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On estimates for integral solutions of linear inequalities
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Abstract. Recently, Bombieri and Vaaler obtained an interesting adelic formulation of the
first a.nd the second theorems of Minkowski in the Geometry of Numbers and derived an
c'ffectlvc formulation of the well-known “Siegel's lemma” on the size of integral solutions of
linear equations. In a similar context involving linear inequalities, this paper is concerned with
an analogue of a theorem of Khintchine on integral solutions for inequalities arising from
systems of linear forms and also with an analogue of a Kronecker-type theorem with regard to
euclidean frames of integral vectors. The proof of the former theorem invokes Bombieri-
Vaaler’s adelic formulation of Minkowski’s theorem.
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1. Introduction

Bombieri and Vaaler have recently in an interesting paper [1], obtained an adelic
formulation of the first and second theorems of Minkowski in the Geometry of
Numbers and as an application, througha “cube slicing inequality”, derived an effective
general formulation of the well-known “Siegel’s lemma” on the order of magnitude of
integral solutions of linear equations. In a similar context involving linear inequalities,
one is led naturally to seek an analogue of a theorem of Khintchine’s [4] concerning
integral solutions for inequalities arising from systems of linear forms and also to look
for an analogue of a theorem of Kronecker’s with regard to euclidean frames of integral
vectors [3]. Our proof of the above mentioned analogue of Khintchine’s theorem
(which, incidentally, does not seem to be very accessible, according to Lekkerkerker
([7], p-470)) invokes the adelic formulation of Minkowski’s theorem, due to Bombieri
and Vaaler, confirming their remark in [1]: “we certainly do not believe that our
application of this inequality to Siegel's lemma exhausts its usefulness”™ In a
preliminary version of theorem 1, we had taken into account only the archimedean
primes of K; as one may Sec, its present formulation, however, takes care of a finite
number of places of K including all the archimedean ones, as is customary with
problems of this category. It is a pleasure to acknowledge here that a connected
discussion some time ago with S G Dani prompted us to look for theorem 4 (in the
sequel) that actually overlaps (in part) with a result of his in the section “Qrbits of

euclidean frames™ of his interesting paper entitled “Flows in homogeneous spaces and

diophantine approximation” wherein, however, different techniques are involved.

2. Terminology

If {Fi(Xp,--«»Xm Yoo oo yyi=1L2..., p} is a given system of p real-vah}ed
functions of the real variables Xq, .« -5 Xm> Yo - y,and if {x:() 1= 1,2,...,ppisa
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given set of p positive functions of a real variable ¢ > 0, then {F,,..., F » } admits the
approximation {yi,..., x,} if, for every real number M > 0, there exists u
= (Uy,..., U, )ER™withhtu:=max |y;| > Mandv = (v, . .. ,0,) €R" with all the y;

and v; in Z such that
FFi(up, ooy Upy 0y, 0)| < yplhtu),i=1,2,...,p.

For example (see [6]), a homogeneous real linear form L (x,,..., Xx,,, y;) = a;X,
+ ... +a,x,—y; admits the approximation y with x(t) = 1/t"; the “dual” system of
m linear forms L;(x, ¥y, - . ., ¥m) = @;X; — ¥;, 1 < i < m, likewise admits the approxi-
mation {y, . . ., z} with x(t) = 1/¢'/™. The index w/ of the linear form L is defined by

o= lub. {®|L admits the approximation y with x(t) = 1/¢"**}.

If, for some constant ¢ > 0, the form L does not admit the approximation y, with x, (t)
= 1/(ctm*%:); then wiis called the proper index of L. Clearly we have 0 < w); < co. The
form Lis called extreme, if it has proper index 0. Thus, for an extreme form L as above,
there exists a constant ¢ > 0 such that, for all u = (uy, ..., u,)eR™ with integral
uy,..., u, not all 0 and for all v in Z, we have

laju, + ... +auu, —v| = 1/(chtu)™

For example, the real form a,x; —y, is extreme if and only if a, is irrational with
bounded partial quotients in its simple continued fraction expansion; in particular, for
any real quadratic irrationality 6, the form 6x, — y, is extreme. For the “dual” system
{Li,...,L,} of linear forms above, the notions of the index w}, proper index and
extreme system are defined in an entirely analogous manner (see [6]). If )
(respectively w}) is positive, then L (respectively {L,, . . ., L, })is said to be “very well
approximable”, according to Schmidt [9]; the notion “extreme” corresponds to “badly
approximable” in the sense of Schmidt [9]. Almost no (a, . . . , a,,) in R™, with regard
to Lebesgue measure, has the property that the corresponding form L as above is very
well approximable or badly approximable ([9], theorem 6G, p. 219). It is also known
[6] that L is extreme if and only if the “dual” system {L,,. .., L, } is extreme.

The following assertion due to Khintchine (cf. [5]) is found in a footnote to page 86
of Koksma’s book [6]:

For any given m real numbers ay, . . . , a,,, there exists a constant ¢ = cloy,---,a,)
> 0 such that, for all t > 1 and all real numbers B,,. . ., f,,, the inequalities

0<x1 < Ctm,laixl—-yi—ﬁil < 1/t,i= 1,'2,. .o,.m

are (simultaneously) solvable in integers x,,y,,...,y, if and only if the system
{Li,...,L,} with L:= o,x; — y;(1 < i < m) is extreme. In §4, we consider a mild
generalization of this assertion of Khintchine’s and an application to estimate the
magnitude of euclidean frames of integral vectors satisfying an ‘irrational’ system of
linear inequalities.

Let K be an algebraic number field of (finite) degree d over the field @ of rational
numbers and R, the ring of integers in K with a Z-basis {®,, . . ., w, } to be fixed in the
sequel. Let E be a fixed vector space of dimension ! over K and let, for every placev of K,
E,=EQ® kK,,where K, is the completion of K at v. For archimedean v, we write v | o0,
in symbols and otherwise, we write v} co. Let, for v 4 o, R, denote the ring of integers in
K,and M,, a K -lattice in E, (i.e. an open compact R,-module contained in E,) such
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that M, = R!, for all but finitely many such v. For each | o, let &, be a non-empty and
bounded open convex set in E, = K} whichis, in addition, 0-symmetrici.e. forevery ain
K, with v-adic value |«|, = 1and every xin &, axisalso in &,. With M, given as above
for every vt oo, let

=14 x 1] M..
vjco vk
Then & is an open relatively compact neighbourhood of 0 in E: = EQ kK4 = K,
where K, is the ring of K-adeles [10]. Since E is a discrete subgroup of Ej4, it follows
that & A E is finite. For real 1 > 0, let A%, = {ix|xe ¥, } for v|oo and let

1#:= ]2, x 1 M.

v|oo v 0

The successive minima of & with respect to E (see [1]) are defined, for 1<j<!, by
A;: =inf {1 > 0|A¥ N E contains j linearly independent vectors},

and moreover, 0 < A, < 4, <... <4 < 0. For vjoo, let r, = 1 or 1/2 according as
K, = Ror C and let r, dx, denote Lebesgue measure in K!.For vt oo, let dx, denote
the normalized measure in K' for which R} has measure |D, |42 where |D,|, is the
(v-adic) value of the local “different” D, in R,. If A is the discriminant of K,
then|A| = [] ID,l;? Let vol () denote the volume of & with respect to the product

vy oc

measure | [dx, in E,. Then we know, from Bombieri and Vaaler [1], that

v

Ay ... A <2 (vol (LN = pe(&) = pe, say-

For a fixed finite set V' of (mutually inequivalent) valuations (or places) v of K

containing all v with v| oo, let K= 1 K. Let us write Vo, = {v|v archimedean} and
vel

V,={veV|vf oo} so that V' = VI V,. The ring K(V) of V-integers in K is, by

definition, the subring of x in K integral atall v not in Vit has the ‘standard’ imbedding

in K, as a discrete subring, with the quotient F,= K, /K(V) compact [2]. As a

‘fundamental set’ F, we can take F,x [] R, where Fo={a=(.,a,..)
veV;
e[l K.la,= Y o with ¢,...,¢ in R, maxl|c]<1/2 and for o

vjoo 1<i<d . i ] )
in the fixed Z-basis of R above, »” denotes the image of w; under the isomorphism

from K to K, }. When V', isempty, V' = v, and we simply write K, for K3 then K (V)
= R. For any x in K, the V-integer nearest t0 x is an element y in K(V'), generally
unique, such that x — yisin the fundamental set F j-above; a similar definition applies, if
we take a finitely generated submodule M, instead of K(V), in K. For x
=(...,%,...)inK;,we write || x ||, for max |x,|,. In particular, for V =V, ,wewrite

velV
Ix|l,. instead of |ixly, for x in K,.Forvin V;, we fix p,>0in R such that the
corresponding “value group” is just {p;ine Z }. We use (small or capital) boldface
letters to denote vectors or columns and corresponding letters in italics with subscripts
to denote their entries: e.g. x stands for a column with entries say, X;,...,X,and S
stands for a column with entries Sy, . . ., S,,say. With this notation for x, we write [| x|,
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for max llx:lly when x,,...,x, are in K; a similar remark applies to ||x|, when
X1,-..,X.areallin K, or to [|S],, |ISI|, etc. The transpose of a matrix A4 is denoted by
'A. If €= (...,¢,...)eKy with rational ¢, > 0 for every v in ¥ and further, if a
=%a,,...,a ) with all a;=(...,4a;,,...) in K, satisfying the condition
lall,: = max la; |, <s, for every vin V, then we write

1<igr

a<xe

v

3. An analogue of a theorem of Khintchine’s

Let S;,...,S, be r linear forms in m+r variables x,,...,X,, Vi,...,y, With
coefficients 6, ; in K given by

S="Ox—y
where S: ='(S; ...S5), x="(x;...x,), y="(; ...y, and ©® = (§;,) is an (m,7)
matrix with 8, (1 i <m,1 <j<r)asentries. Assoc1ated toSwe havea ‘dual’ system

of m linear forms 7, =T} (a, b) with a = "(a, ... a,)and b =(b, ... b,,) given by
CT:='T,...T,)=©a+h.

If a’ is defined by 'a’ = (a'b), we also write T;(a’) instead of T,(a, b). When
a’:='(a}...a,,)hasallitsentries in K(V), we define, for given u: = “(uy ... u,)with

u; inKV’d(a’) = ﬂu(a’): = (.ﬂ“(a’),})%;ﬂ:( z u.ia;'—c v)

1<j<r

where c is “the V-

vel

integer nearest to” ) u;a;. Then clearly max}Z ua;—c| < max|Zu;a;—c|,for
1<jgr veV v veV
every V-integer ¢’ in K. In a similar way, we can also define, for given u and for every

finitely generated K (V)-module M c K,
u)ve 13

where now c* is the element of M “nearest to” )  u;aj. Finally, we set, for ve V,
1<j<r '

g (@), =7 (a,b),:= max |T(a, b)|,

1€igsm

Y ud—c*

1<j<r

& (' M) = oo (&'; M); =(

We are now in a position to state the following analogue of a result of Khintchine’s

[4]:

THeOREM 1. Let §,,...,S, be linear forms in I:= m+r variables x,,...,x,,
Y1»- - - » ¥, as above, with coefficients ;;in K, ¢ a monotonic increasing function of a
positive real variable t and for every vin V;, 1, < 0 be given in Z. Let, further, ¢ = (g,)
and é = (6,) in K, be given by ¢, = ¢, /t, §, = c,0(t) for v|oo &, = 8,, = C3p%r (With
positive constants ¢, ¢, and ¢;) for wel,. Then for every 'was above in K, and every
such ¢ and J, the system of inequalities

S—u<e
by

X<é
%
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admits as solutions columns X, y with entries x,,...,X,and y;,..., ¥, respectively
from a finitely generated K (¥ )-module M contained in K, provided that, for every a in
K(¥Y and b in K(V)" as above, the following conditions are fulfilled:

(i) o4(a,b) =0, whenever |all,7 (a,b)y =0
(i) o 4(a,b) <y with y = (,)€ Ky given by

o {Cu lalle /¥ (lalle /7 (8, b)) for v]oo

» =\ c.pi max (Ja,, 7 (a, b),) for ve V, @

for suitable constants ¢, > 0 and Y defined by ¥ (te(t)) = ¢.

Proof. Our proof is on the same lines as Khintchine’s [4].
Forvin V,letTy ,,. . .,T,,, denote the linear forms in the [ variables in (a}a5. . . ;)
='a’ = (‘a'b) with the v-adic components 8;; , of 6;; in K , as coefficients in lieu of the
coefficients 6;; of Ty, . . . , T,,. Witha positive parameter 4, let us define, for every v inV,
linear forms L, ,,...,L,,in@,=a,...,8 =0, 8 = b,,...,ay=b, by

L;,,= ﬂ:aTi,u,,Lmﬁ,u = I‘u—maj(l i<ml<j<r) 3)

where p,:=p for vloo and g, =1, otherwise. The determinant of this system
of | linear forms is of absolute value 1, for every v in V. Let
Poo={(x1,. - x)eKLI L (g, X)L <1 for 1 <i <} for every v in V and

Fi=T]%.x [IR.UfO<A <4 <. .. S A, < o are the I successive minima of
veV véV . . .
&, there exists a corresponding set {a’ (1), . . ., a' ()} of linearly independent vectors 1n

K(VY such that &' (j) is in A% N K'for all A > A; and further Aj= 12?2 1 IL; @ (Nl
for v]oo. From [1], we know that

Ay . A <2 ol () = pe(F) = pr, S2Y.
In the sequel, we shall write'a’ () - (a(j)'b(j))with‘a(j)e K"and'b(j)e K" for1 <j
< 1. From (3) and the construction of a’(j), it is immediate that

Wi for vlco

. AN . 4
Ha(J)II,,S{1 for veV, 4)
and
L p~rA;  for wvleo
, < 5
7@ {1 for veV,. &)

We now claim that, as a consequence of conditions (i)}-(ii) in (2), we have, for 1 <j </,

coApm /W) for wvloo
c,plr forvel,.

A 4(@ (j)) <y withy = (¢,) and ¥, = (6)

v
In view of (4) and (5), only the part of the claim pertaining to v|co in (6) needs to be
established. If |la ()l 7 (8'(j))w = O, then there is nothing to prove. Let then
condition (ii) in (2) hold, with la(MewZ @ ())o >0 If 0;:=la(j)le [T (@ (j))
> I, then the required inequality follows at once from (4) and condition (ii), in view of
the monotonicity of ¥. On the other hand, if ¢; < i, then o;/y(0;) = ¢ (¥ (5;))

M. 7
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< oW () = u'/y (") Again, it follows from (ii) and (5) that for v|co,
Yo S T @ ()oY )<y,

proving our claim.
Since a’(1), ..., a’(l) are linearly independent,

AB:=det(a’(1)...a'(l))eK\{0}.
Assuming all valuations v to be suitably normalized, as in [1], we have [ ]| #|, = 1, by

the product formula. The linear forms L;, (for 1 <i <) have determinant 1 in
absolute value, for every v in V and therefore :

Iglu = |det (Li,v(al(j))l gi’jgl)lv

In the light of the definition of the vectors for successive minima, this gives immediately
the inequalities

NA, ... A <112 vol(&)H4 = Ilpg for v| oo

'gl"s{l for vt oo. )

For v-adic measures normalized as in [1], we note that vol (&) = 24 (n/2)|A|~"2

where s is the number of complex places of K. From the product formula and (7), we
derive at once the following estimates:

(pey~t for v |00

= <
1 I;[ |g1u = Iglvl X {(l\pE)d for vl*OO

1e.

' (pe)t™® for vl
> ]
| B, > 0, {(an)*d for vkoo. - @)

By (7), #isin R\ {0} and there exists a possibly non-empty finite set W of valuations v of

K with v.¥ 00, depending only on K, land V, such that | #|, = 1 forall vt co withv ¢ W.
Let us next consider the expansion

det(L;,, (@' @)=Y £ Ly, (). .. Ly, @ (,))D(o),

where the summation is over all the distinct subsets o = {I,. . ., 1, } consisting of m
(distinct) elements in {1, . . ., I} and for any such o, D(0), is the determinant of the r-
rowed square matrix obt=ined by deleting the rows with indicesi = [,,. . ., I, from the
matrix constituted by the last » columns of (L; , (a’ ({)) corresponding to the column
indicesj=m+1,m+2,...,m+r(=1). The number of such subsets ¢ being I!/(r!),
the (v-adic) value of the term corresponding to at least one of these subsetsis > r!6, /(')
for v|oo and > 6, for ve ¥, in view of (8). Let us fix one of these subsets, say, g,

={4y,. . . , 4} which, of course, depends on v and let {1,. .., }\ay = {s,...,5,}.
Thus, if

"’,{u: = [det (Lm+j,v (8’(1)))1 gjgrlu,

i¢o,

{r!@u/(l!) for vl

6, for veV,.

then ;
*”{v H !Li,v(a,(Qi))llJ?

1<igsm
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From the nature of the construction of a’(g; ), this gives us
RS r10, /(Mg - 4g) for vl
v 0, for veV,.
Writing
a/ (l) = l(ai,l AL ai,l)(l s i s l)v @v::’: ‘det(aij)lgjgrlua
i¢oy
we see from (3) that @, = uy" # , for every vin V. Therefore, we have the lower bounds
19 1™ /(I
2,> {r.@vu [Ny, .. Ay ) for v|oo ©)
90 ve Vf .
In order to obtain the required bounds for S —u and x under the assumption of
conditions (i}-(ii) in (2), let us consider '
ne="a@ES—-u(l<is D

= Z O‘i,j( (Bijk—'yj_uj))
1g<ksm

1<j<r

= x T (a () — Z O vk Xk }: o, i Yi

1<k<m 1<k<m 1<j<r

- 2 &, jUj-

I<jsr

Observe now that it is possible to findxy, .- - > Xms V1o o+ -5 r in K (uniquely, in view of
A + 0) such that

Yo Xt Y = vi (1<i<gl) (10)
1<ksm 1<jsr
where, for 1 <i<1, v; is the V-integer nearest t0 — Yooy The elements

. I1€j<sr ,
Xgyovvs X V1o o -2 Vr constituting the solution belong to the fixed K(V)-module
%~ K (V) (independent of u) and are integral at all the non-archimedean v outside the
finite set W (described after the derivation of (8)). Then, for 1 i< [, we have

Y oo Smu)=m= X x T (@ @)— X %~V (11)

1€j<r 1€ksm 1<j<r
Solving for Xy, . . - s Xm from (10) and working in the field K, for a fixed v inV, we
have

x;" B = det'(p, ... B)=det(B, ... p) = det (B, ... B) = ¥, say,
where the columns B, §; are respectively given by
=0y - G Qi e Firrj-1 Vil r+j+1-e e Uiptm)s

Bi= (o - ai,rTI @), .. Tj— y (@' (D)

vt TouTe @ M) T @ @),
k
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taking the liberty of omitting the subscript v from7; , (1 < j < mjandu, (1 <k <)
The general term in the expansion of det (§; . .. f) is of the form

ia: 1--- at',( H Tn(a’(tr-i-n)))/Tj(a,(tr'l*J')) (vt,.+‘+ Zatr+j.kuk)
v ’ l1€n<m J k
where (1, . . ., t;) is a permutation of (1, 2, . . . , I). Because of our special choice of v;
above, we have
vit D Gl

( ) =g (@@ for 1Kigl
1<k<r, v/veV
Using now the inequalities in (4)—(6), we obtain

NAy ... e u™ /Y for v]oo
Co DY for veV;

I‘KIVS{

and in view of (8), we can deduce that, for 1 <k < m,

DAy ... Ac,i/(0N()) for vloo
<
il {Cvpf;”/eu for veV,. (12)

From (11), (12), (5) and (6), it then follows easily for 1 < i< that

1$§k:<m
‘nnlvg{

c,pmax(1,1/0,) for veV;

Ixl, 7 @G)), + & @ (), for vleo

< {l!mh A, (O ) (/) + e hip™ [ ) for pleo

c,p-max(1,1/6,) for veV,

S{cu(ﬂ"nmv./e.ﬁl-1)1!!"'/’*;-/!#(#’) for vleo 13)

c,piy max(1,1/0,) for velV,.

Reading off the values of § ;—u;(1 < j < r)from the equations on the left half of (11)
withi=s,,...,s,..., we obtain the estimates

=1 Y Insil.,( I lla(sk)ll.,)/lla(si)ll,, for v|oo

gls-—“ﬂ <{ 1€i<r 1<k<r
vivj [
max Ingl, [] la@s)l/la@)l, for veV,.

1<igr 1€k<r

Applying (13), (4) and (9) next, we have

—ul, < {c.,px'(n/o.,) (1 +mps(l)/6,)/¥() for vloo
jlo =%

S.
! c,prmax(1,1/6,) for veV,

J

and
cope (/0,0 /¥ () for vloo
‘xk‘vg T
(c,/0,)py for velV,

fori<j<rand 1<k<m Letus now take .
Cy = CuPE (“/60) (1 +mpE (l!)/ev)a Cy = CoPE (l!)/eva C3=¢Cy max (13 1/00)
We may note further that forany givent > 0, there exists u > O with y (u') = t. Then the




_

M«——-uﬁ“m“mwu_‘,.___w,wﬂ»ﬂw_,‘,w\,,_‘W,.,N_WW,,. e

On estimates for integral solutions of linear inequalities 155

existence of Xy, . . . , X, Y1» - - - » ¥, in themodule #~* K (V) satisfying the given system
of inequalities for S — uand x is established as a consequence of conditions (i}-(ii) in (2).
Towards a converse (to theorem 1), we have the following

THEOREM 2. With notation as in theorem 1, let for S, u and every ¢ and 6, the

inequalities S —u < &, x < & be solvable with columns X, y having entries in a finitely
v 4

generated K(V)-module M < K. Then, for every ‘a’ = (‘a’b) with 'a in K (V) and ‘bin
K(W)", we have

(i) o, (a’; M) =0, whenever |a|,J (a,b), =0 and
(i) [g(@; My < llyly for 7= (y,)e Ky where

_ felallo/¥(lale/7 (@ b)) for oo
v~ e, pi max (jall,, 7 (a,b),) for veV,

with positive constants c, for every v in V.

Proof. For a given X ="(x; ... X,), y="0b1 - .. y,) satisfying the inequalities

S —u < ¢ x < §corresponding to the given ¢, 6 and wand for the givena = Yag ... a)
b="'(,...b,)letusdefinev= Y ay;+ Y bx;whichisclearlyin M. Then,
1<j<r 1<ism

as in (11), we have

Yo aSj—u)= - xT@) - Y, au;—v
1<j<r 1<k<m 1<j<r
and
d@;My<| Y au+v
‘ 1<jsr v
= Z aj(sj“uj)" z x y(a')
1<j<r 1<kgm v

Max {rllall.,cl/Hmszp(t)f (a')v}
Xy viw ’
WE Vf ua"w C3p&v"& C3pf“,"ﬁ— (a )w
If fally = O, then a = 0 and so &/ (a’; M), = 0. On the other hand, if 7 (a’)y = 0, then
the validity of ,
of (a'; M), < Max (rllall,c, /¢, llall, capyy)

for every t>0 and every 1, <0 in Z forces «/(a’; M)y to be 0. If therefore
lale, 7 (@), >0, we can find t>0 such that to(1)=lals /T (@), ie. t
=y(lalle /T @),) and then F(a'),0() = lall, /¥ (lall/ 7 @)s). Thus, in any
case,

o (@'; M), < (rep +meg)lalls /Y(lalle /T @)x)

implying (i}-(ii) for v|co. Consequently, for every v in V,

o (a'; M), < o (a'; M)y < Max [y, |

ueV

with ¢, = rc, +mc, for v|oo and ¢, = c3 forwe V.
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4. Applications

We apply the foregoing to obtain a mild generalization of an assertion of Khintchine
([6], page 86) referred to earlier and a quantitative version of Kronecker’s theorem
concerning bounds for the size of frames of integral vectors in euclidean space which
arise as solutions of linear inequalities given by an ‘irrational’ system of linear forms.

Let §;,..., 9, in K, be linearly independent over K. The homogeneous form L
= 8;x; + ... + §,x,—yhas K-index > Oin a sense quite analogous to that of [6], in
view of [2]. Let us now suppose that L has finite proper K-index v > 0, in the following
sense: namely, that forany given e > Qand forany: > 0, thereexistu/, . . . , 4, v' notall
0in R such that

1Sui+ . o+, —v' |l <1/77V75 max fuill, <t

Igigr
but there exists ¢ = ¢(9,, . .., 8, K) such that
r+v
”‘91a1+ s +‘9rar—b”oo Zl/(C max ”ai"oo) (14)
1gigr .

foralla,, ..., a,, b (not simultaneously 0) in R. We are then in a position to appeal to
theorem 1, taking

S;i=9x,—y;A<j<r,m=1,V=V_and ¢(t) ="
Itis clear that &/ (a,b),, = Ofora ='(a, . .. a,), whenever |la||, -7 (a,b), = 0,in view
of the linear independence of 3,, . .., §, over K. Since &/ (a, b), < 1/2 Y il

1<i<d

the first inequality in (i) for wv|oc can certainly be satisfied with ¢,

o= 1/2 Y @i D; indeed, (14) ensures that I (a,b),, > 1/(c|a].)*"

I<i<d
for |a], > 1 and therefore

1/2 Z loslle <c, llaly/(lally /T (a, b))ty

1gi<d

= c,lal G VT T (@, by,
Thus, for every given uy, . . . ,u,in K, the given system of inequalities for S —uand x

issatisfied by x,, y;, . .., y,in #~*R. Taking &~ *u,, ..., B 'y, inplace of u,, . . .,
u, and using constants ¢y = ¢, || B, , ¢2 = ;| B ., we have

Tueorem 3. Let 94, ..., 8,1in K, be linearly independent over K and let the linear

form $;x;+ ... + 9x,—yinx,, ..., x, y have (finite) proper K-index v > 0 in the
sense described above. Then, for any ¢ > 1 and any u, . . . , u, in K 4, we have positive
constants ¢}, ¢, depending on 3, . . ., &, and K and further 4}, v}, ..., v.notallOin
R such that

I —vi—u;lle <ci/t, 1<i<rand

Huille, <yt

Remark. For K = Q and v = 0, this is just Khmtchme s assertion ([6] p. 86) for

gxtreme systems.
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Suppose now that B = (b;;) is an (I — 1, ) matrix with elements in K such that for
. i . B\ .
every non-zero row ‘a = (a,,. . ., @) with all g; in K, the (/, ]) matrix 4: = (‘a) 1s

invertible. Then the same property holds as well for BV, where V is an arbitrary
permutation matrix. We may therefore assume, without loss of generality, that the first
| — 1 columns of B form an invertible matrix, say B,. Writing B = B;(E 3) with E equal

to the (I — 1)-rowed identity matrixand '9 = (8;,. .., 8,-;), wesaythat §,,..., 8,
-1 1

are “associated to” B. For every row ‘a # 0 over K, ( 01 1 )A is invertible,

whenever A is invertible and therefore the above-mentioned property of B is equivalent
to the condition that

1,9,,..., %, are linearly independent over K, (15)

for 9,,..., 9, associated to B. Indeed, ‘a is independent of the I — 1 rows of (E9)
if and only if the relations

a1+1,1 =a2+1,= “ .. =al_1+j.;_1
=a,+31/1'1+321/2+ .. +\91_1}-;_1 =0

hold for no 4,, . . ., A, in K ; this condition is evidently equivalent to the condition
in (15). For K = @, the above-mentioned property of B is the same as the
corresponding | — 1 linear forms having rationality rank [ — 1 in the sense of Kronecker
[8]. If, in this case, B has all its entries in R ~Q then 9,, ..., 8,_, are real algebraic
numbers satisfying condition (15). For general K, we say that the [—1 linear forms
arising from B have K-rationality rank [— 1, whenever the associated 3y, . .., 9,-4
satisfy condition (15).

Corollarytotheorem3. Let F;= Y b; ,x,,1<j<I1—1,bel—1linear formsin
- 1<pxl
variables x,, . . . , x; and coefficients b; , from K, , having K-rationality rank equal to

-1 and let, further, the linear form 9,x; + ... + 9 x_;—y for §;,..., %4
associated to (b; ,) have (finite) proper index v 2> 0. Then foranyuf,...,uy’;in K,
and t>0, there exists constants c,”,c; >0 depending, in general, only on
F,,...,F,_, and K and integers u}, ..., u not all 0 in K such that

UYL
bj,pup u}
1€p<!

w<c/t,1 <j<I—-1and
il S ot ™1™ 1 <il

Proof. After an appropriate permutation of the variables xy,...,x, if necessary

and taking [ — 1 suitable linear combinations of Fy, . . . , F;;, we may reduce ourselves
to a system of linear forms of the type 9,x;—xp,..., 8i-1X1—X and suitable
corresponding values for uf,. .., uf ;. This process being evidently reversible, the

corollary is immediate from theorem 3.

Remark. The constant ¢ in the corollary may, without loss of generality, be taken as
1, after suitably modifying t and c5.
As another application, we derive now a quantitative version of a classical result of
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Kronecker type (Satz 62 [8], p. 148) on the existence of independent lattice points in R
(or what is the same, of integral frames) satisfying linear inequalities arising from an
“irrational” system of linear forms (i.e. of maximal rationality rank in the sense of
Kronecker [8]).

THEOREM 4. Let F;=F;(x)= )
1<pxgl! , )
variables x,, . . ., x; with coefficients q; , in K, K-rationality rank /— 1 and (finite)

a;,x,, 1 <j<I1—1,bel—1linear formsin I

proper K-index v > 0 as described above. With 7, = ;,,(w,): = Y a;,u,, for

Jj.p ¥ p,m
1<pxgli

1 <j,m <1-1,wecanfind, foranyT > 0,independent vectors‘w; = (u, ; . .. u, ;)€ R,
1<ig l—-l such that

Tjmle < 1/TM0"Y 1 <j, m< -1, and

I llo: = max Ju, | <cTH" 10D 1 <g<gi~1
1<p<
for a constant c¢3> 0 depending only on F,,. .., F,_, and K, in general and further
such that the (I—1, I—1) matrix (z;,) is invertible.

Proof. Applying the corollary to theorem 3 (with ¢} = 1, as mentioned in the
subsequent remark, (u¥), = ... = (u,), =2/t for v|oo and t = 4T*/¢~1) there
exists 'w; = (4, ; ... 4, )€ R such that .

Z ajp p1

1/(dTH0-1) < <33T <l-t

1<pxk!
luglle < C*T””"' 2 (16)
for some constant c3. Clearly then, every t;; = ), a;,u,, isinvertiblein K . Let

1<p<1
us suppose, without loss of generality, that |7, ; |l = ll7;; |, for1 <j<I!—1.The
independence of Fy,. .., F,_; implies that of G,,...,G,., where,for 1 <i<I-2,

G;:=F;— (Ti1 /71—1,1)F1—1 = Z (ai,p = (ti,1/T-11 )01-1.p)5‘p~
1<pgl
Moreover, Gy, . .., G,_, have K-rationality rank I —2; otherwise, any non-zero linear
form with coefficients in K belonging to the K -linear span of G,, . . ., G,_, will also
lie in the K -linear span of F,, .. ., F,_,, giving a contradiction. By induction on the
rationality rank, there exist already | — 2 independent vectors 'v ;=g ..,0;)inRY
1 <j < 1-2 such that, with

= X (ai,p“('Ci,1/71—1,1)at~1,p)vp,j, 1<igi=-2,
1<pxk!
we have
I7ille < 1/@TV0"D) 1 <4, <12,
I, e S €572 (1<j<I-21<p<)), W
det(z};) # 0
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for an exponent v,_, and a suitable constant ¢y > 0. Evidently

Z (a;p— (i1 Ti= 1,108 -1,p)lp1 = 0,1<ig]-1,
1<ps<!

implying that for any w; in R, we have, for1<i,j<I-2,

T = Z (ai.p"(Ti,1lT1-1,1)at~1,p)(Up.j"‘Wjup.1)-
1<p<!

Since || Ty~ 1.1 llo = 1/(4T"/“~ 1) by (16), we can choose w; in R to satisfy the condition

Z A —1,pVp, i~ Wili-1,1
1<p<!

< ¢/ (4T MO D) (18)

Z G-1.p (Up,j —Wilp )
i1sps!

[ o] [ee]

where ¢, = max | ;.. From this together with (16) and (17), we deduce that, fora
1<i<d ‘

constant ¢s > 0,

Iwille < esTH2 -0 < j<1-2).
Further, on setting

Upjr1: = vp,j—wjup‘l (1 <£p< l; 1 Q} < l-—-2),
we also obtain

ity o o < T ms T ™ 1D vIG7A)

< 2cg TVt (19)

for a constant cg, with v_;:=v,_,+1+(1 +v)/(I—1). Setting v; = 1 +v/(I—1), we
have inductively v,_; = [+v—1/(I—1).Since [ 1,y lo =t forl <i<l—1,we
have

I Y aupeile <] Y (ai,p_(ri,l/Tl—‘l,l)al—l.p)up,j'f'l“‘w
1<p<l! 1<p<!

+ T e /N T-11 oo Il Z at—1,pup,j+1"m

1<pxl!
<c,/QTHED)
in view of (17)and (18). Taking ‘u; and 'w; = (uy,; - . - u,;)fromabovefor2 < j < -1,
the assertions of theorem 4 follow from the preceding inequality together with (16), (17)

and (19), except for (t;,) being invertible which we verify in a moment. Indeed, for
1 <i,j<1—2, we have ‘

— _ —
Tje1 = 2, Giplpj1 = Yoa, (v, =Wyt ) =T T
1<pxl 1<px! .

WhCI‘C pjz(l/’tl__l‘l) Z al_.llpvp'j""wi and furthcr Tl”“l,j+1 =pj‘fl_1’1.'1"h€l—1

1<p<!
columns of (z; ;) thus form the matrix with (T, 1 ... Tj=1,1) as its first row and
() +PiTr,1 - - T-2,jFPiTI-2.1 piti-1,1)forl <j < | —2 asits next [ — 2 rows. The

determinant of this matrix is, verified easily to be the same as +7,_; X det (i ;) # 0.
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Remarks. (i) In view of corollary 7D of Schmidt [9], theorem 4 above certainly
applies to the system 3x; —y;, 1 <i<I—1 where §;,..., 9, are real algebraic
numbers such that 1, 3,,. .., 9,_, are linearly independent over Q.

(ii) For general systems of / — 1 real linear forms in [ variables with rationality rank /-1,
it does not seem to be possible, in general, to obtain independent integral vectors
uy,. .., u_, satisfying the required linear inequalities, along with a polynomial bound
inT for lullo,..., |W-llo, unless some assumption on the proper index as in
theorem 4 were to be imposed. It is a question of obtaining explicit estimates for the
quantity w occurring in the proof of Kronecker’s theorem (theorem 1 on page 458 of
Lekkerkerker’s interesting book [7]) in terms of the given & (For example, in the 2-
dimensional case, Minkowski’s theorem leads to w < c/¢ for a constant c. For higher
dimensions, one can perhaps assert only the existence of a finite number w = w(e)
depending on the given system of linear forms and the given'e. In this sense, one can get
a version of theorem 4 with [lu, ||, ST 1"V (T "Myt for 1 <p<gl—1.
Forasystem 9;x, —x;.,1 <i<1—1asabove and given ¢, there can be seen to exist,
in the notation of theorem 1, integral a,,...,q not all 0, such that | 9;a, — a4
Scre(l <i<l-1)andla;| < c e/h(e™") with h(u): = ISL{lp (la, 1/ (a")). Using the
alsu
result of Bombieri and Vaaler, one can thus obtain some acllelic version of theorem 1 in

{71 (p. 458).

References

[1] Bombieri E and Vaaler J 1983 On Siegel’s lemma, Invent. Math. 73 11-32

[2] Cantor D G 1965 On the elementary theory of Diophantine approximation over the ring of adeles I,
1. J. Math. 9 677-700 :

[3] Dani S G and Raghavan S 1980 Orbits of euclidean frames under discrete linear groups, Israel J. Math.
36 300-320 :

(4] Khintchine A Ya 1948 A quantitative formulation of the approximation theory of Kronecker (Russian),
Izv. Akad. Nauk SSSR 12 113-122

(5] Khintchine A Ya 1948 Regular systems of linear equations and a general problem of Chebychev, Izv.
Akad Nauk SSSR 12 249-258

[6] Koksma J F 1936 Diophantische approximationen, Ergeb. Math. Grenzgeb. (Berlin: Springer-Verlag) 4

[7] Lekkerkerker C G 1969 Geometry of numbers (Groningen: Wolters-Noordhoff) 470

(8] Perron O 1951 Irrationalzahlen (New York: Chelsea)

(9] Schmidt W M 1971 Approximation to algebraic numbers, L’Enseignement Math. 18 187-253

[10] Weil A 1967 Basic number theory, Die Grundlehren Math, Wiss (New York: Springer-Verlag) 144



