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Let Hy={w=z+jylz=x, +ix,€C,x,,x;,yeR y>0,ij= —ji,j?= —1=i2} be
the 3-dimensional hyperbolic space. The group PSL(2; C) acts on H via the mappings

w—y{wy:=(aw+b)(cw+d)~?! for y= (az)ePSL(Z; C). If R denotes the ring of
c

integers in an imaginary quadratic field K over Q of discriminant d = dy <0 in Z,
then I':= PSL(2; R) is a discontinuous group of homeomorphisms w—y{w) of H,
onto Hj, with a fundamental domain &#. On H;, we have the PSL(2; C)-invariant
b 1*
volume element dv = y~*dx,dx,dy. LetT:= {(gd)el"} and I := {(O ) >EI“‘,o }
For weH, and yeTI', we write y{w) = z(y{w)) + jy(y{w)). -
For nin R*:.= {2a/ﬁ|aeR},- weH, and s in C with Re(s) > 2, the Poincaré series

P(w, 5;n) is defined by

P(w,s;m) =}, )\'Q<W>)Sexp[— 2n|n|y(y<{w)) + 2ni Re(z(y (WD) A.)]
2 I

Forn=0, P(w,s;0)is precisely the Eisenstein series denoted by E(w, s). While P(w, s; n)
is real analytic on H; and invariant under T, it is in L2(#) only for n #0; on the
other hand, it is an eigenfunction of the Laplacian A on H, only for n=0, with
eigenvalue s(s — 2).

The Eisenstein series E(w, s) can be continued meromorphically for all s in C, the
only singularity being a simple pole at s = 2. The Poincaré series P(w, s;n), for n # 0,
have a meromorphic continuation for all Re(s) > 1 and are holomorphic there except
possibly at a finite number of points s;; the finitely many p,:= 5,2 —s,) in (0, 1) are
called the ‘exceptional’ eigenvalues (in the spectrum of A). The FEisenstein .series
E(w,1+it) for ¢ in R together with similar series for the cusps of # different from
oo ‘span’ the continuous spectrum of A; further, within [1, o), there is also the discrete
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spectrum of A giving rise to the Maass waveforms u(/=1,2,.,.) which are
eigenfunctions for A in LZ(F\IHI3) with Ay, + Auy=0and 4, > 1. For these u, as well
as the eigenfunctions corresponding to th, we have at the infinite cusp, the Fourier
expansidn

ww)= Y pm)yK;, (2r|m|y)exp[2niRe(z)] )
0#meR?
where K, () is the Macdonald function of order v and y,:= (4, — 1)"? or (4, — 1)*3,
If w' is the order of the group R™ of units of R, then the index [T, I=w/2.In
the case of fields K with class number 1, we know from ([1], Theorem 4 12) that the
Eisenstein series E(w,s) has the Fourier expansion
w' w' {x(s—1) , 2n°

E(w,s)=—y"+ P

27 (s—1)ldel 0 |dg | T(s){k(s)

X ¥ iml“101‘-5(§\/@)st—1(2n|m!y)eXp[27riRe(mZ)fI

O #meR*

(2)

where (y is the Dedekind zeta function for K and a,(m):= ¥ |t|*". We note that the
' fim

expansion (2) is valid even for s=1+1r, for r in R. Let us write ¢ hgd:i= fyf gdp

for f,g (measurable on &) and v(F):= [dv.
Our object is to obtain an estimate for the Fourier coefficients p,(m) of u;, in terms
of m and y,. This estimate can be deduced from-an asymptotic formula for

: lpy(m)?
X)= ) — 3
A li<x 1|1 —ix)[? ®)

More specifically, we shall prove the following.

Theorem. For A(X;m)= A(X) defined by (3), we have, as X — oo,

ACtsm) = 2783 | o5 e @)
n°|dg|e,
Jor any e>0 with the O —constant depending on ¢, where Cyi= ZJ b du. As a
consequence, we obtain o sinhmy
pilm) = O €212 m112+4) 5

and O-constant depending at most on s.
Remark. Surprisingly, the contribution to A(X) from the exceptional eigenvalues is
very much under control here (unlike in the problem of sums of Kloosterman sums),

The proof of the theorem follows Kuznetsov [3] and at the same time, hopefully

helps in clearing a few obscurities. It rests, of course, on an identity arising from the
computation of the inner product

{P(,2+it;m),P(,2+it;n)) for t in R an{d mn#0in R* 6

in two different ways, namely via the Parseval relation for L*(#) and also using the
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Fourier expansion of the Poincaré series involved. We proceed to give the details of
the proof wherein, for the sake of simplicity, we shall restrict ourselves to the case
when the field K has class number 1.

Let us first establish that for Res > 2,rin Rand m#0 in R*,

(P(.,s;m),E(.,1+ir)> =

; , m
21+2irn.3/2 F(S -1+ lr)r(S‘-— 1~ "‘)al'r(i\/d_lc>
|dg|@drmy =1+ T(1—ir)[(s—$){x(1 — ir)

The left hand side is precisely

ZP({F(KW»)’exp[ —2nlm|y(y<wp)+ 2niRe(z(y{w))i)] E(w, 1 + ir)dv
F yel, . .

= f y'exp[—2ntm|y] E(w, 1 + ir)exp [2ni Re(zm)]dv
o \H, ‘

=f y“3exp[—2n|m|y]dyf fE(w,l+ir)exp[——27riRe(zﬁz)dxldx2
0 ‘

R\C

2 " |m| g, (}/@)

Kir2 d,b 2
JET =it eIy @

- f "y exp[— 2nimly]
0

m
2 /aT(s—1+iNT(s— 1 —i¥) n' ¥ a"(E‘/‘T")

(g2 (@rlm|} 1T (s~ 1/2)  m|" T(1—ir){(l — ir)

which proves (7). Using now (7) with m,n 0 in R*,

fao CP(,s;m), EC,1+ir))(P(.,5;n), E(., 1 +ir)>dr

_ 4mdnp s
Aml*T 0T d |

o T =1+l ~1 - ir)xzm,(gx/d?)aa(g\/ﬁ)

n

* J —olm IT(L —irPT(s — 1/2)P{ k(L + ir)|? dr.

: (8})

On the other hand, we knoW from Sarnak [4], that, for ¢ in R, |
CP(, 2+ itym), u)() ) <P(., 2+ it,n), ()

elpi(mol)_IC(L+ i+ 1) PIT( + i~ ) o)

" 16n|m|t [t T(3/2 + it)|?
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Using (8) and (9), the Parseval relation gives us immediately that the inner product
in (6) is nothing but

|| lr(1+l(t+x:))|2 (A +i— )
167 |m|t e[| L ¥ /2 Z pilom )p’ CG/2+ i)

4 ICGR 4072 J‘w
()2 dy|im|* |t "

ir

n

m

-0

IT(L+i(t + )T +i( — r))!zaf,(?JTK)air(fﬂ;)
2 2 91 (10)
IT(L— ir)? (1 — i) 4

Using the Fourier expansion of the Poincaré series P(.,2 + it,.) from [4], we see that
the inner product in (6) also equals

SV (FR) N S(m,n;c)j‘” dy J'
y 2

4 2 ml+|n 2 c4+2ir 1+2it
2 (ml+ ) odc el

_ S m| ) _ zm oz
e [ 2”('"“’ +y1c12(1+|z|2))+2mRe( Ayt +121) y"z)

X

dx,dx,
(1 +1z )“"] (b
where
S(m,n;c) = Y. exp[2rniRe((a + Aa)/c)].
amodc¢
ad= 1(modc)

For the Kloosterman sums S(m, m; ¢) we have from [2], the estimate similar to Weil’s,
viz. for every £ >0,

|S(m,m; )l < lel' **|(m/dk. ¢) oo (c/(y/dx, ) , ' (12)
On the same lines as in Kuznetsov [3], let us introduce

H, = DU DEITL+ i — )P
T —inf*

and

Y ; ’
hy(r) = j cosh(nt)H(r,t)dt, for Y >0 and r in C with |Imr| < 1.
0

Moreover, let us multiply the two equal expressions (10) and (11) for the inner product
in (6) with m = n, throughout by

1672 |m|? (l + t’) 16n2|m|? cosh(nt)|T (32 + lt)l2
|d| 4 ldgl n

and then integrate both the resulting expressions with respect to t from 0 to Y. We
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then obtain
. . ,
., H@rL) air(i‘\/dk)

lpy(m)|> o I ® j _ _
LA gE W g ), e ) e

v(ﬁx)(l ;1 ) 167|m|? -
= _Y34+_Y |+ c|”*S(m,m;c) x
‘dxln 3 4 idK‘ OEER I | ( )

cmodt 1

Iy
o Jo Jr?\4 SO (13)

B omiRe( dy_ dxidx,
exp[—2njmi(y+ 1/(y13, 1) —2niRe(rma(y + 1) Nd=" 0553

using the abbreviation d, for ¢2(1 + x% + x2) and recalling that z = x; + ix;.
To derive an asymptotic formula for 4(X) as X lends to infinity, we first need to
estimate hy(r) before employing (13). We see actually that

h(r)—-jytz_—rz( 1 1 )dt
! o 2r \sinh(nt—mnr) sinh(mnt+ 7r)

and then it is not difficult to find that indeed

hw(r)=2r Y du

o sinh(nu)

(which positive constant we denote by c,). Again, as in [2], we have for
1<r<Y-logy,

¢y > hy(r) = ¢, + O(Y ™2 + exp(— 7r)) (14)
Further, for r > Y+1log Y, |
hy(r) « (r — Y)exp(— n(r — Y)). (15)

We next estimate the series

2
16|’;"'|" S ||~ S m, m; 1)
K C

on the right hand side of (13), denoting the relevant integral therein by I(c). This
integral may be rewritten as

®dy [ rdr 2n
wo=[ %, o5
o ¥ Jo A+,

x exp[— 2n|m|8(y + y~!) — 2mi Re(remd(y + y~* exp(— 2iargc)))]1do x

Y ;
X J (% + t2>exp[—— 2itlog y]dt. | (16)

0
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(after replacing y/§ by y, with 6:=1/|8,|'* =1/(|c|(1 4+ 72)'/). The integral with
respect to t occurring in (16) is trivially O(Y?); however, for y s 1, it can be seen to
be O(Y?*/|log y|), on using integration by parts. The integration with respect to y can
be broken up into integration over 4;:= (0, 1/wy), A,:= [1/wy,wy] and A;:= (wy, o0)
writing wy for exp(1/Y®), for any fixed ¢>0. We are then led to the
estimation

I(c)<<Y2J.w rdr (J +J )exp[—2n1m15(y+y-1)]—‘1¥-—+
Ay A3

o (14712 yllog y|
®© dr - dy
Ysj r [ exp[—2x|m|d(y +y~!)]=
o Utr7 ), pL—2x|m|é(y +y )

' ® 2312\ 1-8
<<Y2f ___’___Y(LC_@:“_L_)_>
o (L+r2)?" |m|

o 2\1/2\ 1-8
X dr+ Y3J' __’_.___ Y—‘(M) dr’
o (1+r%)? im|

for any B in (0, 1). Choosing now & = 1/2, we obtain that

« Y*2(lcl/|m|)! ~#

I{c)« e j N rdr
S (miflel R (AR

for any B in (0, 1). This together with the estimate (12) implies, for the second term
on the right hand side of (13), the bound, for any fin (0,1):

167 |m|? ~ _
|dk| ogen lel ™8 0m,m;c)1(¢) < Y26, 4 gya(my/dc). (17)
cmod+ 1

For the contribution to the first term on the left hand side of (13) from all the
exceptional y,:= (u; — 1)*/2, we derive the following estimate, namely

; |p1(m)[* Ay (1)IT(1 — ixy)|? « |m]* ** for any &> 0. (18)

1n=(u~—1)1/2

For this purpose, we note that these % are all purely imaginary and further know
from Sarnak ([4], Theorem 3.1) that il < 1/2; hence H(y;,¢) and hy(y,) are well-defined.
The asymptotic formula I'(x + iy) ~ /2mexp[— x|y|/2]|y[* =12 for |y| - oo implies

that H(x,,t)~21:|t:izexp[——27t|t|]/|1“(1—i)(,)l2 as t—oo. Consequently, for every
Y>0, we have

Y
hyGuI{UIT (1 — i)} « J t* exp[— 2nt] cosh(nt)dt < 4/n°,
. ‘
Now, for Y> 1,

min -——-————_h"(x’). ~> min _ M) =:C(>0)
== VITA =)~ p=gu-12 1T (1 —ix)l?



g

3-dimensional hyperbolic space 83

and so

lpi(m))?h, () ‘
¢ ’< — 1+e¢ .
r Zl/lm—,ixz)ﬁ«""' , by (13)and (17)

1
2=(um—1)1/2

This proves (18).
For the proof of our theorem, we shall, in the light of (18), totally ignore the

-presence of the yu,’s, in the sequel.

Setting Y= X + log X in (13), the left hand side of (13) is 2(c; —c, X ™) A(X) —

cs Y, |pim)I*|lexp[— my,]|T(1 —iy,)|* for certain positive constants ¢, and c,, on
lal<x

using (14) as well as the positivity of the terms on the left hand side of (13). Hence,

for any ¢ >0, we obtain, with a constant ¢, >0, ‘ ‘
n3|dy|
v(Fr)

We next substitute Y=X —logX in (13) and noting that Y+log Y~ X and »
Y—logY> X —2log X, we get by (14) that

, (1 + O((X — log X)~™2 + exp(— 7))
x,sx;mgx“”( | I — i)

e A(X) < X3 +c4X5/2|m|1“. (19)

+

+ Y |pi(m) 2 hy (1)) +

X~-2logX< <X

om0 — X +10gX))
+ O(x?;:xexp(—n(x,—X+logX)) A= i) +1,

_o(Fp) {(X—logX)3 . X —logX
" mldy 3 4

} +0((X ~log X)**|m|***)

where I, denotes the second term on the left hand side of (13). From (14), (15) and
the estimate |{x(1+ir)|”'=0(|r|*) for every ¢>0 as [r|->co0, we see that

: . F
I, = O(X**%|m[%), while the right hand side of the equality above is > %———’—QIX -
K

cs X3/?|m|**¢ for a positive constant cs. But now, by (13) and (17),

pmg;ﬂ,sx |pi(m)|? ml—_%%l—; =0(X?—(X —2logX)3) +
+ O (m )
| = O(X52|m|'**)
Therefore
U(F )

clA(X) > ¢, A(X — 2log X) > X3 = oo X512 |m|t*e,

3ldg|n

for a positive constant c¢. This together with (19) proves the Theorem. The estimate ,
(5) follows on applying the usual difference argument to (4).
b
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Remarks (i) In principle, it should be possible to derive the estimate (5) through the
general theory of automorphic forms on GL(2) but our proof is elementary.

(ii)-An estimate similar to (5) with |m|**¢ in place of |m|/?>** may be obtained in
the case of Maass cusp forms on 4-dimensional hyperbolic space (the order of integral
Hurwitz quaternions replacing the ring R).

Appendix
In this appendix we indicate how one can proceed to generalise the result of the
theorem above to higher-dimensional hyperbolic spaces. We will utilise the exposition
in [5] for our basic set up in this case.

Let g be a non-degenerate quadratic form on a k-dimensional vector space E over
Q and €(g), the associated Clifford algebra (see [5]), identifying Q and E with their

canonical images in #(q); for k = 0, ¥(g): = Q. Taking an orthogonal basis {e,,...,e,}
for E over Q with respect to g, we have

e;=4qle,)p=12,...k, ee,=—e_ e(l<I#m<k)

For any subset (M ={e,,,...,e, |v; <v,<:--<v,} of the basis {e,,...,e,}, define
ey:=e, e, and e;:= 1 for the empty set ¢. Then these e,, form a basis for €(q)
over Q. We have three Q-linear involutions x+x', x x and x> x* on € (q) reducing
to the identity map on Q such that for any ey as above ¢, =(—1)ey,
8y =(—1)"*2 and e¥ =(— 1)¢*~"2¢,  Further for any x,y in %(q),

Xy=yx and (xy)* = y*x*,

We have a trace map tr:%(q)—>%(q) defined by tr(x)=x + x. When q= —I,, the
negative of the unit quadratic form I, on E, we have on Vii1:=QIBEc¥(g), a
scalar product {v,w):= 1tr(vw) for all v,w in Vi+1s 50 that {1,e,,...,e,} becomes an

‘orthonormal basisfor V, , ,. For any x = Y drcercin €(g) with A€Q or more generally
M
for x=) Ay epy=Y Ayen®1 in ¥(g)®R with Jy in R, we know that |x|:=
M M

1/2
(Zlﬁ,) defines the euclidean norm of x. Further we have |v]? = vi = v whenever
M

v#0 in ¥(9)® R has the property that there exists a Q-linear automorphism ¢,:
Vi+1= V.4, such that vx = ¢,(x)v" for all x in ¥, | . We denote the algebra ¢ @®R
and the vector space V, ; @R resulting by base change respectively from €(q) and
Vis1> also by €(g) and V, | again. Given a lattice L in V.., the dual lattice L* is
defined by L*:= {yeV,, ,|{x,y>eZ for every x in L}.

Let H*? be the (k + 2)-dimensional hyperbolic space given by the upper half-space
w=xo+x1e;+x,0,+ - + x0, + X+ 1€k+1]
XosX1,X25. 005X 41 ER, X4 >0},

We write w=2Z + re, ., Or more precisely, for P =(XgsXq5ensX, +1) corresponding

fow=xXotx.e, + - +xe+x,, ¢, in H*2 Z=Z(P):=x,+xe,+ - +x.e,

and r =r(P)=x, ., >0. Then | W(P)|*:= |Z(P)|? +(r(P))* or simply |w|?: = |Z|? +r2.
4
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We have on H** 2, a Riemannian metric ds® = x, 2, (dx2 + --- + dx{, | ) and associated
volume element dv:= x,_ ***dx,Adx Adx,,; the corresponding Laplace-Beltrami

operator A is given by

02 0* 0
Ai=x2, | —+-+ )—kx —_—
| k+1<ax3 ox? T ox,,

M+

For the Clifford algebra #(q) over the base field K = R or Q and g = — I, the Vahlen
group SV, (K) is defined by

( (i) o, B,y,0eb(g)withad* — fy* =1\
(i) af* = Po*,yo* = oy*
a B\ |(iii) ad, BB, y7, 66eK ,
Vi(K):= -
S < ()’ 5) (iv) oy, poevV, ., >
(v) axf+ pxa,yxd + 6xjeK,VxeV,
\ (vi) oxd + pxyeV,, . VxeV,,

For K =R, SV, = SL,(R) and SV, = SL,(C). Let J be a Z-order in the Q-algebra ¥(q)
(ie. a subring containing 1 and a Q-basis of #(g), with the underlying additive group
finitely generated) which is stable under the involutions * and ' of €(g). By I': = SV,.(J),

we mean the subgroup {(a §>ESVk(Q)[a, B,v,0€J } The Vahlen group SV, (R) acts
' Y

on H**2 as orientation preserving isometries through the maps
1 ap
P—oP:=(P+ f)(yP+ ) * for o= 5 eSV,(R).
Y
For any w=w(P)= Z(P) + r(P)e,,,cH**%, we have correspondingly for w(oP)=
Z(oP)+r(cP)e,, ,,

_(0Z + P(Z + 8) + ar?
WZ + 812 + |y*r?
(GZ + 6)

IYZ + 8|* + |y|*r?

, with Z:=Z(P), r:=r(P)

Z(oP)

whenever y #0,

. =d,})——1 ___(y*)-'l

v 1
and r(aP) =r(P)/(|yZ + é|* +|y[*r*). By I'"_, we mean the subgroup {(O \;)EF}.

We also assume, for simplicity, that I' has only one cusp viz. co, for the above action
on Hk+2. .

If A:=JnV,,, for a given Z-order J in ¥(q) over Q, then A is a latticein V, .
Then, for any p in the dual lattice A¥ and s in C with Re(s) > k + 1, the Poincaré
series U ,(,,s) is defined by :

Uu(P,s):= Zr’r\(frfP)’e(i |ulr(oP) +<Z(aP), 13) 1)

where e(f): = exp(2nif) for 0eC and i = ./ — 1€C (with argi = n/2). (see [5]). This series
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converges absolutely, uniformly on compact subsets of H**2 x {seC|Re(s) > k + 1}
and Uy(P,s) is actually an Eisenstein series. If 40 in A¥ and Re(s)>k+ 1,
U,(.8)eL*("\H**?). For Re(s)>k+1 again, U u(8) satisfies the differential
equation .

(~A—s(k+1—8)U,(5)=2x|ul2s — ) U, (s + 1) 2)

which implies immediately that U (., s) has a meromorphic continuation to the domain
given by Re(s) > k; further, it has no pole at s=k+1 and indeed, from (£51,
Theorem 10.1) it even follows that U,(.,s) is holomorphic in s for Re(s)> k + 1/2.
The possible poles of U,(,s) in ((k+1)/2,k+ 1) correspond to the values of
s> (k + 1)/2 for which s(k + 1 — s) is an (“exceptional”) eigenvalue of — A.

The proof of the proposed generalization rests as before, on an identity arising
from the computation of the inner product

U k+ 1+, U, (k+1+it)) foru#0in A¥ teR

in two different ways, namely through the Parseval relation in L2(I'\H**2) or by
using the Fourier expansion of the given Poincaré series as described below.

Let C,,, for given u,ve A¥# denote the number of « in J such that ad =1 and
¢y (1) =v where ¥ is the map dual (with respect to {,») to the map ¢, defined by
ax = @,(x)a’ for every x in Vi+1 ®R. We note that C, , is O(1) for all y,v. For all s
in C with Res >k + 1, we have from [5] the following Fourier expansion

AF AU,(w,8) = Z# e({Z,v>) {C“.vf‘exp(— 2z|plr)o(F »)

ve A

exp[ — 27| | ]
prvizs 3 SE¥) riy(1+121%) e(_<(y*)‘1Zv“ p
weo (Y Jy,, (1+1z)?y r(l+1ZP)

—r<z’ v>>dz} (3)A )

where v(# ,) is the volume of fundamental domain & A =Vei 1/, 0. denotes the

Kronecker delta and the generalized Kloosterman sum S(u,v,y) for y#0 in J is
defined by

Sviyy= 3 e(p L) + <7y vD)

(x, y)eD(y)

with D(y):={(e, )]0 = (:g ) for fixed y lie in distinct double cosets of I" modulo

I'"_}. For (o,8)eD(y), we have ad* — 1eJy* by definition,

Let G(r,v) denote the series occurring as the coefficient of e(¢Z,v)) in the Fourier
expansion (3),. For v #0, the integral in G(r,v) may be seen to be O((r|v|)~ ") for
any NeN with the O-constant independent of y while, for 4 =0, the integral can be
evaluated ([5], (9.10) et seq.) and is well-behaved at infinity as a function of r. Therefore

the seres ) G(r,v)e((Z, v)) is absolutely convergent for Re(s)>k+1/2 since, from

[5], we know that the Linnik — Selberg series Z(u,v, =Y M 'co‘nverges
Y

(V20
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absolutely for Re(s)> k + 1/2. We may thus obtain the continuation of U,(,s) for
~ Re(s)> k + 1/2. Since, for any p in A¥ the growth of U,(.s) as r tends to infinity,
is governed by that of (max(rRe®, Rek+1/2=9)) x exp(— 2n|y|r), the inner product
U, (581) Uy(,8,)) is well-defined for Res,, Res, >k + 1/2 whenever at least one of
v is not zero. We now proceed to compute this inner product first for u#0, v=0.
In fact unfolding the same yields

I T R S (Y7
<Uu('9sl)1E(-352)> = Lu ' Hz)’) X
I'(s,) yro  (9F

X j" 1 E 2 exp(— 2N K, _ s 12 @Rl pir)dr

If we now set (formally) s, = (k + 1)/2 — it (with 7eR) and s, =k + 1 + it (with real
1), then we obtain
ﬂ(k+ 1)/2—itlu|—it

U, (k+1+ir), E(,(k+ 12+i1)) = T((k + 1)/2 — i7)

S 0, M, - +i
X (yy ((k+1)/z) p J;, r(" 1)(2 'exp(—— 2n|u|r)Kit(21t|u|r)dr
Y

27t(k+ 1)/2—&“‘[ —ir

= . X
F(—t——ir)
2

SO, 57 /AT ((k + 1)/2 +i(t + D)T((k + 1)/2 + i(t — 1))
y7%0 ()&t V24| | YR+ DD (K + 2)/2) + it) '

since .
® 1 AW —Y) o
L exp(—ox) K, (ox)x? dx = FTe+17) (Re(a) > 0,Re(s) > |Re(v)|).
Thus '

(Ul + 1+ i), E((k + 1)/2 4 in)y =
k+1 | | kbl
—Zn(k"'Z)/Z"it'#I—'il F(T"'l(t"'t))r( > +i(t T))

- (k+1)/2 +it 9 .
G Y5

SO, u,7)
Z (W)(k +1/2)—it

k+1 . k+1
Dl DI2=ie| ) =it F(T +ilt+ T)>F<T +i(t— r))

- (k+1)/2+it
(rlul) I"(————k+1-—it)l'(————k;2+it)

2
_ k+1 .\
Z(O,u,—izl-+it)~.
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We recall that for g 0in A¥, U (., s) has a meromorphic continuation for Re(s) > k
and is actually holomorphic for Re(s) > k + 1/2; its finitely many poles may come from
s; in R such that p;:=s(k+1—s) is an “exceptional” eigenvalue for —A ie.
0<s;<k+1/2 (cf. [5]). In addition to the eigenfunctions v, corresponding to these
‘exceptional” eigenvalues, the discrete spectrum for — A in L*(I'\H**?) consisting

of {0} u{4;lj=1,2,...} gives rise to corresponding eigenfunctions u, = constant and
{u,,u,,...} respectively. If we define

Fe=iJk+ 14—, xp=J4—k+1)%/4

corresponding respectively to eigenvalues f; that are “exceptional” and to
“non—excep?ional” eigenvalues 4;, thep any eigenfunction u, for p=ij or iy;
corresponding to g or 4; has the Fourier expansion

up(W) =b,O)r* 2=+ 3 a,(urtRK (n|ulre({u Z))
O*peA#
with a constant b,(0) possibly non-zero for p = if,.
For any eigenfunction u,, we see that
iy Uyl k4 140> = 2/nfdr |+ 12 =61 =0y(F g, (1) x

DOt 1 —it— (k4 12— p)T(k+ 1 — it = ((+ 12— )
T(k+1—it—k/2)

By analytic continuation, the Parseval relation now gives us

U Gk+14it), Uk+1+4i)) =
'32(9’_/\)

2

+1
@R 1 T p o) ( e ) g
. r(k+1+it )2+ 4n*t2
—_— - —_——x
2 P T Gnluy
k+1 N k 2
w F(——+i(t+t) I"(-i-—1+i(t—t)
XJ 2 2
_ k 2 2
o lr(izr—l_n> r(k;2+it>
k+1 24z
x|Z{ 0,y — —
( ot ) po | @),

where p is summed over the non-zero part of the discrete spectrum of — A. This

inner product, on using the Fourier expansion of U,(,k+ 1+ it) (and unfolding)
becomes

J‘ U, (w,k+ 14 i) 1= exp(— 2m|ujr — 2miCZ, i) dZdz’ (5)4
r;\H!'b-l
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0 0 +1-2it
= 0(F )CMJ exp(— 4=xjulr)r*dr + f ——rk—;—z——exp(— 2n|ulr)dr x
0 0
‘ _ 2yl )
Sry [ 77 ( P+ (ZP)

X 3y 2l — L
1720 ('Yﬂk+1+u Vit (1+lZ|2)k+1+u

G*) 12y~
"""(“<m’”>"<?’”>dz-

As in Kuznetsov [3] we now define

r(f‘—;—lw(zﬁ))

2 2

F(%lj‘- i(t— 1:))

)

and for t€C with |Im(r)| < 4 (a constant) and given parameter Y > 0, we set

H,(x, t):

2

hy(r):= [¥sin(n(x, + it)exp (mi(x, — 1/2)) H,(z, £)de (6)

(k. being 0 or 1/2 according as k is even or odd). For real 7, we note that
Hy(t,t) = @i(t,t)H,,, (1, t) where H,(z, 1) is precisely the kernel H(z,t) in [3],

2 —12 1 |
coshntH (t,1) = ( - —— ) and
2t \sinh(n(t — 1)) sinh(r(t + 1))
PR AR G (R Ve s
PRUN F o (G+1/2* +17)
(Pk(T, t) Y k-1 /2 (_]'2 + (t + ,r)z)(jz + (r__T)Z)
H) (kodd) .
i=1 (G*+7%)
Further, for t real and for t >0, we readily see that
k/2
(G+1/2)* (keven)
j=1
OTt) == Jk 2 (M4
1172 (k odd) . '
j=1

Multiplying both sides of the equation 4),=(5), by
k+1
(4lul) r(k;rz . l.t)

n(v(F))*
and then integrating both sides with respect to ¢ over 0, Y), we get

2

exp(mi(yx — 1/2))sin(n(x; + it))

~

e S e e s S B e e
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+1 Y
sy ‘:i‘?‘z hy(—ip)+ U—t%/\—) j _explrit— Phsiniati +10)
(5 )

w k+1
: — —dt=~
X j—ka(r, t) Z(O, JiR 5 + n) n o)

k+ 1 Y . el .
+(47L'|,U|) J Z S(ﬂ,,u,')’) Pk(t)dtJ‘ rk+1—2u
0 J Vet

7"-’2(9.;\) 0 ??‘*0('}’7k+1+h

2 ( ___1_____>)xe(—<M Il>>
xexp(-— |l r+r|y12(1+|z|2) r(+1212)’

xe(—-r(Z,u))r—g%dZ (8)

Y
P, (t)dt

0

2dr 1rw+1n: j
1

2

1 k+2 . . :
where P, () = le:xp(ni)( e — 5) sin(m(y, + it))\l“(—_;;— + it) is a monic polynomial
A

in t of degree k + 1. 7
()
# ré,/) -

We are now led to the estimation of
. Y [} ‘
I(y):= J P"(t)gt J J\ exp[—- 2n
o 9 0 Vi .
' v*—lz‘v-l > . >:|
— 2mi —_— +r{Z,
(<r(1 vzt AR
~dr dz ,
r1+2ir (1 + lZEZ)k+1+it (9)
- with 6,:=1y|(1 +|Z|?) and then of the series
Su usy)
. I(y).
v*?;o (')"5’)“1
We have, for k >0,
I(G) < Y32 (| /ly))~ 178 VBe(0,1). (10)
We now proceed to estimate

Y
J sinhntH,(t,t)dt forkeven

hy(r):={"°

. (6)
j coshntH,(r,t)dt forkodd
0

first for T satisfying 1 <t < Y—log Y with Y large. In fact,

‘@ sinh

hy(t) = h(7) -*J\ cdsh ntH,(z, t)dt.

; Y
For odd k > 1,

rcoshm.ﬂk(r,t)dz; r tz;fz( 1 1 )go‘(t Hdt
v | y 2t \sinh(z(t—1) sinh(n(t+1)/) *
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1 © 27) k=1
«7:1*—“*—“. u(.u; 2 2, ul(u+ 2ty du +
T '2_*_,[2 Yy-¢ SIMOTU | m=0
G+

+exp(— m)f exp(— nt)tz"'zdt}
Y

1= 2k k —(t-¢)
« * L_f u=r*exp(—nu) + exp(— nr) < Y + exp(— 1)
for every ¢ > 0.

The same estimate
ho(t) — hy(1) « Y2 4 exp(—nt) for 1<t < Y—logY (11)

holds also for even k> 0.
On the other hand, for 7> Y + log Y, we claim that

hy(i) «exp(—(n—e)(r —Y) for every ¢ > 0. (12)

It is easy to get lower bounds for h(z) for all T > 1. Actually, from (D>

sinh(nt)Hy(t,t)dt  forkeven
0

ho (1) = ¢ (13),

cosh(nt)H,(z,t)dt forkodd

0
The integral in (13), for even k is
> ‘—,12— f sinh(nt)exp(nr)exp(n(t + ) — n|r — t))de > (1 — e *)/2n
o ’ N

while, for odd k, the integral equals 2 u/sinh(nu)du which is clearly independent of
7. We thus obtain

hw(r)>c3=min(1:—e’fl°ii), 2 f . du) (13y
, 2n o Sinh7nu

Now, as before, let us define

2

AX; W= AX):= Y la, ()|
lplsxl/ r(k“_ )
A p

We need only an analogue of Weil’s classical estimate for the generalized Kloosterman
sums S(u, u;y) as well as an appropriate estimate for |Z(O, u, k + 1/2 + i)|? (due to
Elstrodt-Grunewald-Mennicke and unpublished as yet) in order to prove the following
formula for A(X), carrying out the remaining steps exactly as in the case k = 1:

For k>2 and any &> 0, we have

2

AX; ) = A(X) = B X T2 + O(X*+372 |yl +e)
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as X tends to infinity, with an explicit constant B, depending on k and the O-constant
depending at most on ¢ and k.
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