation of the valence quark parton model the relevant quantities are

\[
R = \frac{\sigma(\nu_+ N \rightarrow \nu_+ C)}{\sigma(\nu_+ N \rightarrow \nu_+ X)} = \left(\frac{1}{2}\right) \frac{g^2_R + \frac{1}{3} g^2_L}{4\left(\frac{1}{2} - x + \frac{20}{27} x^2\right)},
\]

(25)

\[
\frac{1}{R} = \frac{\sigma(\bar{\nu}_- N \rightarrow \bar{\nu}_- C)}{\sigma(\bar{\nu}_- N \rightarrow \bar{\nu}_- X)} = \left(\frac{1}{2}\right) \frac{g^2_R + 3g^2_L}{4\left(\frac{1}{2} - x + \frac{20}{9} x^2\right)},
\]

(26)

where \(x\) stands for \(\sin^2 \theta_W\), \(N\) is an ‘isoscalar’ target and \(C(X)\) denote final states with (without) charm. In the expressions given by Buccella and Oliver the factors \((1/2)\) in (25) and (26) are missing. Since the charm-changing interaction involves only the \(u\) quark, whereas the charm-preserving interactions involves both the \(u\) and the \(d\) quarks, and since in an ‘isoscalar’ target the number of valence \(u\) quarks is one-half of the total number of valence \(u\) and \(d\) quarks, the above factors \((1/2)\) are necessary.

(a) Holder et al (1978) obtained a 90% C.L. limit

\[R < 0.026, \]

(27)

which implies that (using \(x \simeq 0.23\))

\[(g^2_L + \frac{1}{3} g^2_R) < 0.064 \]

(28)

For \(\sin \theta \simeq 0.2\), we obtain for our model, equation (23), the value

\[(g^2_L + \frac{1}{3} g^2_R) \approx 0.053, \]

(29)

within the above limit.

(b) Efremenko et al (1979) obtained a 90% C.L. limit

\[\frac{1}{R} < 0.04, \]

(30)

which implies that (using \(x \simeq 0.23\))

\[(g^2_L + 3g^2_R) < 0.124, \]

(31)

whereas in our model

\[(g^2_L + 3g^2_R) \approx 0.16 \]

(32)

in disagreement, however not in a flagrant manner, with the above limit. Confirmations of the above experimental limits at a higher confidence level should thus be looked for.
(c) Experiments of the Columbia-BNL group reported by Baltay (1978) extract another interesting limit:

\[
\frac{\Gamma (c \rightarrow e^+ e^- X)}{\Gamma (c \rightarrow e^+ \nu_e X)} < 0.02, \tag{33}
\]

which again leads in the valence parton model (see Buccella and Oliver 1980) to

\[
g_L^2 + g_R^2 < 0.16, \tag{34}
\]

whereas in our model

\[
g_L^2 + g_R^2 \approx 0.08. \tag{35}
\]

(d) \(|\Delta C| = 2, (D^0 - \bar{D}^0)\) — mixing of sizable amount is expected in our model. A detailed analysis, including QCD corrections that are critical, in the general case has been carried out by Buccella and Oliver (1980). These authors arrive at the conclusion: ‘Strictly speaking, large \(g_L, g_R\) couplings are not excluded. . . . \(D^0 - \bar{D}^0\) mixing cannot exclude large (dominantly axial-vector) couplings.’ In our model the coupling is pure axial-vector.

The considerations presented in §§ 3 and 4 above indicate that the model has several interesting consequences of experimental interest. Severe tests of the model, both for the strangeness-changing charged current as well as for the charm-changing neutral current, are expected from the study of charm production in high energy \(\bar{\nu}_\mu\) reactions.

Acknowledgements

The author expresses his thanks to Drs K V L Sarma, S Banerjee, D P Roy, Probir Roy, R Godbole and A Gurtu for helpful discussions.

References

Baltay C 1978 Proc. 19th Intl. Conf. on high Energy Physics, Tokyo, p. 901
SU$_2 \otimes U_1$ gauge model of weak interaction

Pandit L K 1982 preprint TIFR/TH/82-25
Particle Data Group 1980 *Rev. Mod. Phys.* 52 No. 2
Prescott C Y et al 1978 *Phys. Lett.* B77 347
Prescott C Y et al 1979 *Phys. Lett.* B84 524
Salam A 1968 in *Elementary particle theory* ed. N. Svartholm (Stockholm: Almqvist and Wiksell)
Tulsi Dass 1973 in *Advances in high energy physics* eds S M Roy and Virendra Singh (TIFR, Bombay).