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WHITTLE TYPE INEQUALITY FOR DEMISUBMARTINGALES

B. L. S. PRAKASA RAO

(Communicated by Claudia M. Neuhauser)

Abstract. A Whittle type inequality for demisubmartingales is derived and
a strong law of large numbers for functions of a demisubmartingale is obtained.

1. Introduction

Whittle ([12]) proved an inequality for real valued random variables generalizing
the Kolmogorov inequality, the inequality of Hajek-Renyi ([3]) and the inequality
of Dufresnoy ([2]). An application of this result for Hilbert space valued random
elements {Zk, k ≥ 1} such that the family {φk(Zk), k ≥ 1} is a real valued sub-
martingale is given in Rao ([8]). An application of this result to obtain a lower
bound for the probability of a simultaneous confidence region in multivariate anal-
ysis is given in Rao ([8]) sharpening the bound given in Sen ([10]). Recently Shixin
([11]) proved a Hajek-Renyi type inequality for Banach space valued martingales. A
Whittle type inequality for Banach space valued martingales was given in Prakasa
Rao ([6]) from which the results in Shixin ([11]) follow as special cases.

We now derive a Whittle type inequality for demisubmartingales. This result
generalises the recent results on Hajek-Renyi type inequality for demimartingales
proved by Christofides ([1]) and the Hajek-Renyi type inequality for associated
sequences proved by Prakasa Rao ([5]).

2. Preliminaries

Let Si, i ≥ 1, be a sequence of integrable random variables such that

E{(Sj+1 − Sj)f(S1, . . . , Sj)} ≥ 0, j ≥ 1,(2.1)

for every componentwise nondecreasing function f such that the expectation is
defined. Then the sequence {Sj , j ≥ 1} is called a demimartingale (cf. Newman
and Wright ([4])). If condition (2.1) holds for every componentwise nonnegative
nondecreasing function f such that the expectation is defined, then the sequence
{Sj, j ≥ 1} is called a demisubmartingale.

A collection of random variables Xi, 1 ≤ i ≤ n, is said to be associated if

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0(2.2)
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for any two componentwise nondecreasing functions f and g such that the covari-
ance exists. An infinite sequence of random variables {Xn, n ≥ 1} is said to be
associated if every finite subset of {Xn, n ≥ 1} is associated.

If Xi, 1 ≤ i ≤ n, is an associated sequence of random variables with E(Xi) =
0, 1 ≤ i ≤ n, then the sequence of partial sums Si = X1 + · · ·+Xi, 1 ≤ i ≤ n, forms
a demimartingale (cf. Newman and Wright [4]).

For an extensive review of the probabilistic properties of associated sequences of
random variables and related statistical inference problems, see Prakasa Rao and
Dewan ([7]) and Roussas ([9]).

3. Whittle type inequality

Let Sn, n ≥ 1, be a demisubmartingale and φ(.) be a nondecreasing convex
function. Then the sequence φ(Sn), n ≥ 1, is a demisubmartingale by Lemma 2.1
of Christofides ([1]).

We now state our main theorem.

Theorem 3.1. Let the sequence of random variables {Sn, n ≥ 1} be a demisub-
martingale and φ(.) be a nonnegative nondecreasing convex function such that φ(S0)
= 0. Let ψ(u) be a positive nondecreasing function for u > 0. Let An be the event
that φ(Sk) ≤ ψ(uk), 1 ≤ k ≤ n, where 0 = u0 < u1 ≤ · · · ≤ un. Then

P (An) ≥ 1−
n∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]
ψ(uk)

.(3.1)

If, in addition, there exist nonnegative real numbers ∆k, 1 ≤ k ≤ n, such that

0 ≤ E[(φ(Sk)− φ(Sk−1))f(φ(S1), . . . , φ(Sk−1))]

≤ ∆kE[f(φ(S1), . . . , φ(Sk−1))], 1 ≤ k ≤ n,
for all componentwise nonnegative nondecreasing functions f such that the expec-
tation is defined and

ψ(uk) ≥ ψ(uk−1) + ∆k, 1 ≤ k ≤ n,
then

P (An) ≥
n∏
k=1

(1− ∆k

ψ(uk)
).(3.2)

Remarks. The above result is an analogue of the inequality in Whittle ([12]) for
real valued random variables. A version of Theorem 3.1 for a sequence of Hilbert
space valued random elements was proved in Rao ([8]) and an application to Banach
space valued martingales is given in Prakasa Rao ([6]).

Proof. Since the sequence {Sn, n ≥ 1} is a demisubmartingale by hypothesis and
the function φ(.) is a nondecreasing convex function, it follows that the sequence
{φ(Sn), n ≥ 1} forms a demisubmartingale by Lemma 2.1 of Christofides ([1]).
Hence

E{(φ(Sn+1)− φ(Sn))f(φ(S1), . . . , φ(Sn))} ≥ 0, n ≥ 1,(3.3)

for every nonnegative componentwise nondecreasing function f such that the ex-
pectation is defined.

Let χj be the indicator function of the event [φ(Sj) ≤ ψ(uj)] for 1 ≤ j ≤ n.
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Note that

χn ≥ (1− φ(Sn)
ψ(un)

)

and hence

P (An) = E(
n∏
i=1

χi) = E({
n−1∏
i=1

χi}χn)

≥ E({
n−1∏
i=1

χi}(1−
φ(Sn)
ψ(un)

)).

Therefore

E[{
n−1∏
i=1

χi}{(1−
φ(Sn)
ψ(un)

)− (1− φ(Sn−1)
ψ(un)

)}+
φ(Sn)− φ(Sn−1)

ψ(un)
]

= E[(1 −
n−1∏
i=1

χi)(
φ(Sn)− φ(Sn−1)

ψ(un)
)] ≥ 0

since the function 1−
∏n−1
i=1 χi is a nonnegative componentwise nondecreasing func-

tion of φ(Si), 1 ≤ i ≤ n− 1. Hence

P (An) ≥ E({
n−1∏
i=1

χi}(1−
φ(Sn−1)
ψ(un)

))− E{φ(Sn)} − E{φ(Sn−1)}
ψ(un)

≥ E({
n−2∏
i=1

χi}(1−
φ(Sn−1)
ψ(un−1)

))− E{φ(Sn)} − E{φ(Sn−1)}
ψ(un)

.

The last inequality follows from the observation that the sequence ψ(un), n ≥ 1, is
positive and nondecreasing.

Applying this inequality repeatedly, we get that

P (An) ≥ 1−
n∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]
ψ(uk)

,(3.4)

completing the proof of the first part of the theorem.
Note that

E{
n−1∏
i=1

χi(1−
φ(Sn)
ψ(un)

)− (1 − ∆n

ψ(un)
)(1 − φ(Sn−1)

ψ(un−1)
)
n−1∏
i=1

χi}

≥ E{ φ(Sn−1)
ψ(un)ψ(un−1)

[ψ(un)− ψ(un−1)−∆n]
n−1∏
i=1

χi}

and the last term is nonnegative by hypothesis. Hence

P (An) ≥ (1 − ∆n

ψ(un)
)E({

n−2∏
i=1

χi}(1−
φ(Sn−1)
ψ(un−1)

)).(3.5)

Applying this inequality repeatedly, we obtain that

P (An) ≥
n∏
k=1

(1− ∆k

ψ(uk)
).(3.6)
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4. Applications

Suppose {Sn, n ≥ 1} is a demisubmartingale. Then {(S+
n )p, n ≥ 1} and {(S−n )p,

n ≥ 1} are demisubmartingales by Corollary 2.1 of Christofides ([1]). Furthermore
|Sn|p = (S+

n )p + (S−n )p for all p ≥ 1.
(1) Let ψ(u) = up, p ≥ 1. Applying Theorem 3.1, we get that

P (S+
j ≤ uj , 1 ≤ j ≤ n) ≥ 1−

n∑
j=1

E(S+
j )p − E(S+

j−1)p

upj
(4.1)

and

P (S−j ≤ uj, 1 ≤ j ≤ n) ≥ 1−
n∑
j=1

E(S−j )p − E(S−j−1)p

upj
.(4.2)

Hence, for every ε > 0,

P ( sup
1≤j≤n

|Sj |
uj
≥ ε) = P ( sup

1≤j≤n

|Sj |p
upj
≥ εp)

= P ( sup
1≤j≤n

(S+
j )p + (S−j )p

upj
≥ εp)

= P ( sup
1≤j≤n

(S+
j )p

upj
≥ 1

2
εp)

+P ( sup
1≤j≤n

(S−j )p

upj
≥ 1

2
εp)

≤ 2ε−p
n∑
j=1

E(S+
j )p − E(S+

j−1)p

upj

+2ε−p
n∑
j=1

E(S−j )p − E(S−j−1)p

upj

≤ 2ε−p
n∑
j=1

E|Sj |p − E|Sj−1|p
upj

.

In particular for p=2, we have

P ( sup
1≤j≤n

|Sj |
uj
≥ ε) ≤ 2ε−2

n∑
j=1

ES2
j − ES2

j−1

u2
j

,(4.3)

which is the Hajek-Renyi type inequality for associated sequences derived in Corol-
lary 2.3 of Christofides ([1]).

Suppose p = 1. Let φ(x) = max(0, x). Then φ(x) is a nonnegative nondecreasing
convex function and it is clear that Sn ≤ S+

n = φ(Sn) for every n ≥ 1. Let ψ(u) = u.
Then

P ( sup
1≤j≤n

Sj
uj
≥ ε) ≤ P ( sup

1≤j≤n

S+
j

uj
≥ ε)

≤ ε−1
n∑
j=1

ES+
j − ES+

j−1

uj
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by Theorem 3.1 which is the Chow type maximal inequality derived in Theorem
2.1 of Christofides ([1]).

(2) Let p=2 again in the above discussion. If

E(S2
j − S2

j−1) ≤ u2
j − u2

j−1

for 1 ≤ j ≤ n, then

P (An) ≥
n∏
j=1

(1−
E(S2

j )− E(S2
j−1)

u2
j

)

which is an analogue of the Dufresnoy’s inequality.
(3) Let {Sn, n ≥ 1} be a demisubmartingale and φ(.) be a nonnegative nonde-

creasing convex function such that φ(S0) = 0. Let ψ(u) be a positive nondecreasing
function for u > 0. Then, for any nondecreasing sequence un, n ≥ 1 with u0 = 0,

P ( sup
1≤j≤n

φ(Sj)
ψ(uj)

≥ ε) ≤ ε−1
n∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]
ψ(uk)

.(4.4)

In particular, for any fixed n ≥ 1,

P (sup
k≥n

φ(Sk)
ψ(uk)

≥ ε) ≤ ε−1[E(
φ(Sn)
ψ(un)

) +
∞∑

k=n+1

E[φ(Sk)]− E[φ(Sk−1)]
ψ(uk)

].(4.5)

We now derive a strong law of large numbers for functions of demisubmartingales.

Theorem 4.1. Let {Sn, n ≥ 1} be a demisubmartingale and φ(.) be a nonnegative
nondecreasing convex function such that φ(S0) = 0. Let ψ(u) be a positive non-
decreasing function for u > 0 such that ψ(u) → ∞ as u → ∞. Further suppose
that

∞∑
k=1

E[φ(Sk)]− E[φ(Sk−1)]
ψ(uk)

<∞(4.6)

for a nondecreasing sequence un →∞ as n→∞. Then
φ(Sn)
ψ(un)

a.s→ 0 as n→∞.(4.7)

Proof of this result follows by the standard arguments following the inequality
(4.5) given above. We omit the details.
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