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On Ramanujan’s modular identities

S RAGHAVAN :
School of Mathematics, Tata Institute of Fundamental Research, Bombay 400005, India

Abstract. For Ramanujan’s modular identities connected with his well-known partition
congruences for the moduli 5 or 7, we had given, in an earlier paper, natural and uniform
proofs through the medium of modular forms. Analogous (modular) identities corresponding
to the (more difficult) case of the modulus 11 are provided here, with the consequent partition
congruences; the relationship with relevant results of N J Fine is also sketched.
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1. Introduction

For the partition function p("), Ramanujan exhibited several interesting congruence
relations and in particular, p(5n+4)=0 (mod 5) forn=0,1,2,... etc. Besides a simple
proof for the above congruences modulo 5 via the modular equation of degree 5,

Ramanujan gave an elegant proof in ([7], p- 5). First, he writes down the beautiful
identity
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Tp derive the above partition congruences modulo 5, Ramanujan applies to both
sides of (1) an “averaging operator” Us which turns out essentially to be the operator
T3 considered by Hecke ([4], p 839). In connection with the partition congruences
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above modulo 7, Ramanujan wrote down the identity
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He also gave an ‘allied’ identity
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For identities (1) and (2), there exist proofs due to Bailey ([1], [2]) and we were not
able to find any proof for (3) in the literature at the time of writing [6] wherein we
had provided a uniform (and what appeared to us as quite a natural) proof for all
the identities (1)-(4) through the medium of modular forms of Haupttypus (—2,5, 1)
and Nebentypus (—3,7,¢) in the sense of Hecke [4]. We had also indicated at the
end of [6] the existence of identities such as (1)—(4) corresponding to the case of
modulus 11 in connection with Ramanujan’s partition congruences modulo 11. The
object of this note is precisely to provide such identities.

It has been pointed out to us kindly by Professor N J Fine in a recent letter
~ (subsequent to the Ramanujan Centenary Conference at Urbana-Champaign) that
both the identities (3) and (4) had already been proved by him in [3] using identities
involving elliptic functions, “without much difficulty”. One finds in [3] also the identity

fj (1 ;xlln)ll

;p(11m+6)xm+1=11x5"; (113 + 8.110 + o2 + 11f) (5)
: 1—x" 12
nll( ) |

stemming from “lengthy” calculations, where o, 8 are modular functions for the
congruence subgroup I'o(11) with integral coefficients in their Fourier expansions. In
the sequel, we shall exhibit an identity involving 3¢ p(11m + 6)x™** and modular
forms of Nebentypus (—3, 11, &); this will turn out to be the same as (5) after proper
identification of a, f above with ratios of modular forms of Nebentypus (=3,11,¢).
An “allied’ identity involving
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is also derived later and this gives risetoa classical congruence py1(11n)= p,(n)(mod11)
for n=1,2,..., where p(n) is the coefficient of x" in [T (L —x")"

We are convinced more than ever that an approach to the partition congruences
modulo 5,7 or 11 through modular forms is not only natural but also has an
unmistakable simplicity of its own. For example, identities (4.14), (4.16), (4.17), 4.12)
in [3] are transparent linear relations between modular forms of Nebentypus (—3,7,¢€)
the arguments in this context used in [3], appear, on the other hand, to be more
involved.

2. Notation and preliminaries

A modular form of Nebentypus (— k, p, &) in the notation of Hecke ([4], p. 809) is a holo-
morphic function f ofa complex variable zin the upper half-plane H such that forevery
M= (Z Z) in SL,(Z) with ¢=0 (mod p), f((az +b)cz +d)” 1y =g(d) (cz +d)f(2)
for a character ¢ on (Z/pZ)” and further such that f((gz + r)(sz + ) sz +1)7k s

bounded at infinity for every (q g in SL,(Z). The latter condition is equivalent to
S
saying that f is bounded in a fundamental domain for the congruence subgroup

e

cusps, namely at 0, co. We know from Hecke again that for p= 11 in particular and
oddk > 1, the Eisenstein series

E, (2= i ( Y, d"”l(nT/id—>) exp (2ninz),

n=1 \1<djn

c= O(mod p)} in H. For prime p, T'o(p) has exactly two

8 d

E;d2)=7c+ 2, ( Y, d? (—1—>) exp (2minz)
n=1 \1<dln 1

with a well-defined rational number 7, (6.8 V3= — 3, y5 = 1275/11) are of Nebent.y—

pus (—k,11,8) with &(r)=(/11), the Legendre symbol, while the “theta series

with Grossencharacter” ‘

8(2)= Y wtexp (mizuf) (with o= i+ /—11)
el + Zw !
is a cusp form of Nebentypus (— k,11,¢) for odd k > 1. Let n(z) be Dedekind’s function
defined by

n(z):= exp (2miz/24) [T —exp (2minz))
‘ = »
and 71y(z):= n(Nz) for every integer N > 1. We know, from Hecke, that n*ni, is a
modular form of Haupttypus (—2,11, 1). For k=3, the three modular forms Ej s,
E, 3,9, form a basis for the space of modular forms of Nebentypus (— 3,11, ¢). Further
a basis for modular forms of Nebentypus (—5,11,¢) is provided by Eis.Eas
n*n, E3,n*nt E,y 3 and 721,95, as may be easily verified. One may find in Hecke
([4], pp.827,828) tables for the constants term 7; of the Eisenstein series above or
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for the dimensions of the spaces of modular forms of Haupttypus or Nebentypus for
small weights k and small prime stufe p.

We now furnish the coefficients a,(*) of exp(2minz) from n=0 to n=33 for the
modular forms #*p?,, E, ,, E, ; and 9 since it was necessary to know the coefficients
of g, 4*2, g3 in the expansions of 1031 E 1,35 1°02 1By 5, n%02, 9, for our subsequent
working. The coefficients a,(-) are listed against the respective modular form in
increasing order of n from 0 to 33:

an(ﬂzﬂ%1)505 15 _2> _1:25 1: 2’ "'250’ "“25 —'25 19 —2;434, "1, —"43 ""2:45 03
2,2,-2,-1,0,—4, —38,5, -4,0,2,7,8, —1.

a,(E1,3):0,1,3,10,13,26,30,48, 51,91, 78, 121, 130, 168, 144, 260, 205, 288,
273,360, 338,480, 363, 530, 510, 651, 504, 820, 624, 840,780, 962;
819, 1210.

a(E3,3): —3,1, —3,10,13,26, — 30, —48, — 51,91, ~78,1,130, — 168, 144,
260, 205, —288, —273, —360, 338, —480, —3, 530, —510, 651,
504, 820, —624, —840, —780, 962, —819, 10.

a,(83):0, 2,0, —10, 8, —2, 0, 0, 0, 32, 0, —22, —40, 0,0, 10, 32,0, 0, 0,
-8,0,0,70,0, —48,0, —70, 0, 0, 0, ~74, 0, 110.

Writing g for exp (27iz), we also highlight those Fourier coefficients in the expansions
of Ey 5. Ey s, fr=n*1}Ey 5, foi= n*n31E,,3 and f3:=752n%, 9, which are relevant to
our proofs in the sequel:

E15(2)=q+ 1507 +82¢° + 241g* + -« + (11)*g" + ...,

1275
E2,5(2)=_i‘1*"+q— 15q2+82q3+241q4+ .+.q11 + -,

[1@O=0"+ ¢ +3¢* + - —11g" 4 ... = 55422 4 ... 4 154g3 4 ...,
Ja2)= =3+ 70>~ 2¢° + 9¢* + ... = 30841 4 ... ~1177g2% + ...
~407¢% + ...,

J3@)=2g"—4g° —124*+ .. —88g" & ... 4 286422 4 ... —2204%3 + 9

In connection with the derivation of partition congruences for the modulip = 5,7, 11
etc., Ramanujan [7] applied to the relevant power-series

fla)= 20 a,q",

an operator U, taking f to U,(f) defined by U NQ=1/pX, f(g"*{) where the
summation is over all the pth roots of unity {; actually, (U,(f))(g) is nothing but

1=03,,4". One may note that this operator U, is essentially T/ considered (much
later) by Hecke ([4], p. 839) on modular forms for I'o(p). In the case of modular
forms of Nebentypus (—k.p,¢) in particular, the operator U, maps the subspace
generated by the two Eisenstein series into itself and the subspace of cusp forms into
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itself. For the Eisenstein series E, s, E, s of Nebentypus (—5, 11,&), we may thus write
U (E1s)=0E s+ B1Ess, Upi(Eas)=0,Ey s+ BBz s

with constants oci,ﬁj. On the other hand, by directly applying U, to the Fourier
expansions of E, s, E, 5 in (6), we see that

U11(E1,5) =(11)4q + U11(E2,5) = 1%-175 +q+ -

and a comparison of Fourier coefficients gives us immediately that o, =(11)4,
ﬁl =0, 062=0, ﬁ2=1 i.C.

Up(Bys)=(1)Ey 5, Uys(Ess)=Eas. | -
From (6), it is clear that

U, (f1)(@) = —11q — 55¢° + 154¢> + ---

U, (f2)(z)= —308q — 1177¢* — 407> + ---

U,1(f3)(2) = —88q +2864% — 2204° + -+ . ®)

On the other hand, since f;, f», f5 generate the subspace of cusp forms of Nebentypus
(— 5,11, ) which is preserved by U,;, we have, for suitable constants v, ;,

U (f)=yirf +vafatvi3fs i= 1,2,3. ©)

We solve for the constants y; ; from the following equations obtained by equating
the corresponding coefficients of ¢" in Uy,(f;) in the light of (9), (6) and (8):

=3y, == 1L,y + Ty 0+ 2913 = —55 71,1 — 21,2~ 4y, ;=154
—3y,,=—308,751 + 722+ 2923 =— 1177, 72,1 — 2V2,2 — 72,3 = —407
o T3y32= 88 st Ty3.2 + 23,3 =286, ¥3,1 — 273, — 473, = —220.

We then obtain

901=0, 91.=11/3, y,3=—121/3

Ya0=—1331, y,,=308/3, yr5=— 847/3

Var=0, 73,=88/3, 733=121/3
and therefore

U (fo) =% fo— 185, Un(fa)= -0+, -1,

Uy (f5) =81 +1% 15

3, Two ‘allied’ modular identities

) a b\ .
For Dedekind’s n-function, we know that for every M= (c d) in SL,(Z),
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n((az + b)(cz + d)™') = e(M)(cz + d)*5(z) with a well-defined branch of (cz +d)F
and a multiplier e(M) which is a 24th root of unity. If M is in T'y(11), then

M1 ==(101 ?)M(I/OH ?) is in SL,(Z) and so Ni1((az + b)(cz + d) ™) =g, (M) x

by. . .
(cz +d)*n,,(z) for every M = (: d) in I'y(11), with &, ;(M):= &(M,). Using the fact

that #** is of Haupttypus (— 12,1, 1) and n*ni; of Nebentypus (—2,11,¢,,), it is not
hard to see that (¢! (M )/e(M))? = 1 = (¢! (M)/e(M ))? for every M in I'y(11); further,
we can verify that ni}/n and !/, are both of Nebentypus (— 5,11, ¢,,).

Lemma. With q = exp (2niz), we have

© n(q n © n
Eis@=Y (%)%{:%3_) E,4(2)= _3+n; (_1”_),,2 q

n=1 1 l“q"
0 n q"(l + 11q”+ 11q2n+q3n)

E, S(Z)=n§1 <11> (1__qn)5 ’
1275 n

EZ S(Z)—“"—ll + =1(H)n41 1 qn

Proof. We give only the proof for the assertion involving E, ,, since the proofs of
- the remaining three assertions are the same as that in ([6], Lemma on p-226). Now
F=olm+ j)(m + j— D(m+ j—2)(m+ j—3)=4m* + 20m? and for lul <1,

e mm—1)(m— 2)(m—3) —
T=0 ~nn, 4l !

I for j=0,1,2,3.
Hence

6(u4+u3+u2+u)_

(1—-14)5 m=1 m=1
— S 4, m u+u2
mzlm u 5(1__14)3

as in ([6], Lemma) again i..

S L 4 112 =
LI Qe for lul < 1.
(l_u) m=1

Settingu=gq"(r=1,2,... ), multiplying both sides of the last identity by the Legendre
symbol (i%) and summing over r from 1 to 00, We obtain

) (L)qm,m,;: $ (L)q’(l +11q" + 11g% + ¢¥)
T ’

rmx1 =1\ 11 (1 —-q’)s

Our assertion for E 1,5(2) is now immediate. .
- Thefollowing theorem gives the identities involving the two “allied” functions 511 /5
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and n'1/n,,, which correspond for the modulus 11, to Ramanujan’s identities (1)~(2)
or (3)-(4) for 5 or 7 respectively.

Theorem. We have the two “allied” identities:

: 5n=1 .
(1) X ﬁ (1 ~ xn) = 3825 44 (1 _xn)S
n=1

116 & [ n\x"(1+x")
-{ggz—gngl(_I)( n)3

-+ 5 () s

32 2 #ﬁ}
—_—— uex
3825 uez+zuz+\/—u)/2

[ee]
_ allnmy11
U(l X 3 = (l>x”(1+11x"+11x2"+x3")
11 ‘

ﬁ 1— n)z xun)z

i =" 1 (1275 3 (1>n4 X" )
(i f"[ i BV AGTEAGYAR T
_fant e (n x4 xT)

382554 \11) (1—x")°

1276 & (n\ , x'
—3825<"‘3+,.;<11>" 1-—x")

3872 2. i
_orv~ U x#ﬂ}
3825 ueZ+Z(lz+\/—11)/2 ’

ﬁ (1= x"2(1 — xH"y2,
Proof. Since y11/n and #'1/n,, are of Nebentypus (—5,11,6:1) there exist constants
AysAas AgsAg, As and py, fo, Ra, fha, s Such that
niim=ME; s+ 2AE; s+ A 01 By + A0, Eq 3+ Asn*nis9s, ‘
N =mE; s+ By s+ push*n} Ev s+ pan*ni Ep s+ psn* i s,
From (6) and the Fourier expansions
nil@me) =g+ + g+,
L (2)n11(2) = 1 — 11q + 447 — 55¢° — 110g* + - — 20684 + -+,
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we obtain the system of equations for A, u;:
Ay=0, A;+4;—31,=0, 151, —151, + Ay +Thy + 245 =0,
824, 4824, + 13 —21,—425=0, 2414, +2417,+3434+91,—1245=0,
BPu=1, p+py— 3= —11, BSpy — 15p, + py + Tpy + 2u5 = 44,
- 820y +82pp + gy — 2, — 4ps = — 55,
241y + 241y + 3py + 9y — 1205 = — 110.
Solving these equations, we get
Ay =T§3ﬁ, Ay =0, Ay= —SlslTssa /14=ﬁa As =3_g%5‘

11 (11)* (11)* x 116 (11)* x 32

u1=0, p, =13k, H3= —

3825 H+T 3535 0 Ms= 33

If we write x in lieu of g, the two “allied” identities are now an immediate consequence,
in view of the Lemma above.

Together with (7) and (10), the theorem yields the

COROLLARY,

: 11 4,11 (11)° 11 ¢

(1) Uii(nit/m) = (11) niim+ 3 f1“"3'f2“*121f3

.. : 11)* 11)% x 17 11)3
(ii) U11(’711/’711)=’711/’711"“( 3) fi +( )3>< fz“( 3) f3

Proof. Applying U, to both sides of the identities
i/ =ﬁ‘}z—5(3E1,5 =118/, + [, +32f3)
N M =3855(33E,,5 — (1%, + ((11)% x 116), + (1) x 32)f3)

and using (7) and (10), we obtain, on substituting thereafter for E, s in terms of n1!/y

and for E, s in terms of n'Y/y,,, assertions () and (ii) of the Corollary, after
simplification.

Remark 1. The Fourier coefficients in the expansions of U,,(f;), j=1,2,3 are all
integral clearly. However, it is not obvious why the coefficients of Ldr-1for
R B or 8B, 4121 are integral or equivalently, why the Fourier coeffi-
cients of f, + f; are all in 3Z. Actually, the Fourier coefficients of E, 3 + 9; are already
in 37, for purely arithmetical reasons. To see this fact independently, let us note first

that the constant Fourier coefficient in E, ;3 +38; is — 3 while the Fourier coefficient
ofg"forn>1is

d
d2<_> + 2
12-;1': 11 ,;25;, #

Hji=n
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where =7 + Z-3(1 + ./ — 11). Let n=n,-3" with r the highest exponent such that
3" divides n. Then evidently

d\ _ d
%dz (ﬁ) = dlzn:l dz ('1—1‘> (mod 3)

When y; runs over 4 in o with pji=n, and v, over u in o with pji=3", then p;v,
covers the set of p in 2 with pji=n twice, in view of p;v, = (— p;)(— v,). Hence

1

I P

Uea lea HEa@

pi=n M=n, uig=3"
Now _

Y pr= ) 1(mod3),

pii=ny Hi=ny

HEa Hea

since u=2%(x+./— 1y), pii =ny,3[n; together imply that 3]xy but 3/(x, y) and

Y i+ /-1yr= Y -1

x,yeZ X, yEZ
K4 11y? =4ny 4y =dny
= Z (x? + y) = Z 1 (mod 3).
x,yeZ pi=ny
X2+ Lyt =dny ez

But

e ()

ui=ny 1<dlng
UEa

since Q(,/— 11) has class number 1 and has just 2 roots of unity. Also since
d . 4
3ny,2 ¥ (= )=2 ) d* 57 |(mod3)
1<diny 11 i1gdiny - 11
and as a consequence, we have
d
Y our=2Y d2<-ﬁ>(mod 3).

uji=ny 1<dn
HEa

On the other hand
T o= Y e-1b)= L 6y

P 3r x,yez x,yeZ
FZEM X1yt =4 211yt =4
=2y 1=2 Y, 1(mod3).
pi=3" pi=3"

Uuea 3l pea

But the number of y in < with 3/u and pji=3" is just 4, Hence
Y, u?=2(mod3),

pup=3"
HEa
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and as a result,

Youk= Yy =2y ﬁ(i) (mod 3),
Mi=n uea I<dln 1 ;
nea Hi=ny

proving our assertion above.
Likewise, from the simple congruence relation

el g -0

d ./d |
= ) (ﬁ)_ Y (%-)EO(H‘IOCI:;),

1<dny 1<dlny

we see that E; ; — E, ; and hence f, — f, has all its Fourier coefficients in 37Z. It is
no more a mystery as to why all the Fourier coefficients of the sum of the last three
terms on the right hand side of assertion (ii) in the Corollary above are integral, since
the Fourier coefficients of f; — 2f, — f 3 are all in 37! In connection with congruences

for Fourier coefficients of modular forms, we should refer to the recent interesting
results due to J Sturm [9].

Remark 2. From the definition of U,,, it is easily seen that

. 5

o = " q

Uy, D; _ =U11<n1(1“5111 )11)'U11 =
) n= 1_ n
’L]l( q")

il
r-18

n

= ﬁ (1 _qn)ll'Un(qS P(n)qn)

= li_0[1(1~q")11 i p(llm+ 6)gm* 1.

m=0
Hence, by assertion (i) of the Corollary above, we obtain

__qllm)ll

o@D
3 [1a
ZO p(1lm + 6)gm+t = g5 m=;
m= I’:Il (1 _ qm)lz

|+ (11)°E, 3 — 11E, ; — 3639, }

36]4 I:Il (1 _ qlln)Q/ ].:[1 (1 _ qn)3

This may be seen to be equivalent to identity (3.25) derived in ([3], p.158) after
“lengthy but elementary” calculations (that have, however, been suppressed), as soon
as we check that «,f can be identified respectively with E; 3 —93)/6(n7,/m%),
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E, 3/n3./n%). The infinite products occurring on the right hand side of the identity
just stated above have expansions as power-series in g with constant term 1 and other
coefficients in Z. Hence the right hand side of this identity is a power-series in g with

coefficients in 11Z. As a result, the well-known partition congruences p(11m + 6) =

O(mod 11) due to Ramanujan become evident. Partition congruences for a higher
modulus, say (11)> may also be obtained therefrom; for example, if a,, is the coefficient
ofg" !in

11n)2

= (1—g
E —_—
2.3nU1 (1 _qn)9
then p(11m + 6) + 44a,, = 0(mod (11)?).

Remark 3. Following Newman [5], let p(n) denote the coefficient of g¢" in
[[7-1(1—g¢"). Now

U11(’111/’111)= U11<n§0p11(”)qn>/nfjl(1 —q")
=( iopu(un)q") / [0 —a)

On the other hand, we know that

U11(’711/7711)=1_§‘%'§U11(E2,5)

D 1y | U 352U
—3825((11) Uyi(f1)— 116 1 (f2)— 11(f3)
Therefore
3 putting = [ a-a)
X {T%‘%‘s‘Ez,s —%5—((11)21111(1'1) — 116U, (f,) — 352U11(f3))}

giving us the congruence

pu(tin=p )~ 11, piti—1) T d‘*(%)(mod(uf)
r=1

L <d|r

and in particular, the classical congruence p;, (1 1n) = p;(n) (mod 11).

4, Ramanujan’s proof for partition congruences modulo 11

In this section, we present the proof for the congruences p(11n + 6)= 0(mod 11) giveq
tersely by Ramanujan in [7], along with proofs for the case of the moduli
5,7,49, 121,23 etc.
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Writing \

M

P=1-24

n

]

< > d)exp(bzinz), Q0=1+240 i ( > d3>exp(2ninz),

L\ 1<dp n=1 \1<dn

R=1-504% < > d5>exp(27tinz),
n=1 \1<d|n

we know that QR is just the normalized Eisenstein series of weight 10 for the modular
group, namely

QR=1-264 3

n=1

( Y d9)exp (2minz).

1<dn

Also, the normalized Eisenstein series E,, of weight 12, given by

65520
Elz(z) =1+ W Z

n=1

( Y. dtt ) exp (2minz)

1 €dn

is a linear combination of Q* and R? which generate the space of modular forms of
weight 12 for the modular group; indeed, with gq:= exp (27iz),

691 + 65520 q"( ¥ d“>=441Q3+250R2. (11)

n=1 1<dln

Given any natural number m and two power series

n=0

(v o0
R, = Z a,q". R,= Zo_b,,q",

with all a,,b, integral, we write R, =R, (mod m) whenever a,=b,(modm) for all
n > 0. Using the congruence d'! = d(mod 11) for every integer d, we note that the left

hand side of (11) is = — 2P (mod 11) while the right hand side is = Q* — 3R? (mod 11).
Thus we have

Q*—3R?= —2P(mod 11). (12)
It is also clear that
QR = 1(mod 11). (13)
As a consequence,
(Q° — R?)3 =(0*® — 3R?)° 4 10(Q® — 3R?)*R? + 40(Q® — 3R?)>R*
+80(Q® —3R?)2R® + 80(Q> — 3R2)R® + 32R!°
=(Q° —3R*)* —(Q*® — 3R?)*R? + 7(Q*® — 3R2)*R*
+3(Q° — 3R*)2RS + 3(Q* — 3R2)R® — R*°(mod 11)
=(Q® — 3R?)5 + (0 — 3R?)*R*(— 03 + 10R?)
+3(Q* —3R?*)*R® + 3(Q> — 3R?*)R® — R!°(mod 11)
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i

(Q* —3R*)’ —Q(Q* - 3R*)* - (Q* - 3R**R*

+3(Q® — 3R?)2 RS + 3(Q* —3R%)R®—R'® (mod 11), by (13)
(Q% —3R?)° — Q(Q* — 3R*)* — (@~ 3R*)*R*(Q* - 3R?)
+3(Q® — 3R2)R® — R*°(mod 11)

(Q* —3R?)° — Q(Q° — 3R?) — R(Q® - 3R?)?

+(Q* — 3R?)(R®(6Q? — 18R?) + 3R®) — R*® (mod 11)

(€7 — 3% — Q@ — IR - R(Q* — 3%

+(Q? —3R%)(6Q% + 7R*)R® — R'°(mod 11)

(@* —3R?° — Q(Q* — 3R*)® — R(Q® - 3R?)?

+6Q°R® —11Q3R® —22R*%(mod 11)

(03 —3R?)* — Q(Q* — 3R?)* — R(Q* — 3R?*)?

— 5QR (mod 11) (14)
since 60°R® = 6= —5 = — SOR (mod 11). By (12) and (14), we have

i

i

i

(0® — R?)® = — 32P% + 8QP® — 4RP? — 5QR (mod 11)
= P5—3P*Q —4P?R —5QR(mod 11). (15)
We have, on the other hand, the well-known Ramanujan differential equations

dP d dR ‘
(= -0, G -MPO-R, a3 =iPR-0Y 09

which are of fundamental importance for the theory of p-adic modular forms due to
Serre [8]. From (16), we have immediately the congruences

dp 5 dQ dR 5 17
WP_p2 o 492 _ypo—r), ¢ =6PR-0Ymod1l). (7
13 f’ Q, 94 (PQ—R) L (
Now (15) and (17) imply without difficulty that
(Q*~ R = q~§-—(3P4 + 7P2Q + 5PR)(mod 11). (18)
q
But
(Q*—R?*)=1728q ﬁ (1—g"*=q 1_11(1 —¢")** (mod 11)
n=1 n= .
so that

(0~ R =4 ﬁ ")20 (mod 11). | (19)
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Since

¢ T -y =g [a — gy / Ta-a

— EII (1 __qn)121 i p(n)qn+5

n=0

il
s

(1= § p)g"* (mod 11)

1

=
]

v

and since, further, the coefficient of ¢''™ in g(d/dg)(Tyoc,q") With ¢, in Z
is 11mcyy,=0(mod 11), we obtain from (18) and (19), the required congruence
p(11m — 5) =0(mod 11) for m > 1. :

Without using the differential equations (16), Ramanujan derives directly from (15)

and four other congruences, the general congruence relation
p(n — 5)— p(n — 126) — p(n — 247) + p(n — 610) + p(n — 852) — .-
+ntYd—3nYd® —3n2 Y d° + 5nY d7 =0(mod 11)

din din din din

which, of cburse, implies the simpler congruence p(1ln—5)= O(mod 11) fornz= 1.
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