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Nonlinearity, Conservation Law and Shocks

2. Stability Consideration and Examples
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equations (1) to {12).

Phoolan Prasad

In part 1 of this series we explained the concept of ,
genuine nonlinearity, which is responsible for the /
appearance of discontinuities in a solution which was |
initiallv smooth. To include discontinuities in the
solution, it became necessary to consider the governing
equation in the form of a conservation law. In this part
we first discuss an example of a continuous solution
satisfying discontinuous initial data. Then we use the
stability consideration to fix a unique solution of the
conservation law. In the end, we present three examples
which show that genuine nonlinearity significantly
changes the evolution of the shape of a pulse.

Continuous Solution with Discontinuous Initial
Data

In a linear system, discontinuous initial data always leads to a
discontinuous solution. For example, consider an initial data

0, x<0
u(x,O)»—{ L x>0 (13)
As explained in part I, we consider only a class of piecewise
smooth functions with jump discontinuities. For functions of

this class, it is not necessary to specify the value of the function
at a point of discontinuity.

The solution satisfying the rule (6)! is
10, x<ct
“(x’t>—{ 1, x>ct (14)

in which the discontinuity also propagates with the same velocity
c.

-
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However, an equation with genuine nonlinearity may give a
continuous solution at ¢ > 0 even if the initial data is
discontinuous. Consider a function « (x, ) which is represented
graphically in Figure 6a. Let U be a point on the line segment
OP having coordinates (x,%). From the properties of similar

triangles u = £ . This value of 4 remains constant when x and

¢ vary in such a way that £ = constant and this constant is equal
ry : !

to u itself. Thus the point U moving with a velocity u has a
constant value u. Therefore, the points on the segment OP
satisfy the rule (7). We can easily verify that therule (7) is true
also for the line segments —c0 to O and P to Q. Hence u
represented by Figure 6a is a solution as per rule (7a). As t —0,
the point P approaches the point (0,1). Thus u is a continuous
solution satisfying the rule (7) with discontinuous initial
condition (13) and hencefrom the theorem 2 it is also a solution
satisfying the conservation law (10) with initial condition (13).

A solution of the type £, in which the source of all points of

the pulseis asingle point x=0 at ¢=0is called a centered wave.
We can also verify that the function

0, x<0
ux,t)=4 %, O<x<t (15)
1, x>t
has derivatives
(0,0), x<0
( u,)= (%,—-t—’g-), O<x<t
(0,0), x>t

which satisfy (7b). We also depict the solutionin the plane of -

Figure 6a At any time t,
the function u is repre-
sented by straight line
segments - to O, Oto P
and Pto Q.
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Figure 6b Solution (15) re-
presented in the three
different domains in the
upper half of the (x, t)-
plane. -

Figure 7(a) Solution (16a)
at a time t>0 in ( x,u )-
plane. (b) Solution (16a) in
( x,t )-plane.

independent variables, in Figure 6b.
Uniqueness and Entropy Condition

In addition to the continuous solution represented in Figure 6
i.e. the solution (15), the initial value problem (10) and (13) also
has a discontinuous solution

0, x«<
M&0={ .

1
1t
1, Ly

2

(16a)

The discontinuity at x =}t moves with velocity S =1 and

separates a state #_= 0 from a state u + = 1 so that (10b) is
satisfied. It is represented graphically in Figure 7. Consider the

points (with #=0) on the left of the discontinuity at x=0 in the
initial data. Since these points move with zero velocity, they will
influence the solution at any time only upto the point O. Points
on the right of x=0 in the initial data, move with the velocity 1
and hence give the solution beyond thepoint R (z,1) onu=1.

Therefore, a part of the solution (16) between O and R is not

controlled by the initial data. At any time, the point just on the
left of the discontinuity moving with zero velocity is left behind
by the discontinuity and a point just ahead moving with velocity

1 leaves the discontinuity behind. The failure of the initial data
to control the solution between O and R implies that we may

be able to construct not only two solutions (15) and (16) but
probably infinitely many more. This in fact is the case, but here
we just give one more solution.

Cn ,P(%t,Jﬂ CRGD
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0, x<%t
ux,t)=< %, Lr<x<3¢
3
1, x>zt (16b)

It is instructive to draw the graph of this solution at a fixed time
t in the (x,u)-plane. The initial discontinuity now breaks into

two discontinuities (one atx= -};t and another at x= 3— t)each

satisfying the jump relation (10b) derived from the conservation
law (10a). In both (16a) and (16b), the initial data has no control
on the solution between O0(0,0) and R(z,1). A situation like this
was first noticed in gas dynamics and Lord Rayleigh in 1910
found that discontinuities like this led to a decrease in the
entropy of the system, which was not acceptable from the second
law of thermodynamics. It was, of course, known that the
entropy of the system remained constant in the continuous
solution like (15).

Consider now another discontinuous initial data

w0={5 750 (17a)
In this case, the state =1 on the left of the discontinuity atx=0
starts moving with velocity 1 and immediately begins to overtake
the state #=0 on the right of the discontinuity. Therefore, no
continuous state for >0 will ever satisfy the rule (7) and the
initial data (17a). Now, we must look for a discontinuous solution
satisfying (10). We can easily see that a solution of the initial
value problem (10) and (17a)is

1, x<%t
u(x,t)z{ 0’ x >%t (17b)

which is shown in Figure 8. The discontinuity in Figure 8a

moving with the velocity -%— is overtaken from behind by the

continuous part =1 of the pulse moving with velocity 1 and it
overtakes the continuous part #=0 ahead of it. This will always
happen for any discontinuity if

u, <S<u_. (18)
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Figure 8(a) Solution (17b)
atatime t>0 in (x,u)-plane.
(b) Solution (17b) in ( x,¥)-
plane. '

Figure 9 Perturbation of
the continuous solution (15)
has been shown by dotted
lines.
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In this case the initial data completely determines the solution
for all time. The solution so obtained is unique. Appearance of
a discontinuity in a solution saves us from a difficult situation
when the initial state leadsto a multi-valued state under the local
law (7) of propagation. A physical interpretation of the condition
(18) for gas dynamic waves and its relation to an entropy con-
dition is mentioned later in this section.

Let us consider a small perturbation of the solution (15) such
that the perturbation vanishes outside a closed interval on the
x-axis. Such a perturbation is shown in Figure 9.

Since the velocity of a point on the pulse is equal to its amplitude,
a point on the perturbation moves with a velocity which is a
small addition to the velocity of the corresponding point in the
solution (15) with the same x. Hence, a small perturbation of
the solution (15) remains small and moves away from the
corresponding point on the solution only by a small distance in
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a finite time. This is true even if a discontinuity appears in the
perturbation. Thus, the solution (15) is stable with respect to
small perturbations which are nonzero only over finite intervals
on the x-axis. The discontinuous solution (17b) is also stable
with respect to such perturbations. A positive or negative

perturbation du created to the left of the initial discontinuity at

x=0 moves with a velocity 1+&u > —;- since du is small and

hence eventually interacts with the discontinuity at x= Iz

During this interaction the velocity of the discontinuity also
changes by a small quantity and hence the discontinuity is

displaced from the position ~,_1,_~t by a small distance. A small
perturbation created on the right of x=0 moves with a velocity
du< 1 and hence is overtaken by thediscontinuity. During the

interaction, velocity of the discontinuity changes by‘ a small
quantity. We note that in all cases, a small perturbation of the
initial dataleads to a small change in the solution. The situation
is different for a solution having a discontinuity which does not
satisfy (18). For example, the solution (16a) is not stable.with
respect to small perturbations. This is obvious when we note
that the solutions (16a) and (16b) arise from the same initial data
(13) i.e. there is another solution (16b) which is not near (16a)
even if a perturbation in the initialdata is not introduced. As it
happens at x=0, t=0, the solution (16a) can break up at any
future time into solutions like (16b) i.e. the solution (16a) is
unstable. In nature, an unstable solution does not represent a
physically realizable state of a system. Hence we must reject such
solutions. Thus we conclude that only discontinuities which
satisfy (18) are acceptable in a solution.

We define a discontinuity satisfying (18) to be a shock.

In gas dynamics, the condition (18) means that the shock
velocity is supersonic relative to the state ahead of the shock (i.e.
§ >u )and it is subsonic relative to the state behind (i.eS <u).
It has been shown in standard books on gas dynamics that the
entropy of an element of a gas increases as it crosses a shock.

The entropy of an
element of a gas
increases as it
crosses a shock.
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A shock wave is
destructive, but it
is also useful. For

example in
medicine it can be
used for breaking
and removing
kidney stones.

Hence in mathematics the abstract condition (18) is called an
entropy condition.

We have discussed in this section two types of admissible solu-
tions starting from a discontinuity at x=0,=0: a continuous
solution (15) in O<x<t, called centered wave anda shock at

x=—-%t as in (17b). Anyone of these is complementary to the

other and the two together cansolve any problem in which the

initial data consists of two constantstates separated by a single

point of discontinuity at x=0. This initial value problem is

called a Riemann problem. When initially u_ < u +» Wegeta

centered wave and when #_>u_ we geta shock wave. We notice

that the solution of a Riemann problem is very easy in a

genuinely nonlinear system expressed by a single conservation

law. It becomes difficult when the number of equationsin a

system of conservation laws is more than one but its solution is of
vital importance for a mathematical development of the subject
and for numerical computation of solutions.

It has been observed in a gas that a shock wave carries a jump in
the pressure, density and fluid velocity. Pressure and density
always rise immediately behind a shock. Hence if a shock wave
hits any object, it gives an impact which can be very large for a
strong shock. Thus a shock wave is destructive, but it is also

useful. For example, in medicine it can be used for breaking and
removing kidney stones.

An extremely elegant theory on the stability of steady states of a
quite general system near sonic type of barriers was proposed by
two Russian scientists Kulikovskii and Slobodkina (1968). This
theory, important from the point of view of applications, invol-

ves study of an equation obtained by replacing the right hand
side of (7b) by a linear function of x and u.

Examples of Three Solutions

We consider here examples in which genuine nonlinearity
significantly changes the evolution of wave profiles.

14
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Example 1 Consider an initial data

1, x<——%
u(x,0) = %—x, —%<x<%- (19)
0, x>

The solution has different representations in different time
intervals.
(i) When 0<t < 1, the solution is represented by

1, x<——;—+t
u(x,t) = (1/12_);x , —-%+t <x <% (20)
0, x>4

2

which is shown in Figure 10. The nonconstant part of # islinear
in x and as tincreases it becomes steeper. As ¢—> 1-0, this part

develops into a discontinuity of amplitude 1 at x = 1.

(ii) For t>1 the solution has a shock moving along the path
x = X(t)= 1¢. Thus, for > 1, the solution of this problem is

same as the solution (17).

We observe a property of genuine nonlinearity, which is very
important from the point of view of physical interpretation.
Two initial data (17a) and (19) lead to the same unique solution
for ¢t > 1. Thus a phenomenon represented by a discontinuous
solution of a system having genuine nonlinearity is irreversible
in time, since the past cannot be traced back uniquely. If there is
a shock in the solution at x = X(r) which separates two constant
regions, then the initial state between the points X(z)-ru_(¢) and

Figure 10 The solution (20)
remains continuous upto
t=1 but the middle part
becomes steeper as t
increases.
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Figure 11 Initial pulse (21)
is represented in (x,u)-
plane. The pulse occupies
an area A above the x-
axis.

Figure 12 Graph of the
solution with initial value
(21) validin thetime interval
o<t< .
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X() + tu, (t) is irreversibly lost due to interaction with the
shock.

Example 2 Consider an initial data

A, |4<1

0, |x|>1 (21)
where we take 4 > 0. The data is represented in the Figure 11.
According to the linear law of evolution (6), the rectangular pulse

as a whole propagates with a constant velocity without a change
in shape and amplitude.

u(x,0) = {

If the evolution of the initial data is described according to the
conservation law (10), then the solution has two distinct time
intervals describing two types of states:

(1) O<i< -_% : (Figure 12). In this interval a shock starts from the

point x=1 and moves with a uniform velocity I . At the time

—>x

16
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= % , the shock reaches the point x=3. There is a centered wave

u = =1 between -1 <x < -1+ 4 1 all points of which origi-
nate from x=-1 at r=0. In theinterval-1 + 4 1<x<1+ 41,

there is a constant state = 4 . Atthe time 7 = £ , the centered

wave overtakes the shock at x=3 and the pulse attains a
triangular shape.

(ii) > —% : (Figure 13) During this period, the centered wave

interacts with the shock.

Since the shock velocityis given by § = 1 (u_+u,)= 1 u_and
u_is given by the centered wave, the shock path x=X() is

obtained by solving an ordinary differential equation with an
initial condition:

X X+1 ( 8)
—_—= X = — | = 3
dt 2t t A (22)
which gives
X()=-1+ J2At . (23)

At x = X(r), the amplitude of the pulse (just behind the shock)
is given by

__x+1

Y = ——

t

=x@ V' (24)

The pulse now takes a triangular shape, the base of which

spreads over a distance v2Ar and whose heightis /24 , the

total area of the pulse being 4.

Figure 13 Graph of the
solution with initial condi-
tion (21) valid for t>2< .
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We can easily verify that the total area of the pulse remains 4
even during the time period 0<i< % . As mentioned in part 1,

this is a general property of the original conservation law (8). If
the initial data is such that lim__ __ F(u(x,0)) and lim
F(u(x,0)) are both equal to zero (which is the case when F(0)=0
and u vanishes initially outside a closed boundedinterval on the
x -axis), then the total quantity u i.e. the area between the
solution curve and x-axis remains constant. We make another
important remark. The genuine nonlinearity present in
conservation laws produces dissipation of energy through shocks.
Hence, all kinetic energy is ultimately converted into heat and
though the pulse continuesto spread over a larger region (as it
should happen when dissipation is present), it ultimately dies
with its amplitude decaying as inversely proportional to the
square root of time (a result true for any pulse whichis initially
nonzero only in a bounded interval).

Example 3. An equation, governing the propagation of small
perturbations trapped at a point on the sonic line of a steady gas
flow, is given by (first derived by Prasad, 1973)

u +w-Kx)u =Ku . (25)

The dependent and independent variables have been properly
scaled. The constant K is proportional to the deceleration of the
fluid element at the sonic point in the steady flow. When the
fluid is passing from a supersonic state to a subsonic state, K>0.

Had the genuine nonlinearity not been present, the approximate
equation would have been

u~Kxu_= Ku. (26)
We can easily verify that the solution of the initial value problem

u (x,0) =ug(x) (27)
for (26) is :

u=u,(xek )ek | (28)

18
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Figures 14 and 15. (left) Solution of (26) and (27) with K=1, u(x) = sinx, 0<x<m and zero else-
where . The amplitude of the pulse tends to infinity as t — «. (right) Shape of the successive
positions of a pulse in a transonic region. The pulse of a positive area attains a triangular form as
t — « and gets trapped in the subsonic region (Prasad, 1973). Here X > 0.

The solution shows that for K>0 the amplitude # would tend
to infinity as ¢ increases to infinity. However, the perturbation
u will get concentrated near the sonic point x=0 as shown in
Figure 14.

However, genuine nonlinearity is always present in an ideal gas.
The conservation form of the equation (25) brings in shocks
which cut off the growing part of the amplitude as shown in
Figure 15. |
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