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Abstract A wavelet based linear estimator is proposed for the derivatives of a prob-
ability density function based on a sample from a finite mixture of components with
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function proposed by Pokhyl’ko (Theor. Probability and Math. Statist, 70 (2005)
135-145). Upper bounds on L2 and L∞ losses are obtained for such estimators.
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1. Introduction

The problem of analysis of mixtures with varying mixing proportions occur in the
study of medical, biological, social and other types of data. The objects of ob-
servation J1, . . . , JN may belong to any one of M populations. Let I(Jj) denote
the indicator of the population that contains the object Jj . For every object Jj , we
observe a random variable Xj based on the object Jj . Note that the distribution
function of the random variable Xj depends on the indicator I(Jj). Suppose that

P (Xj ≤ x|I(Jj) = k) = Hk(x), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

Suppose the distribution functions Hk(x), 1 ≤ k ≤ M are unknown and the
sequence I(Jj), 1 ≤ j ≤ N are also unknown but we know the probability wk(j)
that an object Jj belongs to the k-th population, that is,

wk(j) = P (I(Jj) = k), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

Note that wk(j) ≥ 0, 1 ≤ k ≤ M and
∑M

k=1 wk(j) = 1, 1 ≤ j ≤ N.
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Observe that the probability wk(j) indicates the mixing proportion of the ob-
jects of k-th population in the mixture from which the object Jj is chosen. It is easy
to check that

P (Xj ≤ x) =
M∑

�=1

w�(j)H�(x), 1 ≤ j ≤ N. (1.1)

The problem of estimation of the distribution function H�(x) was studied in
Maiboroda [10] using a weighted empirical distribution function. Maiboroda [11]
obtained a generalized version of the Kolmogorov-Smirnov test for testimg the
hypothesis for the homogenity of mixtures with varying mixing proportions. As-
suming that the distribution functions H�(x) are absolutely continuous with density
functions h�(x), Pokhyl’ko [14] constructed linear and adaptive wavelet estimators
for the density function h�(x).

Methods of nonparametric estimation of a density function and regression func-
tion are widely discussed in the literature (cf. Prakasa Rao [15, 17]). It is known
that the estimation of derivatives of a density as well as that of regression function
are also of importance and interest to detect possible bumps in the case of a density
and to detect concavity or convexity properties in the case of regression function.
Asymptotic properties of the kernel type estimators for the derivatives of density
have been investigated earlier (cf. Prakasa Rao [15], p.237).

Our aim in this paper is to discuss wavelet linear estimators for the deriva-
tives of a probability density function when the sample of observations come from
a mixture of several components with varying mixing proportions. We propose
an estimator for the derivative of the density based on wavelets and obtain upper
bounds on the L2 and L∞ losses for the proposed estimator. Estimators of den-
sity using wavelets was studied for independent and identically distributed random
variables in Antoniadis et al. [1], for some stationary dependent random variables
in Leblanc [9] and for stationary associated sequnces in Prakasa Rao [19]. Chaubey
et al. [2, 3] extended these results to derivatives of density estimators for associated
sequences and for negatively associated processes.

The advantages and disadvantages of the use of wavelet based probability den-
sity estimators are discussed in Walter and Ghorai [24] in the case of independent
and identically distributed observations. The same comments continue to hold in
this case. However it was shown in Prakasa Rao [16, 18] that one can obtain precise
limits on the asymptotic mean squared error for a wavelet based linear estimator
for the density function and its derivatives as well as some other functionals of the
density. Tribouley [21] studied estimation of multivariate densities using wavelet
methods. Donoho et al. [6] investigated density estimation by wavelet threshold-
ing. For a discussion on statistical modeling by wavelets, see Vidakovic [23].

2. Preliminaries on Wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions φ(·) and ψ(·) called the scaling function and the primary wavelet function
respectively. In the following discussion, we assume that φ(·) is real-valued. The
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function φ(x) is a solution of the equation

φ(x) =
∞∑

k=−∞
Ckφ(2x − k), (2.1)

with
∫ ∞

−∞
φ(x)dx = 1, (2.2)

and the function ψ(x) is defined by

ψ(x) =
∞∑

k=−∞
(−1)kC−k+1φ(2x − k). (2.3)

The choice of the sequence {Ck} determines the wavelet system. It is easy to see
that

∞∑
k=−∞

Ck = 2. (2.4)

Define

φjk(x) = 2j/2φ(2jx − k),−∞ < j, k < ∞ (2.5)

and

ψjk(x) = 2j/2ψ(2jx − k),−∞ < j, k < ∞. (2.6)

Suppose the coefficients {Ck} satisfy the condition

∞∑
k=−∞

CkCk+2� = 2 if � = 0 (2.7)

= 0 if � �= 0.

It is known that, under some additional conditions on φ(·), the collection
{ψj,k,−∞ < j, k < ∞} is an orthonormal basis for L2(R), and {φj,k,−∞ < k <
∞} is an orthonormal system in L2(R), for each −∞ < j < ∞ (cf. Daubechies
[4]).

Definition 2.1. The scaling function φ is said to be r-regular for an integer r ≥ 1,
if for every nonnegative integer � ≤ r, and for any integer k ≥ 1,

|φ(�)(x)| ≤ ck(1 + |x|)−k,−∞ < x < ∞ (2.8)

for some ck ≥ 0 depending only on k. Here φ(�)(·) denotes the �-th derivative of
φ(·).
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Definition 2.2. A multiresolution analysis of L2(R) consists of an increasing se-
quence of closed subspaces {Vj} of L2(R) such that

(i) ∩∞
j=−∞Vj = {0} ;

(ii) ∪̄∞
j=−∞Vj = L2(R);

(iii) there is a scaling function φ ∈ V0 such that {φ(x − k),−∞ < k < ∞} is
an orthonormal basis for V0;

(iv) for all h(·) ∈ L2(R),−∞ < k < ∞, h(x) ∈ V0 ⇒ h(x − k) ∈ V0; and

(v) h(·) ∈ Vj ⇒ h(2x) ∈ Vj+1.

Mallat [12] has shown that, given any multiresolution analysis, it is possible to
find a function ψ(·) (called the primary wavelet function) such that, for any fixed
j,−∞ < j < ∞, the family {ψj,k,−∞ < k < ∞} is an orthonormal basis of the
orthogonal complement Wj of Vj in Vj+1 so that {ψj,k,−∞ < j, k < ∞} is an
orthonormal basis of L2(R) (cf. Daubechies [4]). When the scaling function φ(·)
is r-regular, the corresponding multiresolution analysis is said to be r-regular.

Let f ∈ L2(R). The function f can be expanded in the form (cf. Daubechies
[5]):

f =
∞∑

k=−∞
as,kφs,k +

∞∑
j=s

∞∑
k=−∞

bj,kψj,k (2.9)

= Psf +
∞∑

j=s

Djf

for any integer −∞ < s < ∞. Observe that the wavelet coefficients are given by

as,k =
∫ ∞

−∞
f(x)φs,k(x)dx (2.10)

and

bj,k =
∫ ∞

−∞
f(x)ψj,k(x)dx. (2.11)

Suppose that the functions φ and ψ belong to Cr, the space of functions with r
continuous derivatives for some r ≥ 1, and have compact support contained in an
interval [−δ, δ] for some δ > 0. It follows, from the Corollary 5.5.2 in Daubechies
[4], that the function ψ(·) is orthogonal to polynomials of degree less than or equal
to r. In particular

∫ ∞

−∞
ψ(x)x�dx = 0, � = 0, 1, . . . , r.

The above introduction to wavelets is based on Antoniades et al. [1]. For
a detailed discussion, see Daubechies [5]. For a brief survey on wavelets, see
Strang [20].
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3. Introduction to Sobolev Spaces and Besov Spaces

Let f be a function defined on the real line which is integrable on every bounded
interval. It is said to be weakly differentiable if there exists a function g defined on
the real line which is integrable on every bounded interval such that

∫ y

x
g(u)du = f(y) − f(x).

The function g is defined almost everywhere and is called the weak derivative of
f (cf. Hardle et al. [8]). It is known that, if f is weakly differentiable with weak
derivative g, then

∫ ∞

−∞
f(u)φ′(u)du = −

∫ ∞

−∞
g(u)φ(u)du

for any φ ∈ D(R) where D(R) denotes the space of infinitely differentiable func-
tions, on the real line R, with compact support.

Definition 3.1. Let 1 ≤ p ≤ ∞ and m ≥ 0 be an integer. A function f ∈ Lp(R)
belongs to the Sobolev space Wm

p (R), if it is m-times weakly differentiable and
f (m) ∈ Lp(R). In particular W 0

p (R) = Lp(R). The space Wm
p (R) is equipped

with the norm
||f ||W m

p
= ||f ||p + ||f (m)||p

where ||f ||p denotes the norm for Lp(R).

Let W̃m
p (R) = Wm

p (R) if 1 ≤ p < ∞ and W̃m∞(R) = {f : f ∈ Wm∞(R) :
f (m) uniformly continuous }. Note that W̃ 0

p (R) = Lp(R), 1 ≤ p < ∞.

Let f ∈ Lp(R) for some 1 ≤ p ≤ ∞. Let (Δhf)(x) = f(x − h) − f(x) and
define Δ2

hf = ΔhΔhf. For t ≥ 0, define

ω1
p(f, t) = sup

|h|≤t
||Δhf ||p

and
ω2

p(f, t) = sup
|h|≤t

||Δ2
hf ||p.

Let 1 ≤ q ≤ ∞. Suppose there exists a function ε(t) on [0,∞) such that
||ε||∗q < ∞ where

||ε||∗q = (
∫ ∞

0
t−1|ε(t)|qdt)1/q, if 1 ≤ q < ∞

= ess sup
t

|ε(t)|, if q = ∞. (3.1)

Definition 3.2. Let 1 ≤ p, q ≤ ∞ and s = n + α where n ≥ 0 is an integer
and 0 < α ≤ 1. The Besov space Bs

p,q is the space of all functions f such that
f ∈ Wn

p (R) and ω2
p(f (n), t) = ε(t)tα where ||ε||∗q < ∞.
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For properties of Besov spaces, see Meyer [13] and Triebel [22] (cf. Leblanc
[9], Hardle et al. [8]).

Suppose that the function f belongs to the Besov class

Fs,p,q(L) = {f ∈ Bs
p,q, ||f ||Bs

p,q
≤ L}

for some 0 < s < r + 1, p ≥ 1 and q ≥ 1, where

||f ||Bs
p,q

= ||P0f ||p + [
∑
j≥0

(||Djf ||p2js)q]1/q.

Given a double indexed sequence {γj,k} define the norm

||γj,.||�p = (
∑

k

γp
j,k)

1/p. (3.2)

In view of the representation (2.9), it be can shown that the function f ∈ Bs
p,q if

and only if

||as,.||�p < ∞, and (
∑
j≥s

[||bs,.||�p2
j(s+(1/2)−(1/p))]q)1/q < ∞. (3.3)

Let φ(·) be a scaling function as defined earlier. Define

θφ(x) =
∞∑

k=−∞
|φ(x − k)|.

Suppose the following conditions hold:
(C1) The ess supx θφ(x) < ∞ where

ess sup
x

g(x) = inf{y : λ([x : g(x) > y]) = 0}

and λ is the Lebesgue measure on the real line.
(C2) There exists a bounded nondecreasing function Φ(·) such that |φ(u)| ≤

Φ(|u|) almost every where and
∫ ∞

0
|u|rΦ(|u|)du < ∞.

for some integer r ≥ 0.

Lemma 3.1. Suppose that the scale function φ(·) is such that the collection {φ(x−
k),−∞ < k < ∞} is an orthonormal system in L2(R) and the spaces Vj ,−∞ <
j < ∞ are nested. Further suppose that the function φ satisfies the condition (C2)
and it is r + 1 times weakly differentiable. If φ(r+1) satisfies the condition (C1),
then the norm ||.||Bs

p,q
is equivalent to the norm ||.||′Bs

p,q
in the space of the wavelet

coefficients for all s, p, q such that 0 < s < r + 1 and 1 ≤ p, q ≤ ∞ where

||f ||′Bs
p,q

= ||a0||p + (
∞∑

j=0

(2j(s+(1/2)−(1/p))||bj ||p)q)1/q.
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(Here ||a0||p denotes [
∑∞

k=−∞ |a0,k|p]1/p and ||bj ||p denotes [
∑∞

k=−∞ |bj,k|p]1/p).

For a proof of Lemma 3.1, see Theorem 9.6 in Hardle et al. [8], p.123.

4. Estimation of the d-th Derivative of a Probability Density Function

Let {Yi, 1 ≤ i ≤ n} be independent and identically distributed random variables
with probability density function f which is d-times differentiable. Suppose that
f (d) is bounded and has compact support. Suppose that f (d) ∈ L2(R). Let us first
consider the case d = 0. The problem now is the estimation of the probability
density function f. A wavelet based density estimator of the density function f can
be motivated in the following way from the expansion given in (2.9) (cf. Prakasa
Rao [19]). We can estimate f(x) by f̂(x) where

f̂(x) =
∑
k∈Ns

αs,kφs,k(x), (4.1)

where

αs,k =
1
n

n∑
i=1

φs,k(Yi). (4.2)

Here Ns is the set of integers k such that supp(f)∩ supp(φs,k) is nonempty. Since
the functions f and φ have compact supports, the cardinality of the set Ns is finite
and it is of the order O(2s).

Let us now consider the problem of estimation of the derivative f (d) of f. As
in Prakasa Rao [16], we assume that the scaling function φ(·) generates a r-regular
multiresolution analysis for some r ≥ (d + 1) and that there exists Cm ≥ 0 and
βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ r. (4.3)

This assumption implies that that the derivative φ(d) is bounded for every d ≥ 0
(cf. Prakasa Rao [16]). Furthermore the projection of f (d) on Vs is

f (d)
s (x) =

∑
k∈Ns

as,kφs,k(x), (4.4)

where

as,k = (−1)d

∫ ∞

−∞
f(x)φ(d)

s,k(x)dx.

The equation given above can be justified by using integration by parts since the
function φ(·) is r-regular (cf. Prakasa Rao [16]). This expression motivates the
following estimator for f (d)(x) :

f̂ (d)
s (x) =

∑
k∈Ns

âs,kφs,k(x), (4.5)
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where

âs,k =
(−1)d

n

n∑
i=1

φ
(d)
s,k(Yi).

Note that the estimator defined above reduces to the density estimator given in (4.1)
for d = 0. We now rewrite the expression for the estimator f̂

(d)
s (x) in a slightly

different form.
Note that

f̂ (d)
s (x) =

∑
k∈Ns

âs,kφs,k(x)

=
∑
k∈Ns

[
(−1)d

n

n∑
i=1

φ
(d)
s,k(Yi)]φs,k(x)

=
(−1)d

n

n∑
i=1

∑
k∈Ns

φ
(d)
s,k(Yi)φs,k(x)

=
(−1)d

n

n∑
i=1

∑
k∈Ns

2(s/2)+dsφ(d)(2sYi − k)2s/2φ(2sx − k)

=
(−1)d

n

n∑
i=1

[
∑
k∈Ns

φ(d)(2sYi − k)φ(2sx − k)]2s+ds

=
(−1)d

n

n∑
i=1

K(d)(2sYi, 2sx)2s+ds

=
(−1)d

n

n∑
i=1

K(d)
s (Yi, x), (4.6)

where
Ks(x, y) = 2s K(2sx, 2sy)

and
K(x, y) =

∑
k∈Ns

φ(x − k)φ(y − k).

Here K
(d)
s (x, y) denotes the d-th partial derivative of Ks(x, y) with respect to x.

5. Estimation of the d-th Derivative of a Component Probability Density Func-
tion from a Mixture with Varying Mixing Proportions

Let {Xi, 1 ≤ i ≤ N} be random variables as described Section 1. The prob-
lem is to estimate the d-th derivative of the component probability density func-
tion h�(x) corresponding to the mixing proportion w�(·) based on the observations
X1, . . . , XN . Note that the probability density function of Xj is given by

pj(x) =
M∑

�=1

w�(j)h�(x)
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for 1 ≤ j ≤ N. For x,y ∈ RN , define the inner product < x,y >N by the relation

< x,y >N=
1
N

N∑
k=1

xkyk,

whenever x = (x1, . . . , xN ) and y = (y1, . . . , yN ). Let wk = (wk(1), . . . , wk(N)).
Suppose that the vectors wk, 1 ≤ k ≤ M are linearly independent in RN . Then it
follows that the matrix ΓN = ((< wk,w� >N )) is nonsingular and det(ΓN ) > 0.
Let a� = (a�(1), . . . , a�(N)) be a vector such that

(i) < a�,wk >= δk�, 1 ≤ k, � ≤ N ; and

(ii) < a�,a� >= 1
N

∑N
j=1 a�(j)2 is minimum.

Here δk� is the Kronecker delta function. By using Lagrange multipliers, it can
be checked that

a�(j) =
1

det(ΓN )

N∑
k=1

(−1)�+kγN
�k wk(j), (5.1)

where γN
�k denotes the determinant of the minor (�, k) of the matrix ΓN . We now

construct the wavelet linear estimator, for the d-th derivative of the density h�(x)
of the �-th component, at resolution level s. It is defined by

ˆ
[h(d)

� ]s(x) =
(−1)d

N

N∑
j=1

a�(j)K(d)
s (Xj , x). (5.2)

We now study the properties of the estimator
ˆ

[h(d)
� ]s(x). For d = 0, it can be

shown that this estimator is essentially the same as the density estimator studied in
Pokhyl’ko [14].

6. Properties of the Estimator
ˆ

[h(d)
� ]s(x)

Lemma 6.1. Let PrVsg ≡ gs denote the projection of a function g ∈ L2(R) on the

space Vs. The estimator
ˆ

[h(d)
� ]

s
(x) is an unbiased estimator of [h(d)

� ]
s
(x).

Since Xj is a random variable with the density function pj(x) =
∑M

�=1 w�(j)h�(x),
it follows that

E(
ˆ

[h(d)
� ]

s
(x)) =

(−1)d

N

N∑
j=1

a�(j)E[K(d)
s (Xj , x)]. (6.1)

Note that

E[(−1)dK(d)
s (Xj , x)] =

∫ ∞

−∞
(−1)dK(d)

s (u, x)pj(u)du
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=
∫ ∞

−∞
(−1)dK(d)

s (u, x)[
M∑

�=1

w�(j)h�(u)]du

=
M∑

�=1

w�(j)[
∫ ∞

−∞
(−1)dK(d)

s (u, x)h�(u)du]

=
M∑

�=1

w�(j)[
∫ ∞

−∞
Ks(u, x)h(d)

� (u)du]

=
M∑

�=1

w�(j)PrVsh
(d)
� (x)

= PrVs [
M∑

�=1

w�(j)h
(d)
� ](x)

= PrVsp
(d)
j (x)

= [p(d)
j ]

s
(x). (6.2)

The second equality follows by integration by parts and the last three equalities use
the fact that projection and derivative are linear operators. Therefore

E(
ˆ

[h(d)
� ]

s
(x)) =

1
N

N∑
j=1

a�(j)[p
(d)
j ]s(x)

=
1
N

N∑
j=1

a�(j)(
M∑

k=1

wk(j)[h
(d)
k ]s(x))

=
M∑

k=1

[h(d)
k ]s(x) < a�,wk >N

= [h(d)
� ]

s
(x). (6.3)

�

Lemma 6.2. Suppose the scaling function φ(·) has the property that the function
K(x, y) is d-times differentiable with respect to x and there exists F ∈ L2(R) such
that

|K(x, y)| ≤ F (x − y).

Suppose that Z is a random variable with density function h ∈ L2(R) which is
d-times differentiable and h(d) ∈ L2(R). Then

E||(−1)dK(d)
s (Z, ·) − [h(d)]s(·)||22 ≤ 22ds+2s

∫ ∞

−∞
F 2(u)du. (6.4)

Proof : Observe that

E[(−1)dK(d)
s (Z, x)] = [h(d)]s(x)
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and

E||(−1)dK(d)
s (Z, .) − [h(d)]s(·)||22

= E(
∫ ∞

−∞
|(−1)dK(d)

s (Z, x) − E[(−1)dK(d)
s (Z, x)]|2dx)

=
∫ ∞

−∞
E[Y 2(x)]dx, (6.5)

where
Y (x) = (−1)dK(d)

s (Z, x) − E[(−1)dK(d)
s (Z, x)].

Since
Ks(x, y) = 2sK(2sx, 2sy),

it is easy to see that
K(d)

s (x, y) = 2ds+sK(2sx, 2sy)

which implies that

|K(d)
s (x, y)| ≤ 2ds+sF (2sx − 2sy).

Therefore

E[Y 2(x)] ≤ E([(−1)dK(d)
s (Z, x)]]2)

≤ 22ds+2s

∫ ∞

−∞
F 2(2sx − 2sy)h(y)dy. (6.6)

Hence

E||(−1)dK(d)
s (Z, .) − [h(d)]s(·)||22

≤ 22ds+2s

∫ ∞

−∞
[
∫ ∞

−∞
F 2(2sx − 2sy)h(y)dy]dx

≤ 22ds+2s

∫ ∞

−∞
[
∫ ∞

−∞
F 2(2sx − 2sy)dx]h(y)dy

= 22ds+s

∫ ∞

−∞
F 2(v)dv. (6.7)

�

Lemma 6.3. Suppose the scalar function φ satisfies the conditions stated in
Lemma 6.2. In addition, suppose that the functions h

(d)
k ∈ L2(R), 1 ≤ k ≤ M.

Define the estimator
ˆ

[h(d)
� ]s(x) of [h(d)

� ]s(x) as given in (5.2) for 1 ≤ � ≤ M. Then

E

∫ ∞

−∞
(

ˆ
[h(d)

� ]s(x) − [h(d)
� ]s(x))2dx ≤ 1

N
< a�,a�)N22ds+s

∫ ∞

−∞
F 2(v)dv (6.8)

for 1 ≤ � ≤ M and for all s ≥ 0.
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Proof : Let

Yj(x) = (−1)dK(d)
s (Xj , x) − [p(d)

j ]
s
(x), 1 ≤ j ≤ N.

Then the random variables Yj(x), 1 ≤ j ≤ N are independent with mean zero for
every x. Applying Lemmas 6.1 and 6.2, we get that

E

∫ ∞

−∞
(

ˆ
[h(d)

� ]s(x) − [h(d)
� ]s(x))2dx = E[

∫ ∞

−∞
1

N2

N∑
j=1

a2
�(j)Y

2
j (x)dx]

≤ 1
N

< a�,a� >N 22ds+s

∫ ∞

−∞
F 2(v)dv.

(6.9)

We now obtain bounds on the mean integrated squared error

E(|| ˆ
[h(d)

� ]
j
− [h(d)

� ]]||22).
Theorem 6.1. Suppose the conditions stated in Lemma 6.2 and Lemma 6.3 hold
for some r ≥ 0. . Suppose that the functions h

(d)
k ∈ Fs,p,q(L), 1 ≤ k ≤ M for

some L > 0. Further suppose that s ∈ (0, r + 1) and 1 ≤ q ≤ 2. Then there exists
a constant C = C(q, s, L) > 0 such that for all � = 1, . . . , M,

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||22) ≤ C[(< a�,a� >N

22dj+j

N
+ 2−2js]. (6.10)

Proof. For any function g ∈ L2(R), let PrVjg denote the projection of g onto the
subspace Vj . Since

E(
ˆ

[h(d)
� ]

j
(x)) = [h(d)

� ]
j
(x) = PrVjh

(d)
� (x),

and PrVjh
(d)
� ∈ Vj , it follows that

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||22) = E(|| ˆ

[h(d)
� ]

j
− E(

ˆ
[h(d)

� ]
j
)||22) + ||E(

ˆ
[h(d)

� ]
j
) − h

(d)
� ||22.

We now obtain a bound on the second term on the right side of the above equation
by applying the Lemmas 3.1 and 6.1 to 6.3. Note that the second term on the right
side of the above equation is given by

||E(
ˆ

[h(d)
� ]

j
) − h

(d)
� ||22 = ||[h(d)

� ]
j
− h

(d)
� ||22

=
∞∑
i=j

∞∑
k=−∞

|bi,k|2

≤ 2−2js
∞∑
i=j

22is||bi||22

≤ 2−2js(||h(d)
� ||′Bs

2,2
)2 (6.11)



WAVELET LINEAR ESTIMATION FOR DERIVATIVES OF A DENSITY 287

since Bs
2,q ⊂ Bs

2,2 (cf. Hardle et al. [8], p.124). Here bi,k denote the wavelet

coefficients of the function h
(d)
� in the space orthogonal to Vj . Furthermore, for all

L > 0 and all q such that 1 ≤ q ≤ 2, there exists a constant C1 = C1(s, q, L) such

that for all h
(d)
� ∈ Fs,2,q(L),

||h(d)
� ||′Bs

2,2
≤ C1.

Hence

||E ˆ
[h(d)

� ]
j
− h

(d)
� ||22 ≤ C12−2js. (6.12)

We now obtain an upper bound on the first term

E(|| ˆ
[h(d)

� ]
j
− E

ˆ
[h(d)

� ]
j
||22).

Applying Lemma 6.3, we get that

E(|| ˆ
[h(d)

� ]
j
− E

ˆ
[h(d)

� ]
j
]||22) ≤ 1

N
< a�,a�)N22dj+j

∫ ∞

−∞
F 2(v)dv (6.13)

= C2 < a�,a�)N
22dj+j

N
.

Combining the relations (6.12) and (6.13), we get that there exists a constant C > 0
such that

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||22) ≤ C[< a�,a� >N

22dj+j

N
+ 2−2js]. (6.14)

�

Remark 6.1. If the integer j is chosen so that 2j 
 N1/(2s+2d+1), then the bound
on the right side will be minimum and is of the order N−2s/(2d+2s+1)[< a�,a� >N

+1]. This results extend Theorem 1 in Pokhyl’ko [14] on the L2-loss in the problem
of density estimation to the estimation of the d-th derivative of a density function
constructed from observations of a mixture with varying mixing proportions.

The next result deals with L∞-loss of the estimator
ˆ

[h(d)
� ]

j
as an estimator of

h
(d)
� . We first state a lemma due to Pokhyl’ko [14].

Lemma 6.4. Suppose that a function g ∈ C1(R) with ||g||∞ < ∞, ||g||2 < ∞ and
||g′||∞ < ∞, where g′ denotes the derivative of the function g. Then

||g||∞ ≤ (4||g′||∞||g||22)1/3.

Theorem 6.2. Suppose the conditions stated in Lemma 3.1 and Lemma 6.3 hold
for some r ≥ 0. Suppose that the functions h

(d)
k ∈ W r+1∞ , 1 ≤ k ≤ M for some

r ≥ d and there exists γ > 0 such that ||h(d)
k ||W r+1∞ ≤ γ. Further suppose that
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the scaling function φ ∈ Cr with compact support. Then there exists a constant
C = C(r, γ) > 0 such that for all � = 1, . . . , M,

E(|| ˆ
[h(d)

� ]
j
− [h(d)

� ]]||∞) ≤ C[(< a�,a� >N )1/2 2dj+j

N1/3
+ 2−j(r+1)]. (6.15)

Proof : Since

E(
ˆ

[h(d)
� ]

j
(x)) = [h(d)

� ]
j
(x) = PrVjh

(d)
� (x),

it follows that

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||∞) ≤ E(|| ˆ

[h(d)
� ]

j
− E(

ˆ
[h(d)

� ]
j
)||∞) + ||E(

ˆ
[h(d)

� ]
j
) − h

(d)
� ||∞

= E|| ˆ
[h(d)

� ]
j
− [h(d)

� ]j ||∞ + ||[h(d)
� ]j − h

(d)
� ||∞. (6.16)

Since φ ∈ Cr(R) for some r ≥ 1 with a compact support, the condition (C3)
holds for all r ≥ 1. Furthermore φ ∈ W̃ r∞(R). Hence there exists a constant
C = C(γ) > 0 depending on γ such that

||[h(d)
� ]j − h

(d)
� || ≤ C(γ)2−j(r+1), (6.17)

whenever h
(d)
� ∈ W r+1∞ (R) with ||h(d)

� || ≤ γ. This follows from Theorem 8.1(ii),
Lemma 8.6 and Theorem 8.2 in Hardle et al. [8].

Since φ ∈ Cr(R), r ≥ d with a compact support, the function K(x, y) is a
uniformly bounded and continuously d-times differentiable function with respect
to x and there exists a constant C > 0 such that |K(d)

j (x, y)| ≤ C2dj+j . Therefore

|E((−1)dK
(d)
j (Xi, x))| ≤ C2dj+j .

Let

Yd,j(x) =
ˆ

[h(d)
� ]

j
(x) − E(

ˆ
[h(d)

� ]
j
(x)).

Then

|Yd,j(x)| = | 1
N

N∑
i=1

a�(i)((−1)dK
(d)
j (Xi, x) − [p(d)

i ]j(x))|

≤ 2
N

C2dj+j
N∑

j=1

|a�(j)|

≤ 2C2dj+j [< a�,a� >N ]1/2. (6.18)

The same argument shows that

||Yd−1,j ||∞ ≤ C2dj
N∑

j=1

|a�(j)| < ∞.
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Applying Lemma 6.4, we get that

||Yd,j ||∞ ≤ [C2dj+j(< a�,a� >N )1/2||Yd,j ||22]1/3

for all Xi, 1 ≤ i ≤ N. Observe that |K(d)
j (x, y)| ≤ C2dj+j for some constant

C > 0 and K
(d)
j (x, y) = 0 if |x − y| > L = 2 diam(supp φ). Let F (x) =

C2dj+jI[0,L](|x|) where I(A) denotes the indicator function of the set A. Then
F (·) ∈ L2(R). Applying arguments similar to those in Lemma 6.3, we get that

E|| ˆ
[h(d)

� ]
j
− E

ˆ
[h(d)

� ]
j
]||∞ ≤ [C2dj+j(< a�,a� >N>)1/222dj+2j

< a�,a� >N>

∫ ∞

−∞
F 2(x)dx]1/3

≤ C
2dj+j

N1/3
(< a�,a� >N )1/2 (6.19)

for some constant C > 0 independent of j and d. Combining the inequalities (6.17)
and (6.19), we get that there exists a constant C > 0 such that

E[|| ˆ
[h(d)

� ]
j
− h

(d)
� ||∞] ≤ C[2−j(r+1) +

2dj+j

N1/3
(< a�,a� >N )1/2]. (6.20)

Remark 6.2. If the integer j is chosen so that 2j 
 N1/[3(r+d+2)], then the
bound on the right side will be minimum and is of the order N−2(r+1)/[3(r+d+2)]

{[< a�,a� >N ]1/2 + 1}. This result extends Theorem 2 in Pokhyl’ko [14] on the
L∞-loss in the problem of density estimation to the estimation of the d-th deriva-
tive of a density function constructed from observations of a mixture with varying
mixing proportions.

Remark 6.3. Let p′ ≥ max(p, 2). Following the techniques in Leblanc [9] and
Prakasa Rao [19], one can get bounds on the Lp′-loss

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||2p′),

whenever hk ∈ Fs,p,q(L), 1 ≤ k ≤ M by noting that

E[|| ˆ
[h(d)

� ]
j
− h

(d)
� ||2p′] ≤ 2[E(|| ˆ

[h(d)
� ]

j
− E

ˆ
[h(d)

� ]
j
||2p′) + ||E(

ˆ
[h(d)

� ]
j
) − h

(d)
� ||2p′ ]

and

||E(
ˆ

[h(d)
� ]

j
) − h

(d)
� ||2p′ ≤ C12−2js′

for some positive constant C1 whenever s ≥ 1
p and s′ = s + 1

p′ − 1
p (cf.

Leblanc [9], p.83).
If 1 ≤ p′ ≤ 2, then a bound on the Lp′-loss

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||p′p′)
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can be obtained by noting that

E(|| ˆ
[h(d)

� ]
j
− h

(d)
� ||p′p′) ≤ 2p′−1(E|| ˆ

[h(d)
� ]

j
−E

ˆ
[h(d)

� ]
j
]||p′p′ + ||E(

ˆ
[h(d)

� ]
j
)− h

(d)
� ||p′p′)

and

||E(
ˆ

[h(d)
� ]

j
) − h

(d)
� ||p′p′ ≤ C22−2js′p′

for some positive constant C2. We do not discuss the details here.
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