
Genome-wide identification, classification, evolutionary
expansion and expression analyses of homeobox genes
in rice
Mukesh Jain, Akhilesh K. Tyagi and Jitendra P. Khurana

Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, India

The homeobox genes are key regulators of cell fate

and body plan specification at the early stages of

embryogenesis in higher organisms. Homeobox genes

contain a conserved 180 bp long DNA sequence

termed a homeobox, which encodes a 60 amino acid

long DNA-binding domain termed a homeodomain

(HD). The HD consists of three a-helices that form a

helix-turn-helix DNA-binding motif [1,2]. This motif

recognizes and binds to specific DNA sequences to

regulate the expression of target genes. HD-contain-

ing proteins have been identified in diverse organ-

isms, such as humans, Drosophila, nematode and

plants [3–5].

Several homeobox genes have been identified in

plants and catalogued into different groups, based on

the amino acid sequence of HD and the presence of

other conserved motifs [4]. The plant homeobox genes

have been implicated in various developmental pro-

cesses and hormone response pathways [4,6,7]. Con-

vincing evidence is available demonstrating that

homeobox genes are involved in abiotic and biotic

stress responses as well [6,8–12]. The members of class

I KNOTTED1-like homeobox (KNOX) genes are typi-

cally expressed in shoot apical meristem (SAM) and

control the balance between meristematic and determi-

nate growth during plant development [13–16]. Loss-

of-function mutation in one of the class 1 KNOX

genes, SHOOT MERISTEMLESS in Arabidopsis and

KNOTTED1 in maize, results in the development of

embryos lacking SAM [15,17,18]. The WUSCHEL-like
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Homeobox genes play a critical role in regulating various aspects of plant

growth and development. In the present study, we identified a total of 107

homeobox genes in the rice genome and grouped them into ten distinct

subfamilies based upon their domain composition and phylogenetic analy-

sis. A significantly large number of homeobox genes are located in the

duplicated segments of the rice genome, which suggests that the expansion

of homeobox gene family, in large part, might have occurred due to

segmental duplications in rice. Furthermore, microarray analysis was

performed to elucidate the expression profiles of these genes in different

tissues and during various stages of vegetative and reproductive develop-

ment. Several genes with predominant expression during various stages of

panicle and seed development were identified. At least 37 homeobox genes

were found to be differentially expressed significantly (more than two-fold;

P < 0.05) under various abiotic stress conditions. The results of the study

suggest a critical role of homeobox genes in reproductive development and

abiotic stress signaling in rice, and will facilitate the selection of candidate

genes of agronomic importance for functional validation.
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homeobox (WOX) class of genes appears to be essen-

tial for embryonic patterning [19,20]. The homeobox

gene WUSCHEL (WUS) was originally identified as a

central regulator of shoot and floral meristems in Ara-

bidopsis [21]. It has been shown that a WUS-like gene

is involved in root apical meristem formation in rice

[22]. BELL-type HD proteins are involved in pattern

formation and development of flowers, fruits and

tubers [23–27]. The class III HD-leucine zipper (HD-

ZIP) homeobox genes appear to have a role in shoot

meristem formation, vascular development and estab-

lishing and ⁄or maintaining abaxial ⁄ adaxial polarity in

leaves and embryo [28–33]. Zinc finger-HD (ZF-HD)

gene family members play overlapping regulatory roles

in floral development in Arabidopsis [34].

Although several homeobox genes have been iso-

lated from rice and a few of them also have been func-

tionally characterized, a genome-wide analysis has not

been performed so far. In the present study, we identi-

fied 107 homeobox genes in rice, which were classified

into ten subfamilies on the basis of their phylogenetic

relationship and domain composition. Comprehensive

expression analysis shows overlapping and ⁄or specific

expression patterns of these genes in the various rice

tissues ⁄organs and ⁄or developmental stages analyzed.

Furthermore, we show that the expression of a large

number of rice homeobox genes is regulated by various

abiotic stresses.

Results and Discussion

Identification and classification of homeobox

genes in rice

In plants, homeobox genes are represented by a large

multigene family [4,35,36]. In Arabidopsis, approxi-

mately 100 homeobox genes were identified and classi-

fied into several groups based on their domain

composition and phylogenetic relationship [4]. In the

present study, the Hidden Markov Model profile and

keyword searches followed by domain analysis using

SMART and PFam databases resulted in the identifi-

cation of 107 nonredundant potential homeobox pro-

teins in the rice (Oryza sativa subsp. japonica cv

Nipponbare) genome. To examine the evolutionary

relationship among the predicted rice homeobox pro-

teins, a phylogenetic tree was generated from align-

ments of their HD sequences by the Neighbour-joining

method. This analysis resulted in the formation of ten

distinct clades (Fig. 1). Based on the domain composi-

tion and phylogenetic relationship of their encoded

proteins, the rice homeobox genes were divided into

ten subfamilies (Table 1). The subfamily, tigr locus,

domain composition, ORF length, protein length and

chromosomal location of each predicted homeobox

gene are given in the supplementary Table S1. A

blastp search of these 107 homeobox proteins in the

annotated proteins of indica rice (cv 93–11) genome

revealed that most (at least 100) of these proteins are

conserved in both subspecies (data not shown). At

least 72 homeobox proteins predicted from japonica

rice showed ‡ 90% identity over the entire length with

the annotated proteins in indica rice. This number may

increase once a more exhaustive and refined annota-

tion of the indica genome becomes available.

The largest number (48) of homeobox proteins were

classified into the HD-ZIP family, which was further

subdivided into four distinct subfamilies, termed

HD-ZIP I (14 members), HD-ZIP II (13 members),

HD-ZIP III (nine members) and HD-ZIP IV (12 mem-

bers), based on their domain composition and phyloge-

netic relationship (Table 1 and Fig. 1). All but one

member of HD-ZIP I and HD-ZIP II subfamilies

harbor a plant-specific leucine zipper domain, termed

the HALZ (homeobox associated leucine zipper)

domain, which is associated with the homeobox. The

presence of leucine zipper motif in plant homeobox

proteins is markedly different from the case in animal

systems in which none of the homeobox genes exam-

ined contain a leucine zipper [37]. Leucine zippers may

allow the HD-ZIP proteins to interact with each other

and other leucine zipper proteins, which may be

important for their function. The members of HD-ZIP

III and HD-ZIP IV subfamilies encode an additional

domain, termed the START (steroidogenic acute regu-

latory protein-related lipid-transfer) domain, which is

a putative lipid-binding domain [38,39]. Recently, a

novel domain, MEKHLA, with significant similarity to

the PAS domain, was identified at the C-terminus of

HD-ZIP III proteins [40]. Four rice homeobox

proteins grouped into the HD-ZIP III subfamily also

harbor the MEKHLA domain, which was proposed to

function as a sensory domain [40].

The BEL1-like homeobox (BLH) subfamily com-

prises 13 homeobox genes, and shows homology to

Arabidopsis BEL1 protein. These proteins harbor a

domain of unknown function towards the N-terminal

region of the HD, termed the POX domain, which is

found exclusively in plant proteins associated with HD

[41]. KNOX genes belong to a superfamily TALE

(three amino acid loop extension) because of presence

of an atypical HD, which contains three extra amino

acid stretches between the first and second helices [42].

Thirteen rice homeobox proteins belong to the KNOX

family, which were further divided into two subfami-

lies, KNOX I (nine members) and KNOX II (four
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Fig. 1. Phylogenetic relationship among the rice homeobox proteins. The unrooted tree was generated from multiple sequence alignments

of HD sequences. The sequences were aligned using CLUSTALX by the Neighbour-joining method. Ten distinct clades of homeobox proteins

identified are represented by shading. The bootstrap values (> 40%) from 1000 replicates are indicated at each node.
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members), based on the amino acid sequence of HD

and phylogenetic analysis. These proteins contain

ELK, KNOX1 and KNOX2 domains other than HD,

which are required for nuclear localization, suppressing

target gene expression and homo-dimerization, respec-

tively [43,44].

The WOX subfamily consists of 15 members in rice,

and shows strong homology to Arabidopsis WUS pro-

tein. A similar number of WOX genes has been identi-

fied in Arabidopsis [19]. Several members of the WOX

subfamily have been identified in rice and maize based

on the phylogenetic identification of WUS orthologs

[45]. The WOX proteins do not contain any known

domain other than HD. The expression dynamics

showed that WOX genes mark cell fate decisions dur-

ing early embryo patterning in Arabidopsis and maize

[19,20]. Fourteen rice homeobox proteins have been

grouped into the ZF-HD subfamily. These proteins

contain a conserved region upstream of HD, termed

the ZF-HD domain. This region is involved in pro-

tein–protein interaction by mediating homo- and het-

ero-dimerization [46]. Recently, it was demonstrated

that ZF-HD genes play overlapping regulatory roles in

floral development in Arabidopsis [34]. The plant HD

(PHD) subfamily of homeobox genes is represented by

only two members (Os02g05450 and Os06g12400) in

rice. The proteins encoded by this subfamily contain a

Cys4-His-Cys3 type zinc-finger domain, termed the

PHD finger domain N-terminal to the HD [47,48].

Although the function of this domain is not yet

known, its analogy with the LIM domain suggests that

it could be involved in protein–protein interaction and

be important for the assembly or activity of multicom-

ponent complexes involved in transcriptional activation

or repression [48].

Two homeobox genes, Os05g09630 and Os05g50130,

although apparently closely related to HD-ZIP sub-

family proteins, could not be classified into any of the

subfamilies.

Chromosomal localization and gene structure

The homeobox genes were localized on rice chromo-

some pseudomolecules based on their 5¢ and 3¢ coordi-
nates available in the tigr database, as represented

diagrammatically in Fig. 2. The exact coordinates and

orientation of each homeobox gene on the rice chro-

mosome pseudomolecules is given in the supplemen-

tary Table S1. No substantial clustering of homeobox

genes on rice chromosomes was observed. Although

the 107 homeobox genes are scattered on all 12 rice

chromosomes, their distribution is not uniform. The

highest number (21; 19.6%) of genes is present on

chromosome 3 followed by 12 genes on chromo-

some 1. Ten genes are present on chromosome 8; nine

each on chromosomes 2, 5 and 6; eight each on chro-

mosomes 9 and 10; seven on chromosome 4; five each

on chromosomes 7 and 12, and only four genes on

chromosome 11 (Fig. 2).

To study the gene structure of homeobox genes,

their exon–intron organization was determined. The

alignment of cDNA and corresponding genomic

sequences revealed that the coding sequences of all

Table 1. Classification of homeobox genes based on their domain

composition and phylogenetic relationship.

Subfamily

Number

of genes

HD-ZIP I 14

HD-ZIP II 13

HD-ZIP III 9

HD-ZIP IV 12

BLH 13

KNOX I 9

KNOX II 4

WOX 15

ZF-HD 14

PHD 2

Unclassified 2

PHD

HD-ZIPII

HD-ZIPIV

KNOX II

WOX

HD-ZIPI

HD-ZIPIII ZF-HD

KNOX IBLH

Unclassified

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2. Genomic distribution of homeobox genes on rice chromo-

somes. Homeobox genes classified in different subfamilies are

shown in different colors. One circle represents one homeobox

gene. White ovals on the chromosomes (vertical bar) indicate the

position of centromeres. Chromosome numbers are indicated at

the top of each bar. The homeobox genes present on duplicated

chromosomal segments are connected by colored lines according

to their subfamilies. The exact position (bp) and orientation of each

homeobox gene on TIGR rice chromosome pseudomolecules

(release 5) is given in the supplementary Table S1.
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but 12 homeobox genes are indeed interrupted by one

to 17 introns (supplementary Table S1). All the mem-

bers of BLH subfamily except for Os06g36680 are dis-

rupted by three introns at perfectly conserved

positions with respect to their amino acid sequence.

Quite a few (eight of 14) of the members of ZF-HD

subfamily are intronless. The members of other sub-

families harbor highly variable numbers of introns.

The largest number of introns is present in the mem-

bers of HD-ZIP III subfamily. Genes with multiple

exons and introns can be regulated by alternative

splicing, which was proposed as a mechanism to

expand the proteomic diversity within a genome [49].

Interestingly, 27% (29 of 107) of homeobox genes

were predicted to be alternatively spliced by tigr,

which is slightly higher than that predicted for rice

genes overall [50,51]. These homeobox genes exist in

two to four alternatively spliced forms, giving rise to

a total of 74 transcripts (supplementary Table S2).

The alternative splicing of these genes was validated

manually or using the tigr program to assemble

spliced alignments by alignment of rice full-length

cDNA (FL-cDNA) and ⁄or expressed sequence tag

(EST) sequences [50]. Notably, different alternatively

spliced transcripts of these genes have been derived

from various tissues ⁄organs of rice (data not shown),

indicating their differential expression. Several alter-

natively spliced forms of Os02g08544 ⁄HOS58,

Os06g43860 ⁄HOS59 and Os03g03164 ⁄HOS66 have

been reported previously that exhibited organ-specific

expression patterns [52]. A more detailed analysis of

developmental and temporal differential expression of

these and other alternatively spliced homeobox genes

will help in the understanding of their post-transcrip-

tional regulation.

Evolutionary expansion

The plant genomes have evolved essentially through

polyploidization and segmental and tandem duplica-

tions, which have great impact on the amplification

of members of a gene family in the genome. The Ara-

bidopsis and rice genome sequences revealed that a

majority of plant genes belong to large gene families.

Both tandem gene duplication and chromosomal seg-

mental duplication followed by dispersal and diversifi-

cation are ascribed for the expansion and evolution

of gene families [53–55]. The large size of the homeo-

box gene family indicates that it has evolved through

a large number of duplication events in rice. There-

fore, we studied the contribution of segmental and

tandem duplications in homeobox gene family expan-

sion. Interestingly, a very large number (54; 50.5%)

of homeobox genes were present on duplicated chro-

mosomal segments of rice (supplementary Table S3).

All the homeobox gene-containing chromosomal seg-

ments have a homeobox gene in its duplicate block.

This suggests that all the homeobox genes have been

retained in rice after segmental duplications. All but

two of the homeobox genes located on duplicated

segments belong to same subfamily. However, two

homeobox genes present on duplicated chromosomal

segments between chromosomes 1 and 5 (Os01g45570

and Os05g50130) belong to different subfamilies.

Additionally, 12 genes were found to be tandemly

duplicated (representing six individual duplication

events), which were separated by a maximum of three

intervening genes. In all six cases, only two genes

were present in tandem. Eight of 12 tandemly dupli-

cated genes were present on chromosome 3; whereas

two genes were present each on chromosomes 6 and

9. At all positions, the homeobox genes present in

tandem belonged to same subfamilies. Because the

number of homeobox genes present on duplicated

chromosomal segments is much higher than those

present in tandem, the segmental duplications appear

to have played a major role in expansion of this gene

family.

To analyze the evolutionary relationship among rice

and Arabidopsis homeobox proteins, an unrooted phy-

logenetic tree was generated from the alignments of

their HD sequences. Based on their sequence homo-

logy, and with few exceptions, all the homeobox

proteins clustered into distinct clades representing

different subfamilies, similar to rice proteins (supple-

mentary Fig. S1). Because all the clades contain

representatives from both rice (monocotyledonous)

and Arabidopsis (dicotyledonous), a common ancestor

of each subfamily must have existed before the diver-

gence of monocot and dicot lineages. However, within

a clade, species-specific clustering of homeobox pro-

teins was observed, which indicates that the expansion

of homeobox subfamilies has occurred independently

in rice and Arabidopsis after their divergence by dupli-

cation (segmental or tandem) of common ancestral

genes. Similar examples of gene family expansion have

been reported previously [53–56].

Gene expression during reproductive

development

Several approaches were employed for expression

analysis of rice homeobox genes. In the first approach,

evidence for the expression of homeobox genes was

provided by the availability of any corresponding

FL-cDNA and ⁄or ESTs in the databases. Ninety-two

M. Jain et al. Genomic analyses of homeobox genes in rice
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of 107 (86%) homeobox genes have at least one corre-

sponding FL-cDNA and ⁄or EST sequence (supple-

mentary Table S1), indicating that most of these genes

are expressed in rice. Fifty-nine homeobox genes have

both FL-cDNA and EST evidence, whereas three and

30 genes have only FL-cDNA and EST evidence,

respectively. However, the frequency of matched

FL-cDNA and ⁄or ESTs varies greatly and they were

derived from various rice tissues, indicative of the

differential expression of homeobox genes.

DNA microarrays provide a high-throughput means

to analyze gene expression at the whole genome level

or a subset of genes of interest. In the second

approach, the gene expression profiling of homeobox

genes was achieved by microarray analysis performed

using Affymetrix rice whole genome arrays, as

described previously [55]. The various vegetative and

reproductive developmental stages of rice used for

microarray analysis include seedling, seedling root,

mature leaf, Y leaf (fully expanded youngest leaf sub-

tending the shoot apical meristem), SAM and various

stages of panicle (P1-I to P1-III and P1 to P6) and

seed (S1 to S5) development. Different developmental

stages of panicle and seed development have been cate-

gorized according to panicle length and days after pol-

lination (DAP), respectively, based on the landmark

developmental event(s) (supplementary Table S4) [57].

We have used the RNA samples from indica rice for

hybridization on the Affymetrix rice genome arrays,

which have been designed primarily based on the gene

sequences from japonica rice. Several other studies also

report the successful use of these arrays for studying

gene expression in different varieties of both japonica

and indica rice [55,58–60].

Following whole-chip data processing, the log signal

values for 93 homeobox genes, represented on the

array in all the developmental stages analyzed, were

extracted. A hierarchical cluster display generated from

the average log signal values indicates the differential

expression profiles of homeobox genes (Fig. 3A; the

average log signal values are provided in supplemen-

tary Table S5). Moreover, the signal values indicate

that most of homeobox genes are expressed in at least

one of the rice vegetative and ⁄or reproductive stage(s)

of development analyzed. Subsequently, differential

expression analysis was performed in two steps to

identify the homeobox genes exhibiting stage-specific

expression. In the first step, the homeobox genes dif-

ferentially expressed during any of the reproductive

development stages (SAM, P1-I to P1-III, P1 to P6

and S1 to S5) were identified compared to all the four

vegetative stages (seedling, root, mature leaf and

Y leaf). This analysis revealed that a large number (55)

of homeobox genes were differentially expressed in at

least one of the stages of reproductive development

compared to vegetative stages. Further analysis

revealed that, out of these 55 genes, 33 and four genes

were differentially expressed during panicle and seed

development, respectively. However, 18 genes were dif-

ferentially expressed in both panicle and seed develop-

ment stages. In the second step, the homeobox genes

differentially expressed at any stage(s) of the panicle

development were identified compared to seed develop-

ment stages. Similarly, the differentially expressed

homeobox genes at any stage(s) of the seed develop-

ment compared to panicle development stages were

identified. This analysis revealed that 32 (28 up- and

four down-regulated) and seven (four up- and three

down-regulated) homeobox genes were differentially

expressed in at least one of the stages of panicle and

seed development, respectively (Fig. 3A). To validate

the differential expression of homeobox genes as

revealed from microarray analysis, real-time PCR anal-

ysis was performed for some representative genes in all

the tissues ⁄organs and developmental stages analyzed

from indica rice. The real-time PCR results were found

to be in very good agreement with the microarray data

(Fig. 3B). The expression profiles of various genes

obtained from our microarray data also have been

validated by real-time PCR analysis in other studies

[61–63].

Massively parallel signature sequencing (MPSS) gen-

erates hundreds of thousands of molecules per reaction

and provides a quantitative assessment of transcript

Fig. 3. Expression profiles of homeobox genes in various tissues ⁄ organs and developmental stages of rice. (A) Heatmap representing hierar-

chical clustering of average log signal values of all the homeobox genes in various tissues ⁄ organs and developmental stages (indicated at

the top of each lane). The color scale (representing average log signal values) is shown at the bottom. The genes significantly up-regulated

in at least one of the panicle and seed developmental stages are marked by asterisks and hash symbols, respectively, to the left. The genes

significantly down-regulated in at least one of the panicle and seed developmental stages are marked by filled and open rectangles, respec-

tively, to the left. The representative homeobox genes differentially expressed during various stages of development and under different abi-

otic stress conditions for which real-time PCR analysis was performed are indicated by red and green arrow heads, respectively, on the

right. (B) Real-time PCR analysis to confirm the differential expression of representative homeobox genes during various stages of develop-

ment. The mRNA levels for each candidate gene in different tissue samples were calculated relative to its expression in seedlings. S, seed-

ling; R, root; ML, mature leaf; YL, Y leaf; P1-I to P1-III and P1 to P6, stages of panicle development; S1 to S5, stages of seed development.
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abundance [64]. In the third approach, we investigated

the expression of 14 homeobox genes for which micro-

array data were unavailable in the mRNA MPSS data-

base of rice (http://mpss.udel.edu/rice/) [65]. MPSS

data from 22 libraries (17 base signature) representing

18 different tissues ⁄organs of rice was used for this

analysis. MPSS signatures were available for all the 14

genes in at least one of the libraries, indicating their

expression. However, the significant signatures (i.e.

that uniquely identify individual gene) were found only

for six homeobox genes, which showed low to moder-

ate expression levels (Fig. 4). Among these,

Os01g44430 was highly expressed in salt and cold

stressed 14-day-old young leaves, whereas Os05g25600

transcript was abundant in the meristematic tissue.

Os12g10630 showed significant expression in 14-day-

old young leaves. Interestingly, Os06g36680 appears to

be specifically expressed only in ovary and mature

stigma [322 tags per million (tpm)] with marginal

expression in germinating seed and immature panicle

(7 and 3 tpm, respectively).

In most plant species, the fundamental body plan is

established during embryogenesis, and each organ

formation then occurs successively after germination

from shoot and root apical meristems that are estab-

lished at early stages of embryogenesis. Genetic and

morphological characterization of some of the mutants

defective in various steps of embryogenesis has indi-

cated the existence of several major developmental

processes occurring during embryogenesis in rice

[57,66–68]. By analogy to animals, homeobox genes in

plants are also thought to mediate important processes

during embryogenesis, and there is much evidence

available to support this notion. Early evidence for the

involvement of plant homeobox genes in embryogene-

sis came from the analysis of an Arabidopsis embryo-

genesis defective mutant, stm [17]. SHOOT

MERISTEMLESS is expressed in the rudimentary

SAM of embryo and its expression is necessary to

maintain the integrity of SAM [15,17]. WUS is also

expressed very early in embryogenesis before the mor-

phological appearance of embryonic SAM [21]. Some

members of the KNOX gene family Oryza sativa home-

box (OSH) genes, of rice are expressed in a restricted

region of embryo that defines the position at which the

SAM would eventually develop, prior to visible organ

formation, and their expression continues after seed

germination until development of inflorescence meri-

stem and differentiation of floral organs [69]. Due to

their specific expression in the SAM, they are consid-

ered to be reliable markers for studying plant develop-

ment [57,70–73]. Our results also show that several

members of KNOX I and KNOX II subfamilies are

differentially expressed during various stages of panicle

and seed development (Fig. 3A). The analysis of

expression patterns and loss-of-function alleles of the

HD-ZIP III family members in Arabidopsis revealed

their roles in meristem initiation, meristem regulation,

organ polarity and embryo patterning [28–33]. The

members of HD-ZIP III subfamily in rice,

Os03g01890, Os03g43930, Os10g33960 and

Os12g41860, which represent the orthologs of Arabid-

opsis PHABULOSA (PHB), PHAVOLUTA (PHV)

and ⁄or REVOLUTA (REV) genes (supplementary

Fig. S1), are also preferentially expressed during vari-

ous stages of panicle development (Fig. 3A), suggesting

similar roles of these genes in rice. Altogether, we have

identified a large number of homeobox genes that are

preferentially expressed during various stages of devel-

opment, including floral transition, floral organ differ-

entiation and development, maturation of male and

female reproductive organs, and embryogenesis. It is

thus conceivable that these homeobox genes may per-

form specific roles during different stages of reproduc-

tive development in rice. Although our analyses

provide evidence for tissue- ⁄organ- and developmental

stage-specific expression of homeobox genes, definitive

clues for their cell type-specific expression and function

will come from in situ hybridization and functional

validation in transgenics.
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Fig. 4. Heatmap showing the expression profiles of six homeobox

genes based on mRNA MPSS data. The number of significant sig-

natures are shown as tpm. The color scale (representing tpm) is

shown at the bottom. NCA, 35 days callus; NGD, 10 days germinat-

ing seedlings grown in dark; NGS, 3 days germinating seed; NIP,

90 days immature panicle; NML, 60 days mature leaves (represent-

ing an average of four replicates; A, B, C and D); NME, 60 days

meristematic tissue; NOS, ovary and mature stigma; NPO, mature

pollen; NMR, 60 days mature roots (representing an average of

two replicates; A and B); NST, 60 days stem; NYL, 14 days young

leaves; NYR, 14 days young roots; NSL, 14 days young leaves

stressed in 250 mM NaCl for 24 h; NSR, 14 days young roots

stressed in 250 mM NaCl for 24 h; NDL, 14 days young leaves

stressed in drought for 5 days; NDR, 14 days young roots stressed

in drought for 5 days; NCL, 14 days young leaves stressed at 4 �C
for 24 h; NCR, 14 days young roots stressed at 4 �C for 24 h.
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Gene expression during anther and stigma

development

Several genes involved in anther development have been

identified in Arabidopsis. Despite its importance in crop

yield and hybrid seed production, very few studies on

anther development in cereal plants have been per-

formed. Recently, a basic helix-loop-helix transcription

factor, UNDEVELOPED TAPETUM 1 (UDT1), was

identified as a major regulator of tapetum (i.e. the inner-

most sporophytic layer in the anther wall, which is

thought to play a crucial role in the development and

maturation of microspores) development and pollen

mother cell meiosis in rice [74]. Several downstream tar-

get genes of UDT1 were identified by microarray analy-

sis [74]. Our further analysis of these microarray data

revealed that at least four (Os08g32080, Os10g01470,

Os05g48990 and Os08g37400) homeobox genes were

down-regulated and one (Os04g45810) gene up-regu-

lated significantly (more than two-fold) in udt1-1

anthers compared to wild-type anthers. These genes

were differentially expressed at different stages of anther

development, including meiosis, young microspore,

vacuolated pollen and pollen mitosis, compared to

palea ⁄ lemma. These genes may interact with UDT1 to

regulate anther development in rice.

The stigma, a female reproductive organ, provides

nutrients and guidance cues for pollen grain germina-

tion and pollen tube growth. Recently, a genome-wide

gene expression profiling identified several genes specif-

ically or preferentially expressed in stigma that may

regulate these processes in rice [75]. A survey of these

genes during the present study identified at least seven

(Os03g08960, Os06g04850, Os06g04870, Os06g39906,

Os09g35760, Os01g60270 and Os09g24810) homeobox

genes that express preferentially in rice stigma, indicat-

ing their role in stigma development and other pro-

cesses involved therein.

Expression profiles of duplicated homeobox

genes

Gene duplications serve as a mechanism to increase

diversity at the molecular level. The mutation in a

duplicated locus might not have a morphological or

physiological effect, or may be the primary contributor

to innovative developmental programs. After duplica-

tion, the coding regions may be brought into a new

regulatory context via acquisition ⁄deletion of regula-

tory sequences (i.e. tissue-specific enhancers and

repressors), which can cause spatial and ⁄or temporal

change in gene expression contributing to diversifica-

tion of gene function by sub- (one of the gene acquires

a novel function) or neo-functionalization (the dupli-

cated genes perform different aspects of the original

gene’s function) [76,77]. To study the role of gene

duplication in the diversification of gene function, the

expression profiles of homeobox genes localized on

duplicated chromosomal segments and tandemly dupli-

cated genes were investigated. Out of 27 gene pairs

localized on duplicated segments, microarray data for

21 gene pairs were available. Fourteen of the 21 gene

pairs exhibited similar gene expression patterns

(supplementary Fig. S2), indicating their overlapping

functions. However, the expression of one of the dupli-

cated genes was very low in some cases. This may be

due to the duplicated genes with low expression losing

their function over the course of evolution. Other

seven gene pairs exhibited significantly divergent

expression patterns for two duplicated genes (supple-

mentary Fig. S2), indicating sub- or neo-functional-

ization. For example, Os03g20910 is preferentially

expressed in young tissues (seedling and root) and late

stages of seed development, whereas Os07g48560 is

expressed at very low level in all the tissues ⁄ stages
examined. Similarly, the expression of Os10g39030 was

significantly higher during late panicle and early seed

developmental stages compared to Os03g03260.

Out of six gene pairs representing the tandem gene

duplication events, microarray data were available for

five gene pairs. Three gene pairs exhibited highly simi-

lar expression patterns (supplementary Fig. S3). How-

ever, the expression patterns of two gene pairs,

Os03g47730 ⁄Os03g47740 and Os09g24810 ⁄Os09g24820

were highly divergent (supplementary Fig. S3). Taken

together, these results suggest that homeobox genes

appear to have evolved through gene duplication

events followed by conservation and sub- or neo-func-

tionalization of the duplicated gene.

Gene expression under abiotic stress conditions

In various plant species, the role of several homeobox

genes has been implicated in abiotic stress responses

[9,11,78–81]. However, the role of only one rice homeo-

box gene, BIHD1 ⁄Os03g47740, in abiotic stress

response has been reported to date [12]. To investigate

the abiotic stress response of all the rice homeobox

genes, microarray analysis of 7-day-old seedlings sub-

jected to desiccation, salt and cold stress treatments was

performed. Data analysis revealed that a total of 37

homeobox genes were differentially expressed signifi-

cantly (at least two-fold; P < 0.05) in at least one of the

stress conditions examined (Fig. 5A–I and supplemen-

tary Table S6). The transcript levels of two genes

(Os04g45810 and Os09g21180) were up-regulated under

M. Jain et al. Genomic analyses of homeobox genes in rice

FEBS Journal 275 (2008) 2845–2861 ª 2008 The Authors Journal compilation ª 2008 FEBS 2853



all the three stress conditions. Nine genes (i.e.

Os02g43330, Os03g10210, Os02g35770, Os06g48290,

Os10g01470, Os10g41230, Os03g55990, Os04g48070

and Os08g14400) were up-regulated under desicca-

tion and salt stress. However, four (Os09g35760,

Os05g50130, Os01g60270 and Os09g29130), three

(Os07g39320, Os09g35910 and Os03g20910), and one

(Os11g13930) gene(s) were up-regulated specifically

under desiccation, salt and cold stress, respectively. Two

genes (Os03g47730 and Os06g01934) were down-regu-

lated under both desiccation and salt stress conditions.

However, 13 (Os03g07450, Os08g37580, Os10g23090,

Os06g04850, Os02g45250, Os01g63510, Os10g39030,

Os01g19694, Os03g51690, Os07g03770, Os03g50920,

Os05g50310 and Os09g24820) and two (Os02g13310

and Os09g24810) genes were down-regulated under

desiccation and salt stress, respectively. Only one

(Os07g48560) gene up-regulated by salt stress, was

down-regulated by cold stress. The microarray data

were validated by real-time PCR analysis of at least six

genes exhibiting differential expression under various

stress conditions (Fig. 5J).

Several HD-ZIP proteins (mainly members of

HD-ZIP I subfamily) have been suggested to be depen-

dent on abscisic acid signaling to act as transcriptional

activator in various plant species [9,78–82]. The

overexpression of rice BIHD1 ⁄Os03g47740 gene in

transgenic tobacco resulted in an elevated level of

defence-related gene expression and enhanced sensi-

tivity to salt and oxidative stress [12]. Our study
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Fig. 5. Expression profiles of rice homeobox genes differentially

expressed under various abiotic stress conditions. Expression pro-

files are presented of homeobox genes up-regulated by desicca-

tion, salt and cold stress (A), up-regulated by desiccation and salt

(B), down-regulated by desiccation and salt (C), up-regulated by salt

and down-regulated by cold (D), up-regulated by desiccation (E),

up-regulated by salt (F), up-regulated by cold (G), down-regulated

by desiccation (H) and down-regulated by cold (I) compared to the

control seedlings. The average log signal values of homeobox

genes under control and various stress conditions (indicated at the

top of each lane) are presented by heatmaps. Only those genes

that exhibited two-fold or more differential expression with a

P < 0.05, under any of the given abiotic stress conditions, are

shown. The color scale (representing average log signal values) is

shown at the bottom. The representative homeobox genes differ-

entially expressed under different abiotic stress conditions for

which real-time PCR analysis was performed are indicated by green

arrow heads, to the right. (J) Real-time PCR analysis to confirm the

differential expression of representative homeobox genes during

various abiotic stress conditions. The mRNA levels for each candi-

date gene in different tissue samples were calculated relative to its

expression in control seedlings. C, control; DS, desiccation stress;

SS, salt stress; CS, cold stress.
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demonstrates that a large number of rice homeobox

genes belonging to all subfamilies (except for KNOX

II) are involved in abiotic stress responses. These genes

may play a significant role in the abiotic stress path-

way and provide a valuable resource for generating

stress-tolerant transgenic crop plants.

There is much evidence demonstrating the interac-

tion of developmental processes and stress responses

[55,83–86]. The interaction between plant development

and environmental conditions implies that some genes

must be co-regulated by both environmental factors

and developmental cues. Cooper et al. [87] reported a

network of rice genes that are associated with stress

response and seed development. Furthermore, it was

demonstrated that a significant number of pollina-

tion ⁄ fertilization-related genes are indeed regulated by

dehydration and wounding in rice [88]. Recently, an

interaction network of proteins associated with abiotic

stress response and development in wheat was pro-

posed [89]. We also found that 14 (Os03g07450,

Os03g10210, Os04g45810, Os07g39320, Os03g55990,

Os09g35760, Os02g13310, Os03g47730, Os01g60270,

Os01g19694, Os03g51690, Os07g03770, Os05g50310

and Os11g13930) and three (Os08g37580, Os09g21180

and Os02g35770) homeobox genes that were differen-

tially expressed during at least one of the panicle and

seed developmental stages, respectively, are regulated

by one or more of the stress conditions. This suggests

that a number of candidate homeobox genes are

likely to be involved in critical developmental pro-

cesses and stress responses, but their direct relation-

ship requires experimental validation. Such genes may

act as mediators of plant growth response to different

abiotic stress conditions during various developmental

stages.

Defining the roles of homeobox proteins in

regulatory networks

Homeobox genes encode transcription factors, which

are the key regulators of various aspects of plant

development. Similar to other multigene families, many

homeobox genes probably have overlapping functions

that complicate the analysis of their mutant and ⁄or
transgenic phenotypes. Our identification of all the

homeobox genes in rice genome is thus a prerequisite

for the dissection of individual homeobox gene func-

tions. On the basis of domain organization and phylo-

genetic relationship, we have defined ten groups of

related homeobox proteins in which functional over-

laps are more plausible. The duplicated genes might

have partially redundant functions and the identifica-

tion of duplicated genes will have important implica-

tions in the study of gene functions and the

evolutionary consequences of gene duplication. To

date, only a few homeobox genes have been function-

ally characterized in rice. The analysis presented in the

present study suggests a crucial role of homeobox

genes in reproductive development and abiotic stress

responses, and should act as a major step towards a

comprehensive functional characterization of the

homeobox gene family in rice and other plant species.

Finally, it will be useful to identify those factors that

function with or regulate homeobox proteins by pro-

tein–protein interaction studies. Together with the

availability of complete rice genome sequence and the

increasing ease of obtaining mutants and raising trans-

genics, our analysis should stimulate future studies on

homeobox gene function.

Experimental procedures

Plant materials

Rice (O. sativa L. ssp. indica var. IR64) seeds were disinfec-

ted and grown as described previously [55]. Rice plants

were grown under greenhouse or field conditions for col-

lecting tissue samples of mature leaf, Y leaf and different

stages of panicle (up to 0.5 mm, SAM; 0.5–2 mm, P1-I;

2–5 mm, P1-II; 5–10 mm, P1-III; 0–3 cm, P1; 3–5 cm, P2;

5–10 cm, P3; 10–15 cm, P4; 15–22 cm, P5; 22–30 cm, P6)

and seed (0–2 DAP, S1; 3–4 DAP, S2; 5–10 DAP, S3;

11–20 DAP, S4; 21–29 DAP, S5) development. Roots were

harvested from 7-day-old seedlings grown in water. The

desiccation (between folds of tissue paper), salt (200 mm

NaCl solution) and cold (4 ± 1 �C) stress treatments were

given to 7-day-old rice seedlings each for 3 h as described

previously [55]. The control seedlings were kept in water

for 3 h, at 28 ± 1 �C.

Database search

The Hidden Markov Model profile (build 2.3.2) of homeo-

box domain (PF00046) generated by alignments of 188 seed

sequences, was downloaded from pfam (http://www.

sanger.ac.uk/Software/Pfam). This profile was utilized to

identify all the homeobox proteins encoded by the rice gen-

ome by searching against the annotated proteins in whole

rice genome by tigr (release 5; http://www.tigr.org/tdb/e2k1/

osa1) with an e-value cut off of 1.0. This search resulted in

the identification of 160 nontransposable element proteins.

Of the 160 proteins, 54 proteins were removed because they

represented different gene models present at the same locus

in rice genome. Among the remaining nonredundant set of

106 proteins, only 93 showed the presence of homeobox

domain with confidence (e-value < 1.0) by smart ⁄ pfam

(http://smart.embl-heidelberg.de), when checked individually.
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Similarly, 14 more nonredundant homeobox proteins classi-

fied as zinc-finger homeobox proteins were identified by a

PFam profile search for ZF-HD dimerization domain

(PF04770). In the present study, we removed the LOC pre-

fix from all tigr locus IDs representing homeobox proteins

for convenience. Domains in homeobox proteins were iden-

tified using smart and pfam with an e-value cut off of 1.0.

For the blast search in the indica rice (cv 93–11) genome,

the annotation available at the BGI Rise Rice Genome

Database (http://rise.genomics.org.cn) [90] was used.

Phylogenetic analysis

Multiple sequence alignments of homeobox domain identi-

fied by smart from all the protein sequences were

performed using clustalx, version 1.83 [91]. The unrooted

phylogenetic trees were constructed by the Neighbour-

joining method [92] and displayed using njplot [93].

Localization of homeobox genes on rice

chromosomes

The position of each of the homeobox genes on the rice chro-

mosome pseudomolecules available at tigr was determined

by a blastn search. The presence of homeobox genes on

duplicated chromosomal segments was investigated by seg-

mental genome duplication of rice available at tigr with the

maximum length distance permitted between collinear gene

pairs of 500 kb. The genes separated by a maximum of five

genes were considered as tandemly duplicated genes.

FL-cDNA and EST evidence search

The gene expression evidence search page, available at tigr

rice genome annotation database (http://www.tigr.org/tdb/

e2k1/osa1/locus_expression_evidence.shtml), was used to find

the availability of any FL-cDNA and ⁄or EST sequence(s)

corresponding to each of the homeobox genes.

Microarray hybridization and data analysis

Microarray analysis was performed as described previously

[55] using Affymetrix GeneChip Rice Genome Arrays

(Affymetrix Inc., Santa Clara, CA, USA) representing

49 824 transcripts (48 564 of japonica and 1260 of indica).

At least three independent biological replicates of each

tissue sample were used for microarray analysis. For data

analysis, the cel files generated by genechip Operating Soft-

ware were imported into arrayassist (version 5.0) (Strata-

gene, La Jolla, CA, USA). The normalization, probe

summarization and variance stabilization were performed

as described previously [55]. Three biological replicates of

each tissue sample with an overall correlation coefficient

value of more than 0.94 were selected for final analysis.

The microarray data for 22 tissue samples (66 arrays in

total) were included in the final analysis. These samples

included 19 samples for the rice development series and

four samples for the abiotic stress series (the control seed-

ling sample was used in both development and stress series

data analysis). The microarray data have been deposited in

the Gene Expression Omnibus database at the National

Center for Biotechnology Information under the series

accession numbers GSE6893 and GSE6901.

The probe sets representing the homeobox genes on the

Affymetrix rice genome array were identified by a Rice

Multi-platform Microarray Search (http://www.ricear-

ray.org/matrix.search.shtml). Probe sets with the entire set

of 11 probes (eight to ten in some cases) present on the

array aligned with 100% identity over the entire length with

corresponding homeobox gene were considered to be signif-

icant. Data for only one probe set for each homeobox gene

were used for expression analysis. The probes for 93 (out of

107) homeobox genes could be identified. The log signal

intensity values for rice probe IDs corresponding to homeo-

box genes were extracted and used for further analyses.

Hierarchical clustering was performed using Euclidean dis-

tance metric and complete linkage rule. The genes that are

up- or down-regulated at least two-fold with P < 0.05 were

considered to be differentially expressed significantly.

Real-time PCR analysis

To confirm the expression patterns of representative genes

obtained by microarray analysis, real-time PCR analysis

was performed using gene-specific primers as described pre-

viously [94]. The primer sequences used for real-time PCR

analysis are given in the supplementary Table S7. At least

two independent biological replicates of each sample and

three technical replicates of each biological replicate were

used for real-time PCR analysis. The expression of each

gene in different RNA samples was normalized with the

expression of the internal control gene, UBQ5. The mRNA

levels for each candidate gene in different tissue samples

were calculated using the DDCT method (Applied Biosys-

tems, Foster City, CA, USA). Values are the mean of two

biological replicates, each with three technical replicates.

Error bars indicate the standard deviation.

MPSS data analysis

Expression evidence for mRNA from MPSS tags was deter-

mined from the Rice MPSS project mapped to tigr gene

models [http://mpss.udel.edu/rice/] [65]. The MPSS data for

17-base significant signatures (classes 1, 3, 5 and 7 that

identify the sense strand), which uniquely identify an indi-

vidual gene and show a perfect match (100% identity over

100% of the length of the tag), were retrieved. The normal-

ized abundance (tpm) of these signatures for a given gene
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in a given library represents a quantitative estimate of

expression of that gene. MPSS expression data from 22

mRNA libraries, representing 18 different tissues ⁄ organs,
were used for the analysis. The description of the mRNA

libraries is: NCA, 35 days callus; NGD, 10 days germinat-

ing seedlings grown in dark; NGS, 3 days germinating

seed; NIP, 90 days immature panicle; NML, 60 days

mature leaves (representing an average of four replicates;

A, B, C and D); NME, 60 days meristematic tissue; NOS,

ovary and mature stigma; NPO, mature pollen; NMR,

60 days mature roots (representing an average of two repli-

cates; A and B); NST, 60 days stem; NYL, 14 days young

leaves; NYR, 14 days young roots; NSL, 14 days young

leaves stressed in 250 mm NaCl for 24 h; NSR, 14 days

young roots stressed in 250 mm NaCl for 24 h; NDL,

14 days young leaves stressed in drought for 5 days;

NDR, 14 days young roots stressed in drought for 5 days;

NCL, 14 days young leaves stressed at 4 �C for 24 h;

NCR, 14 days young roots stressed at 4 �C for 24 h.
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