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INTRODUCTION

The RNA-binding proteins (RBPs) play a vital role in living organ-

isms. One of the important questions to understand the function of

RBPs in an organism development is how RBPs distinguish their tar-

gets from nontargets in vivo. In other words, how RBPs specifically

recognize their RNA targets. RBPs may recognize specific sequences,

structures, or both, which are present in their RNA targets. Under-

standing of RNA binding specificity of an RBP can be another way to

identify unknown targets that contain similar features, if they have

enough information to distinguish targets from nontargets computa-

tionally. Thus, the identification of RBPs and their binding sites is a

major challenge in the field of molecular recognition. During the past

one-decade, the number of RBPs has increased exponentially because

of the large scale sequencing projects in progress. Despite tremendous

progress in the annotation of RBPs, identification of RNA interacting

residues in proteins is still a major challenge. Although, it is not diffi-

cult to identify the RNA interacting residues in a protein from the

structures of RNA-protein complexes, the experimental determination

of a complex structure is costly and time consuming. Thus, the devel-

opment of methods for predicting RNA-binding site in a protein

from its amino acid sequence is important for understanding the

function of these RBPs. In 2004, Joeng et al.,1 developed an artificial

neural network (ANN)-based method for predicting RNA interacting

residues using amino acid sequence and secondary structure informa-

tion and achieved a maximum MCC of 0.29. Using evolutionary in-

formation extracted from PSI-BLAST profiles and CLUSTALW align-

ment, Jeong and Miyano2 improved the MCC to 0.41. Wang and

Brown3 developed a SVM-based method using side chain pKa, hydro-

phobicity index and molecular mass of amino acids and achieved a

maximum accuracy of 69.32% with 66.28% sensitivity. Recently,

Terribilini et al.4 developed a method for predicting RNA interacting

residues using Naı̈ve Bayes Classifier, and achieved maximum MCC

of 0.35. In the present study, a systematic attempt has been made to
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ABSTRACT

RNA-binding proteins (RBPs) play key roles in

post-transcriptional control of gene expression,

which, along with transcriptional regulation, is a

major way to regulate patterns of gene expression

during development. Thus, the identification and

prediction of RNA binding sites is an important

step in comprehensive understanding of how

RBPs control organism development. Combining

evolutionary information and support vector

machine (SVM), we have developed an improved

method for predicting RNA binding sites or RNA

interacting residues in a protein sequence. The

prediction models developed in this study have

been trained and tested on 86 RNA binding pro-

tein chains and evaluated using fivefold cross

validation technique. First, a SVM model was

developed that achieved a maximum Matthew’s

correlation coefficient (MCC) of 0.31. The per-

formance of this SVM model further improved

the MCC from 0.31 to 0.45, when multiple

sequence alignment in the form of PSSM profiles

was used as input to the SVM, which is far better

than the maximum MCC achieved by previous

methods (0.41) on the same dataset. In addition,

SVM models were also developed on an alterna-

tive dataset that contained 107 RBP chains. Uti-

lizing PSSM as input information to the SVM,

the training/testing on this alternate dataset

achieved a maximum MCC of 0.32. Conclusively,

the prediction performance of SVM models devel-

oped in this study is better than the existing

methods on the same datasets. A web server

‘Pprint’ was also developed for predicting RNA

binding residues in a protein sequence which is

freely available at http://www.imtech.res.in/

raghava/pprint/.
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improve the prediction accuracy of RNA interacting resi-

dues using SVM and evolutionary information.

MATERIALS AND METHODS

Main dataset

The main dataset contained 86 RNA interacting pro-

tein chains extracted from the structures of RNA-protein

complexes.2 These structures (solved at 3 Å or better re-

solution) were obtained from protein data bank (PDB).5

Using PSI-BLAST6 only the nonredundant protein chains,

where no two chains had sequence similarity more than

70% were included in this main dataset. Each protein

chain in the dataset had at least four RNA interacting

residues. Terribilini et al.4 evaluated their Naive Bayes

Classifier on the same dataset. In the present study, we

used a cutoff of 6 Å to define the RNA interacting resi-

dues in consideration with the experimental noise.

Hence, a residue was considered to be RNA-interacting if

the closest distance between atoms of the protein and the

partner RNA was within the cutoff (6 Å). The protein

chains in main dataset consisted of a total 20,071 resi-

dues out of which 4568 were RNA-interacting residues.

Alternate dataset

In addition to main dataset, we also used an alternate

dataset that consisted of 107 RNA interacting chains

obtained from 61 RNA-interacting proteins. This non-

redundant dataset, where no two chains had sequence

similarity more than 25%, was obtained from BindN server

(http://bioinformatics.ksu.edu/bindn/) and was used by

Wang and Brown3 for developing method ‘BindN’ to

predict RNA binding residues. In this alternate dataset,

we also used a cutoff of 3.5 Å to define the RNA inter-

acting residues similar to criteria used by BindN

researchers. Among the main and alternate datasets, 38

protein chains were found to be common. The protein

chains in alternate dataset consisted of a total 22,051 resi-

dues out of which 2555 were RNA-interacting residues.

Five-fold cross-validation

The fivefold cross-validation technique was used to

evaluate the performance of all the methods attempted

by us. In this technique, proteins are randomly divided

into five sets of which four sets are used for training and

the remaining fifth set for testing. This process is

repeated five times in such a way that each set is used

once for testing. The final performance is obtained by

averaging the performance of all the five sets.

Pattern or window size

For each sequence, we created overlapping patterns

(segments) of different size (or window size) 11, 13, 15

etc. If the central residue of pattern was RNA interacting

residue, then we classified the pattern as positive or RNA

interacting pattern and otherwise it was termed as nonin-

teracting or negative pattern. To create a pattern corre-

sponding to the terminal residues in a protein chain, we

added (L 2 1)/2 dummy residue ‘‘X’’ at both terminals

of protein (where L is the length of pattern). It means

for window size 11, we added 5 ‘‘X’’ before N-terminal

and 5 ‘‘X’’ after C-terminal, in order to create L patterns

from sequence of length L. There is a pattern corre-

sponding to each residue in a protein sequence. It is sim-

ilar to the approach adopted by Singh and Raghava for

prediction of MHC class II binding peptide prediction.7

Support vector machine (SVM)

In this study, SVM technique was implemented using

SVM_light package.8,9 This package is very powerful and

user-friendly where one can adjust the parameters and

kernel functions like Polynomial, RBF, Linear, and Sig-

moid. In the past also, SVM technique has been used

successfully for developing a wide range of bioinformatics

tools.10,11

Evolutionary information

This was obtained from position-specific scoring ma-

trix (PSSM) generated during PSI-BLAST6 search against

nonredundant (nr) database of protein sequences at

NCBI. The PSSM matrix was generated by three itera-

tions of searching at cutoff e-value of 0.001 for inclusion

of sequences in next iteration. The PSSM thus generated

contained the probability of occurrence of each type of

amino acid residues at each position along with inser-

tion/deletion. Hence, PSSM is considered as a measure of

residue conservation in a given location. This means that

evolutionary information for each amino acid is encapsu-

lated in a vector of 21 dimensions where the size of

PSSM matrix of a protein with N residues is 21 3 N.

Performance measures

To assess the performance of various modules devel-

oped in this study, we computed following threshold de-

pendent parameters: sensitivity (Sn) or percent coverage

of RNA interacting residues; specificity (Sp) or percent

coverage of noninteracting residues; overall accuracy (Ac);

percent probability of correct prediction of RNA interact-

ing residues (PPV), also called as accuracy of interacting

residues and Matthew’s correlation coefficient (MCC)

using following equations:

Sn ¼ tp

tp þ fn
3 100 ð1Þ

Sp ¼ tn

tnþ fp
3 100 ð2Þ
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Ac ¼ tp þ tn

tp þ fnþ tnþ fp
3 100 ð3Þ

MCC ¼ ðtpÞðtnÞ � ðfpÞðfnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtpþ fpÞðtpþ fnÞðtnþ fpÞðtnþ fnÞp 3 100 ð4Þ

PPV ¼ tp

tpþ fp
3 100 ð5Þ

where tp and tn are correctly predicted positive and

negative examples, respectively. Similarly, fp and fn are

wrongly predicted as positive and negative patterns,

respectively.

RESULTS

Compositional analysis

We computed the composition of interacting and non-

interacting residues and found that Gly, His, Lys, Asn,

Gln, and Arg were more abundant in RNA interacting

residues than in noninteracting residues (Fig. 1). The

dominance of these amino acid residues indicated their

major contribution in interactions. Among these residues,

the higher occurrence of Lys and Arg was expected since

these are positively charged and can easily interact with

negatively charged RNA. This is similar to DNA-interact-

ing residues as shown by Ahmad et al.12 Among these

two positively charged amino acids, Arg was found to be

more prevalent which can be due to its unique capacity

to form multiple and bifurcated hydrogen bonds and

to simultaneously bind multiple nucleotides. The over-

representation of His can be attributed to its peculiar

pKa value because depending on the pH value, His can

also be positively charged. Further, it can participate in

stacking interactions with RNA bases through its imidaz-

ole ring. For Asn and Gln, their H-bonding capability

can be the reason of over-representation in binding state.

Similarly, small size and flexibility of Gly residues is

probably making it suitable for the structural adjustments

required during the interactions. Among the under-repre-

sented residues, the most prominent were Ala, Glu, Phe,

Ile, Leu, and Val. The less occurrence of Glu can be due

to its negative charged side chain. But interestingly, other

negatively charged amino acid, Asp did not show any dif-

ference. The question arises that whether the amino acid

residues surrounding the interacting residue also shows

preference for some particular residues. To examine this,

we created 20 web logos for each type of amino acid. At

first, the interacting pattern of length 25 was generated

for each type of interacting residue at center position of

pattern. These patterns were submitted to http://weblogo.

berkeley.edu/ to create web-logos. The web logos for Cys

and Trp are presented in Figure 2, where Cys and Trp

were found at the center position in interacting patterns.

As shown in Figure 2, there are preferences for amino

acids at few neighboring locations around the interacting

residue.

SVM model using amino acid sequence

Fixed length patterns were generated from RNA inter-

acting chains, where a pattern was assigned positive, if

the centre residue was found to be interacting residue,

otherwise negative pattern. These sequence patterns were

converted to binary patterns, where a pattern of length N

was represented by a vector of dimension N 3 21. Each

amino acid was represented by a vector of 21 (e.g. Ala by

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) which contained 20

amino acids and one dummy amino acid ‘‘X.’’ As shown

in Table I, this SVM-based model was able to achieve a

maximum MCC of 0.31 with 76.05% accuracy.

SVM model using evolutionary information

In the past, it has been shown in some studies that evo-

lutionary information obtained from multiple sequence

alignment provides more comprehensive information

about the protein than a single sequence.13,14 In the

present study, the evolutionary information obtained from

PSSM generated from PSI-BLAST profiles was also used

for predicting RNA interacting residues. As shown in

Table II, performance increased significantly when PSSM

was used as input instead of single sequence. A maxi-

mum MCC of 0.45 was achieved with 81.16% accuracy.

Performance of SVM on alternate dataset

Recently, BindN server3 was developed on 107 non-

redundant RNA-interacting chains that had achieved the

Figure 1
Percent composition of interacting and non-interacting residues in 86 protein

chains (main dataset) used for development of Pprint.
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maximum MCC of 0.27 with 69.32% accuracy (sensiti-

vity, 66.28%; specificity, 69.84%). To compare our method

with BindN, we also developed SVM models on 107

RNA binding chains obtained from BindN server; called

alternate dataset in this study. We achieved the MCC of

0.28 with 72.76% accuracy (sensitivity, 66.09%; specific-

ity, 73.49%) from SVM model (learning parameter: 2z c

2j 7 2t 2 2g 0.001) using amino acid sequence on alter-

nate dataset.3 In addition, SVM model (2z c 2j 6 2t 0)

using evolutionary information was also developed that

Table I
The Performance of SVM Model (Learning Parameter: 2z c 2j 4 2t 2 2g

0.01) on Main Dataset Using Amino Acid Sequence

Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC

21.00 93.46 20.59 37.82 0.16
20.90 92.04 24.51 40.47 0.17
20.80 90.28 28.91 43.43 0.19
20.70 88.40 33.56 46.54 0.21
20.60 86.33 38.34 49.72 0.22
20.50 83.89 43.14 52.84 0.24
20.40 81.00 48.06 55.93 0.25
20.30 77.80 53.00 58.97 0.26
20.20 74.56 58.01 62.05 0.28
20.10 70.22 62.71 64.62 0.28
0.00 66.62 67.03 67.09 0.29
0.10 62.37 71.28 69.36 0.30
0.20 57.99 75.32 71.43 0.30
0.30 53.71 79.15 73.37 0.31
0.40 49.45 82.33 74.80 0.31
0.50 44.98 85.32 76.04 0.31
0.60 40.66 87.72 76.87 0.31
0.70 36.63 90.06 77.67 0.30
0.80 33.32 92.34 78.62 0.31
0.90 29.36 93.80 78.82 0.30
1.00 25.70 94.98 78.85 0.29

Values in bold indicate the point where sensitivity and specificity is roughly

equal. Bold and italics are the point of maximum MCC.

Figure 2
Sequence logo of Cys and Trp along with upstream and downstream 12 amino acid residues. Position 0 is the central residue. Negative and positive represents upstream

and downstream positions, respectively.

Table II
The Performance of SVM model (Learning Parameter: 2z c 2j 4 2t 1 2d 2)

on Main Dataset Using PSI-BLAST Profile

Threshold Sensitivity (%) Specificity (%) Accuracy (%) MCC

21.00 91.48 39.65 51.94 0.28
20.90 89.90 44.91 55.62 0.30
20.80 87.79 50.23 59.19 0.33
20.70 85.40 55.24 62.49 0.34
20.60 83.22 60.16 65.74 0.37
20.50 80.63 64.50 68.46 0.38
20.40 78.32 68.51 70.98 0.40
20.30 76.08 72.51 73.52 0.42
20.20 73.58 75.91 75.53 0.44
20.10 70.17 79.04 77.12 0.44
0.00 67.16 81.79 78.54 0.45
0.10 63.64 84.02 79.42 0.45
0.20 60.08 86.09 80.16 0.45
0.30 56.56 87.97 80.76 0.45
0.40 53.05 89.55 81.16 0.45
0.50 49.46 90.93 81.38 0.44
0.60 46.16 92.20 81.56 0.44
0.70 42.79 93.24 81.55 0.42
0.80 39.93 94.28 81.67 0.42
0.90 36.81 95.08 81.56 0.41
1.00 34.06 95.70 81.39 0.40

The number in bold shows performance of model at threshold, where sensitivity

and specificity are nearly equal. The number in bold and italics shows perform-

ance of method at the threshold, where MCC is maximum.
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achieved the MCC of 0.32 with 75.43% accuracy (sensi-

tivity, 70.09%; specificity, 75.54%). This indicates that

models developed using evolutionary information per-

forms better than the methods solely based on the single

sequence information as well as it performs better than

previous methods on same dataset.

Description of web-server

A user-friendly web-server ‘Pprint’ was developed for

the prediction of RNA-interacting residues in a protein

(Supplementary Fig. S1). The user may submit the amino

acid sequence in standard ‘FASTA’ format or as simple

amino acids in single letter code. The server automati-

cally generates the evolutionary profile of whole sequence

by running PSI-BLAST, generates SVM pattern from this

PSSM profile and then, predicts RNA interacting residues

using SVM model. The server also allows a user to select

threshold value, which is important for setting high sen-

sitivity or specificity for predicting RNA binding residues

in a protein sequence. The authors suggest that in order

to predict interacting residues with high specificity (i.e.

prediction of RNA binding residues with high confi-

dence), user should opt for higher threshold. In this case,

one has to compromise with the sensitivity of prediction.

However, to predict maximum RNA interacting residues

in a protein, user should opt for lower threshold value.

In this case, the probability of correct prediction of RNA

interacting residues will be low. It means that the percent

sensitivity can be increased at the expense of specificity

and vice-versa. The default threshold value was set at

20.2 as at this threshold, sensitivity and specificity was

roughly found to be equal during the training and five-

fold cross validation procedure. Hence, at this threshold,

one may not lose much, both in terms of sensitivity and

specificity. The prediction results are presented in a tabu-

lar as well as in graphical format where the predicted

RNA-binding residues in a protein are displayed in dif-

ferent color (Supplementary Fig. S2).

Comparison with other existing methods

In 2004, Jeong et al.1 developed an ANN-based

method for predicting RNA binding residues using

amino acid sequence as input and achieved the maxi-

mum MCC of 0.29 with an overall accuracy of 77.50%

(sensitivity, 40.30; specificity, 87.29). They also studied

the effect of shifting and filtering on performance of

method and achieve maximum MCC 0.59 with �2 shift-

ing and �1 filtering (see Table V of Jeong et al. 2004). In

2006, they developed ANN models2 using various align-

ment profiles like Clustalw, PSSM and weighted profile,

thereby improved the MCC to 0.41. Recently, Terribilini

et al.4 developed a Naı̈ve Bayes classifier (NBC) model

on a nonredundant dataset of 109 RBP chains, where no

two chains have sequence identity more than 30%. They

achieved the maximum MCC of 0.35 from their NBC

model using amino acid sequence. They also evaluated

the performance of their NBC method on Jeong et al.

2004 dataset in order to provide direct comparison of

their method with ANN method of Jeong et al. 2004 (see

Table III of Terribilini et al.).4 They achieved the MCC of

0.30 with 76.60% accuracy (sensitivity, 43.00%; specific-

ity, 86.53%) on Jeong et al. 2004 dataset.1 In the present

work, we used the dataset of Jeong et al.1 for developing

a SVM module using amino acid sequence and achieved

the maximum MCC of 0.31 with 76.87% accuracy (sensi-

tivity 40.66%; specificity 87.72%), which is slightly better

than other methods on the same dataset using amino

acid sequence (Table III). In addition, we also developed

a SVM classifier using PSSM profile that achieved the

maximum MCC of 0.45 with 81.16% accuracy (sensiti-

vity, 53.05%; specificity, 89.55%), which is significantly

better than any other existing methods on the same data-

set. One of the major advantages of our method over the

Jeong and Miyano (2006) method is that our prediction

method is available as a web server (Pprint) to the pub-

lic. Wang and Brown (2006) developed a method BindN3

on a different dataset (alternate dataset) for predicting

RNA interacting residues and achieved the maximum ac-

curacy of 69.32% with MCC 0.27. We had achieved the

maximum accuracy of 75.43% with MCC of 0.32 on the

alternate dataset using our PSSM-based SVM model.

These results clearly demonstrate the superiority of our

method over the existing methods (Table III).

DISCUSSION

Because of the vital significance of RNA protein inter-

action in cellular metabolism and difficulties in identifi-

cation of RNA binding residues by biophysical or in-vitro

Table III
Comparison of Different Prediction Methods

Input Sensitivity (%) Specificity (%) Accuracy (%) MCC

ANN_aminoa 40.30 87.29 77.50 0.29
NBC_aminoa 43.00 86.53 76.60 0.30
SVM_aminob 40.66 87.72 76.87 0.31
ANN_PSSMb 43.40 91.04 80.20 0.39
ANN_WPb NR NR NR 0.41
SVM_PSSMb 53.05 89.55 81.16 0.45
SVM_PCPc 66.28 69.84 69.32 0.27

Here, ANN_amino is the performance of ANN on amino acid sequence1; NBC_

amino is the performance of Naı̈ve Bayes Classifier on amino acid sequence,4

SVM_amino is performance of SVM model on amino acid sequence[Pprint];

ANN_PSSM is performance of ANN on PSSM profile2; ANN_WP is performance

of ANN on weighted profile2; SVM_PSSM is the performance of SVM on PSSM

profile [Pprint] and SVM_PCP is performance of SVM on Physico-chemical

properties.3

NR: Not reported by authors.
aJeong et al. (2004) dataset was used.
bJeong and Miyano (2006) dataset was used.
cWang and Brown (2006) dataset was used.
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analysis, there is an urgent need for computational meth-

ods to identify RNA binding sites on the basis of amino

acid sequence of a protein. In this direction, we have

made a systematic attempt to develop highly accurate

method for predicting RNA interacting residues in a pro-

tein sequence. First, we examined the existing methods

and found that these methods have been evaluated on

two datasets used by Jeong and Miyano2 and Wang and

Brown.3 To compare the performance of our newly

developed method (Pprint), we developed our models

using the same datasets as used by these researchers and

termed these as ‘main’ and ‘alternate’ dataset in the pres-

ent study. Then, an analysis was done for searching RNA

interacting residues and residues near the interacting resi-

dues. During this analysis, we came across a number of

observations, which are important for understanding

RNA-protein interactions. We found significant bias in

the type of interacting amino acids as well as flanking

regions.

It has been reported in some of the earlier studies that

SVM performs better than other machine learning tech-

niques. Wang and Brown3 also used SVM in predicting

the RNA binding residues but they implemented it using

Physico-chemical properties of residues. First, we devel-

oped SVM model based on amino acid sequence; this

model performed marginally better than the previous

methods on a single protein sequence. We observed that

all techniques based on amino acid sequence perform

equally well: (i) ANN used by Jeong et al. 20041; (ii)

NBC used by Terribilini et al. 2006; and (iii) SVM used

by Wong and Brown, 2006. However SVM model based

on amino acid sequence used in this study perform

slightly better than previous studies but margin was not

significant. The major improvement in performance

comes from evolutionary information used in form of

PSSM profile. Both SVM (in Pprint) and ANN (in Jeong

and Miyano, 20064) models based on PSSM profile per-

forms significantly better than other methods. Our SVM

model based on PSSM profile out-perform all existing

methods including ANN model of Jeong and Miyano,

2006. To provide direct access of prediction method

developed by us to the scientific community, we devel-

oped a web server Pprint, which allows user to predict

RNA-interacting residues in their protein.
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