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Abstract. The convective heat transfer on a rotating sphere in the presence of
magnetic field, buoyancy forces and impulsive motion is examined theoretically
and numerically in this paper. We apply a boundary layer model comprising
the balance equations forx and y direction translational momentum and
heat transfer, and solve these coupled non-linear partial differential equations
using Blottner’s finite-difference method [1]. The numerical solutions are
benchmarked with the earlier study by Lee [2] on laminar boundary layer flow
over rotating bodies in forced flow and found to be in excellent agreement.
The effects of magnetic field, buoyancy parameter, Prandtl number and thermal
conductivity parameter on translational velocities and temperature and other
variables (shear stress etc) are presented graphically anddiscussed at length. The
problem finds applications in chemical engineering technologies, aerodynamics
and planetary astrophysics.
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1 Introduction

The topic of convection heat transfer from rotating bodies has received conside-

rable attention over the past several decades. Studies were conductedby Takhar

and Whitelaw [3] who used asymptotic analysis to investigate the higher order

heat transfer from a rotating sphere. Leeet al. [2] studied the laminar boundary

layer flow over rotating bodies in forced convection conditions. Surma Devi

et al. [4] examined the transient convection flows on a rotating axisymmetric

body. The subject of magnetohydrodynamics (MHD) has also developedin many

directions and industry has exploited the use of magnetic fields in controlling a

range of fluid and thermal processes. Many studies of the influence of magnetism

on electrically-conducting flows have been reported with a plethora of other phy-

sical phenomena. Poots [5] studied analytically the laminar natural convection

magneto-hydrodynamic flows between parallel plane surfaces and also through

a horizontal circular tube incorporating viscous and Joule electrical dissipation

effects as well as internal energy generation. He showed that velocitiesand

heat transfer rates were reduced by magnetic field. Soundalgekar andTakhar

[6] investigated the MHD oscillatory flow past a flat plate, showing numerically

that for flat plate flows magnetic field depresses heat transfer rates. Takhar and

Pop [7] examined the magneto-convection flow from a wedge at high Prandtl

numbers. Niranjanet al. [8] examined the MHD free convection in a horizontal

channel with the effects of Hall currents. Takharet al. [9] studied the unsteady

magnetohydrodynamic flow of a dusty viscous liquid in a revolving channel in

the presence of Hall currents. Béget al. [10] studied numerically the effects of

magnetic field on non-Darcy viscoelastic convection in porous media. Takhar

et al. [11] also investigated the effects of electromagnetic field on Newtonian

convection in non-Darcy porous media. In the present problem we shallstudy the

effects of magnetic field, buoyancy parameter, thermal conductivity and Prandtl

number on impulsive thermal convection on a rotating sphere.

2 Flow model

Let us consider the unsteady laminar boundary layer flow of a viscous electrically-

conducting fluid in the vicinity of the front stagnation point of a rotating sphere
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in the presence of a magnetic field and a buoyancy force. Prior to the timet = 0,

the sphere is stationary and immersed in an ambient fluid with surface temperature

T∞ which is the same as that of the surrounding fluid. At timet = 0, an impulsive

motion is imparted to the ambient fluid and the sphere is suddenly rotated with

constant angular velocityΩ. At the same time the surface temperature of the

sphere is suddenly increased toTw (Tw > T∞). A constant magnetic fieldB

is applied in thez direction. It is assumed that the magnetic Reynolds number

Rm = µ0RVL � 1, whereµ0 is the magnetic permeability,R is the radius

of the sphere,L and V are the characteristic length and velocity respectively.

Under these conditions it is possible to neglect the effect of the induced magnetic

field as compared with the applied magnetic field. The wall and the free stream

temperatures are taken as constant. The viscous dissipation terms, Ohmic heating

and surface curvature are neglected in the vicinity of the stagnation point. The

hydrodynamic flow field is assumed to be axisymmetric and the fluid possesses

constant thermophysical properties with the exception of those caused bydensity

changes which generate the buoyancy force, under the Boussinesq approximation.

It is also assumed that the effect of the buoyancy-induced streamwise pressure

gradient terms on the flow and temperature fields is negligible. In the vicinity

of the front stagnation point,γ and dγ/dx are of the order of unity, whereγ

is a function ofx and designates the radius of a section normal to the axis of

the sphere and is assumed large in comparison to the boundary layer thickness.

Under these thermophysical assumptions, the boundary layer equations,based on

the conservation of mass, momentum and energy, describing the flow regime,can

be cast as follows:

Continuity:

∂(ux)/∂x + ∂(vx)/∂z = 0, (1)

x-direction Momentum:

∂u/∂t + u ∂u/∂x + w ∂u/∂z − v2/x

= ue due/dx + ν ∂2u/∂z2 + gβ(T − T∞)[x/R] − [σB2/ρ](u − ue),
(2)

y- direction Momentum:

∂v/∂t + u ∂v/∂x + w ∂v/∂z + uv/x = ν ∂2v/∂z2 − [σB2/ρ]v, (3)
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Energy (Heat):

∂T/∂t + u ∂T/∂x + w ∂T/∂z = α1∂
2T/∂z2. (4)

The initial conditions for the flow regime are:

u(x, z, t) = v(x, z, t) = w(x, z, t) = 0, T (x, z, t) = T∞ for t < 0. (5)

Theboundaryconditions fort ≥ 0 are:

u(x, 0, t) = 0, v(x, 0, t) = Ωx, w(x, 0, t) = 0, T (x, 0, t) = Tw,

u(x,∞, t) = ue(x), v(x,∞, t) = 0, T (x,∞, t) = T∞,
(6)

wherex denotes distance along a meridian of the sphere from the forward stagna-

tion point,y is the distance in the direction of rotation,z is the distance normal to

the surface;u, v andw are the velocity components along thex, y andz directions

respectively,σ is the electrical conductivity of the fluid,T is the temperature,t de-

notes time,B is magnetic field,ρ is the fluid density,ν is the kinematic viscosity,

Ω is the angular velocity of the sphere,g′ denotes gravitational acceleration,α1 is

the thermal diffusivity,β is the coefficient of thermal expansion. The subscripts

e, w and∞ denote conditions at the edge of the boundary layer, on the surface

and in the free stream, respectively.

3 Transformation of equations

It is possible and beneficial from a numerical solution viewpoint, to convert the

partial differential equations of transport (1)–(4) and boundary conditions (5) and

(6) with threeindependent variables(t, x, z) to dimensionless partial differential

equations withtwo independent variables(ξ, η) by applying the following trans-

formations:

t∗ = αt, a > 0, (7)

ξ = 1 − exp(−t∗), (8)

η = (2a/ν)1/2ξ−1/2z, (9)

ue = ax, (10)

vw = Ωx, (11)
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u(x, z, t) = ax ∂f(ξ, η)/∂η, (12)

v(x, z, t) = Ωxs(ξ, η), (13)

w(x, z, t) = −(2aν)1/2ξ1/2f(ξ, η), (14)

T (x, z, t) = T∞ + (Tw − T∞)g(ξ, η), (15)

λ = (Ω/a)2, (16)

Pr = ν/α1, (17)

a = due/dx, (18)

M = σB2/ρa, (19)

α = GrR/ReR
2, (20)

GrR = g′β(Tw − T∞)R3/ν2, (21)

ReR = aR2/ν. (22)

The governing equations are therefore transformed to the following system of

collectively seventh order partial differential equations with referenceto a (ξ, η)

coordinate system.

x-direction Momentum:

∂3f

∂η3
+

η

4
(1 − ξ)

∂2f

∂η2
+ ξf

∂2f

∂η2
−

1

2
ξ
[(∂f

∂η

)2

− 1 − λs2

]

+
ξ

2
M

[

1 −
(∂f

∂η

)]

+
1

2
ξαg =

1

2
ξ(1 − ξ)

[ ∂2f

∂ξ∂η

]

,

(23)

y-direction Momentum:

∂2s

∂η2
+

η

4
(1 − ξ)

∂s

∂η
+ ξ

[

f
∂s

∂η
− s

∂f

∂η

]

−
ξ

2
Ms =

ξ

2
(1 − ξ)

[∂s

∂ξ

]

, (24)

Energy (Heat):

1

Pr

∂2g

∂η2
+

η

4
(1 − ξ)

∂g

∂η
+ ξ

[

f
∂g

∂η

]

=
ξ

2
ξ(1 − ξ)

[∂g

∂ξ

]

, (25)

Boundary Conditions:

f(ξ, 0) =
∂f

∂η
(ξ, 0) = 0, s(ξ, 0) = g(ξ, 0) = 1, (26)

∂f

∂ξ
(ξ,∞) = 1, s(ξ,∞) = g(ξ,∞) = 0, (27)
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wheret∗ andξ are the dimensionless time,η is the transformed variable in thez

direction,∂f/∂η ands denote the dimensionless velocity components along the

x andy directions, respectively,g is the dimensionless temperature function,M is

the Hartmann hydromagnetic number (the magnetic field acts in thez direction),

λ is a rotational parameter (identical to the parameterB in the study by Leeet

al. [2]), a is the velocity gradient at the edge of the boundary layer,GrR is the

Grashof free convection number,ReR is the Reynolds number,α is the buoy-

ancy parameter,Pr denotes Prandtl number. There are four key thermophysical

parameters dictating the flow regime –M, α, Pr andλ.

4 Numerical solution by blottner difference scheme

The governing equations amount to aseventhorder set of nonlinear, coupled

partial differential equations with seven corresponding boundary conditions. The

Blottner method has been used in a wide range of thermoconvection and fluid

mechanics problems. Chamkha [12] studied the combined natural convection

heat and mass transfer from various geometries in a porous medium using the

Blottner scheme. Details of the numerics are to be found in this reference. We

shall therefore not relate these aspects here.For brevity we denoted∂/∂η by the

superscript()′ and this format is followed in the table and graphs plotted.

5 Results and discussion

We have computed profiles for the special case ofξ = 1, α = M = 0 i.e.

zero buoyancy and no magnetic field i.e. purely hydrodynamic heat transfer,

respectively. The simplified equations correspond exactly to the earlier equations

solved by Leeet al. [2], viz:

x-Momentum:

∂3f

∂η3
+ f

∂2f

∂η2
+

1

2
−

1

2

(∂f

∂η

)2

+
1

2
λs2 = 0, (28)

y-Momentum:

∂2s

∂η2
+ f

∂s

∂η
− s

∂f

∂η
= 0, (29)
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Thermal Energy (Heat):

∂2g

∂η2
+ Prf

∂g

∂η
= 0. (30)

The computations have been tabulated atξ = 1 for three combinations of the

Prandtl number and the thermal conductivity parameter. The results of Leeet

al. [2] for x-direction shear stressf ′′(ξ, 0), y-direction shear stresss′(ξ, 0) and

surface heat transfer rateg′(ξ, 0) are therefore tabulated forPr = 1, 10 and100.

The case in Leeet al.’s model [2] forξ = 0 andΛ = 0.5 reduces their equations

to the set given above i.e. (28), (29) and (30). In the top section of Table 1, we

observe that for all values of rotation parameterλ (i.e. 1, 4, 10) with Pr = 1.0, the

values forf ′′(ξ, 0), s′(ξ, 0) andg′(ξ, 0) are identical to three decimal places. Lee

et al. [2] used a fourth order Runge Kutta numerical method to generate solutions

to equations (28), (29) and (30) subject to appropriate boundary conditions. We

have in addition plotted thef ′′(ξ, 0), s′(ξ, 0) and g′(ξ, 0) distributions for the

special case ofM = α = 0 at ξ = 1 for Prandtl numbers (Pr) with values of10

and100, for all three cases of the rotational parameterλ = 1.4, 10. For the case

of Pr = 1.0 (saturated water at 440 Kelvins – see Incropera and De Witt [13] asλ

is increased from1 through4 to 10, thex-direction shear stressf ′′(ξ, 0) increases

in magnitude since the flow becomes more vigorous and accelerates with greater

rotation. This increases the shear stress at the surface of the sphere.Similarly

Table 1. Comparison of the results (f ′′(ξ, 0), s′(ξ, 0), g′(ξ, 0)) with those of
Leeet al. [2] for m = α = 0 at ξ = 1

Pr λ Leeet al. [2] Present results
f ′′(ξ, 0) s′(ξ, 0) g′(ξ, 0) f ′′(ξ, 0) s′(ξ, 0) g′(ξ, 0)

1 1.1129 -0.7849 0.5536 1.11292 -0.78489 0.55361
1 4 1.6233 -0.8463 0.5897 1.62316 -0.84639 0.58973

10 2.5216 -0.9362 0.6432 2.52141 -0.93624 0.64324
1 – – 1.2911 1.11292 -0.78488 1.29095

10 4 – – 1.4180 1.62318 -0.84636 1.41776
10 – – 1.6003 2.52139 -0.93624 1.60004
1 – – 2.8796 1.11291 -0.78488 2.87944

100 4 – – 3.2172 1.62316 -0.84636 3.21673
10 – – 3.6860 2.52143 -0.93622 3.68484
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the magnitude of they-direction shear stress| − s′(ξ, 0)| and the surface heat

transfer rate−g′(ξ, 0) is also enhanced with risingλ parameter. Similar trends

are observed for the case ofPr = 10 (which corresponds to saturated water at

440 Kelvins) and forPr = 100 (which corresponds to Ethylene Glycol fluid at

310 Kelvins and also to unused engine oils at420 Kelvins). We note that for more

viscous fluids e.g. oils, the Prandtl number is significantly higher and much less

energy is therefore transferred by diffusion as compared with momentum transfer.

For the full mathematical model, equations (23), (24) and (25) with boundary

conditions (26) and (27), we study initially the effects of magnetismM on the flow

regime. Fig. 1 illustrates thex-direction shear stressf ′′(ξ, 0) versus dimensionless

time ξ for a fixedPr = 0.7 (i.e. air at350 Kelvins or Hydrogen gas at350

Kelvins),λ = 1, α = 1. As M rises we observe that thex-direction shear stress

is enhanced. This trend agrees with a similar behaviour in hydromagnetic flow

on a spinning disk studied by Takharet al. [14]. Fig. 2 shows that they-direction

shear stress−s′(ξ, 0) is also boosted in value by increasing magnetic parameter

M from 0 to 5, as again this stress is not affected adversely by the magnetic field.

The case forM = 0 clearly corresponds to purely thermal convection flow and in

this case they-direction shear stress is a minimum. We have used in all Figs. 1 to

12 a dimensionless time abcissa range of1.0. In both Figs. 1 and 2, the maximum

values forf ′′(ξ, 0) and−s′(ξ, 0) are at a maximum wherex = 1.0 i.e. at the end

of the dimensionless time range. Hence shear stresses are increasing simultane-

Fig. 1. Variation off ′′(ξ, 0) with ξ for λ = α = 1 andPr = 0.7.
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Fig. 2. Variation of−s′(ξ, 0) with ξ for λ = α = 1 andPr = 0.7.

Fig. 3. Variation of−g′(ξ, 0) with ξ for λ = α = 1 andPr = 0.7.

ously with magnetic field and also time. The Prandtl number for Fig. 2 is again0.7

andλ andα both have unity values. Fig. 3 shows the variation of non-dimensional

surface heat transfer i.e. temperature gradient−g′(ξ, 0) with x for variousM

values. Again we observe arise in−g′(ξ, 0) magnitude asM is increased from

0 to 5. The increase however is not as substantial as forf ′′(ξ, 0) and−s′(ξ, 0).

This is explained by the fact that the magnetic parameterM appears explicitly in

both x andy direction momentum equations (23) and (24) where the magnetic

terms are respectively0.5 ξM(1 − f ′) and−0.5 ξMs respectively. No magnetic

term appears in the thermal energy equation (25) and therefore magnetic field
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effects are indirectly applied to the thermal field by first affecting thex-direction

andy direction momentum fields which via coupled terms then affect the energy

equation.

The effects of the buoyancy parameter,α, on x direction andy direction

shear stresses and also surface heat transfer i.e.f ′′(ξ, 0), −s′(ξ, 0) and−g′(ξ, 0)

respectively versusx are shown in Figs. 4, 5 and 6. The buoyancy parameter

only appears in the transformedx direction momentum equation (23) in the term

0.5 ξαg. This term couples this equation to the heat (thermal energy equation

(25)) and the flow regime is therefore a natural or mixed convection flow regime

Fig. 4. Variation off ′′(ξ, 0) with ξ for M = λ = 1 andPr = 0.7.

Fig. 5. Variation of−s′(ξ, 0) with ξ for M = λ = 1 andPr = 0.7.
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Fig. 6. Variation of−g′(ξ, 0) with ξ for M = λ = 1 andPr = 0.7.

i.e. not forced convection. For forced convectionα = 0 and this de-couples the

momentum and thermal fields. The coupling of (23) and (25) is valid according

to the Boussinesq approximation as discussed by Incropera and De Witt [13]. In

Figs. 4, 5 and 6 all plots have been produced forM = λ = 1 andPr = 0.7.

Hence the flow is weakly magnetohydrodynamic with weak rotation asλ > 0 and

M > 0. These constitutea laminar magneto-convection flow field.

Fig. 4 shows thatx direction surface shear stress rises considerably asα rises

from0 to1. Rising buoyancy factor adds vigour to the flow regime and momentum

is also boosted considerably. Consequently the flow is accelerated, velocities

and shear stresses are thus elevated. Values are also a maximum forξ = 1 as

buoyancy effects exert greater influence withtime. A similar trend is observed

for the variation of−s′(ξ, 0) in Fig. 5, i.e.y direction shear stress increases also

with dimensionless timeξ. The profiles rise more steeply in this case than they

do for x direction shear stressf ′′(ξ, 0) and again they peak at a maximum value

of ξ i.e. at the end of the range. Variation of surface heat transfer−g′(ξ, 0) with

ξ for different a parameters is plotted in Fig. 6. Once again increasing buoyancy

(α) elevates the heat transfer rate which rises from a maximum value of about0.5

for α = 0, to a value of0.58 approximately forα = 5 (strong buoyancy).

The effects of rotation parameterλ on f ′′(ξ, 0), −s′(ξ, 0) and−g′(ξ, 0) ver-

susξ are plotted in Figs. 7, 8 and 9 respectively. An increase in the rotational

parameter substantially boosts theξ direction shear stressf ′′(ξ, 0) which approxi-

mately quadruples in peak value fromλ = 1 andλ = 20. The magnetic parameter
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Fig. 7. Variation off ′′(ξ, 0) with ξ for M = α = 1 andPr = 0.7.

Fig. 8. Variation of−s′(ξ, 0) with ξ for M = α = 1 andPr = 0.7.

M and buoyancy parameter a are both equal to1 andPr is 0.7 corresponding to

weakly buoyant aerodynamic hydromagnetic convection. They direction shear

stress (Fig. 8) increases less noticeably with a rise inλ. Increasingλ from 1 to

20 only boosts the−s′(ξ, 0) magnitude from1.1 approximately to about1.24 at

the end of theξ range. The lesser effects are explained by the fact thatλ does not

occur explicitly in the y direction momentum equation (24). It only occurs in the

x direction momentum equation where it appears as0.5 ξλs2. This term serves

to strongly couple thex direction andy direction momentum equations ass is

present in this term. Theλ parameter therefore indirectly affects they direction

velocity,s, andy direction shear stress,−s′(ξ, 0), via thex direction momentum
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equation.

Fig. 9 depicts the distribution of local surface heat transfer−g′(ξ, 0) with

ξ for variousλ values. As with they direction momentum equation (24), the

rotational parameterλ does not appear in the heat equation (25) but dimensionless

temperatureg is coupled with stream functionf via the buoyancy term0.5 ξαg

which occurs in thex direction momentum equation (23). Consequentlyλ affects

thex direction flow equation and these effects are transferred through to the heat

equation via theξfg′ term in this equation (25). The plots forλ = 1, 4, 10 and20

are less different therefore and−g′(ξ, 0) increases from a peak value of about0.5

for λ = 1 to about0.6 for λ = 20 i.e. the difference (increase) is less than25 %.

Fig. 9. Variation of−g′(ξ, 0) with ξ for M = α = 1 andPr = 0.7.

Figs. 10 to 12 illustrate the variation off ′′(ξ, 0), −s′(ξ, 0) and−g′(ξ, 0)

versusξ for various Prandtl numbers (Pr). In all three plotsλ is fixed at1 as isα.

Pr = 0.7 corresponds to air at350 Kelvins but risingPr corresponds to saturated

water at330 Kelvins (Pr = 3) and Pr = 7 is approximately the value for

saturated water at290 KelvinsPr = 15 implies certain oils and lubricants. Fig. 10

shows thatx direction surface shear stressf ′′(ξ, 0) is decreased by increasingPr

from 0.7 to 15. Pr is defined as the ratio of momentum and thermal diffusivities.

For higherPr fluids the flow regime is decelerated (greater viscosities) and this

decreases shear stresses at the surface of the sphere. A decrease in y direction

shear stress−s′(ξ, 0) is seen in Fig. 11, asPr rises from0.7 to 15. We note the

effect ofPr on bothf ′′(ξ, 0) and−s′(ξ, 0) asPr only appears in the heat equa-
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tion, but sincef also appears in the heat equation (25) it is affected more strong-

ly than s, by Pr. The effects on−s′(ξ, 0) are indirectly caused by the coupling

of f andξ with they direction momentum equation. There is nog term in equation

(24) ors term in equation (25) i.e. they are not coupled via they direction velocity

or temperature fields.

As expected Fig. 12 shows a dramatic rise in−g′(ξ, 0) from Pr = 0.7 to

Pr = 15 asPr boosts the convection heat transfer and increases the rate of energy

(thermal) transferred from the surface of the sphere to the engulfing fluid. M =

λ = α = 1 for this flow scenario which physically implies a weak hydromagnetic

field, slow rotation and weak buoyancy forces. Temperatures would alsofall with

Fig. 10. Variation off ′′(ξ, 0) with ξ for M = λ = α = 1.

Fig. 11. Variation of−s′(ξ, 0) with ξ for M = λ = α = 1.
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Fig. 12. Variation of−g′(ξ, 0) with ξ for M = λ = α = 1.

risingPr but these have not been plotted againstξ. These results concur with the

earlier analysis of Takharet al. [11].

Figs. 13 to 15 plot the non-dimensional etx direction velocityf ′(η), y di-

rection velocitys(η) and temperatureg(η) with η coordinate for various values

of ξ i.e. dimensionless time. As expectedf ′(η) rises withξ increasing from0

to 0.5 to 1.0 since the fluid is accelerated with time.M = α = λ = 1 and

Pr = 0.7 for all plots14 to 16. y direction velocity is depressed (Fig. 15) with

rising ξ i.e. maximumy direction velocities occur at the start of the impulsive

motion (ξ = 0.0). The effects of this impulse are reduced with time and exhibited

by a substantial depression iny direction velocity. A similar trend is observed

Fig. 13. Velocity profilef ′(ξ, η) for M = λ = α = 1 andPr = 0.7.
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Fig. 14. Velocity profiles(ξ, η) for M = λ = α = 1 andPr = 0.7.

Fig. 15. Velocity profileg(ξ, η) for M = λ = α = 1 andPr = 0.7.

for Fig. 15 where dimensionless temperatureg(η) is plotted againstη. In all

three plots 13, 14 and 15, we have utilised anη range of [2] as this allows

convergence with a high degree of accuracy for the Blottner numerical finite

difference method. Temperatures are depressed as time proceeds i.e. theξ = 1

profiles are significantly lower than theξ = 0 profiles.

6 Conclusions

A mathematical model has been derived for the rotating heat transfer froma spher-

ical body in the presence of strong magnetic field and impulsive and buoyancy
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effects. A benchmarked numerical solution has been obtained to the transformed

boundary layer equations using a robust finite difference scheme introduced by

Blottner [1] for aerodynamics simulations. The numerical code has been verified

by comparison with previous computations by Leeet al. for the non-magnetic

case. Our computations indicate:

1. Increasing magnetic field (M ) enhances magnitudes of thex-direction

shear stress (f ′′(ξ, 0)) is enhanced and also they-direction shear stress−s′(ξ, 0)

is also boosted in value by increasing magnetic parameterM from 0 to 5.

2. Non-dimensional surface heat transfer i.e. temperature gradient−g′(ξ, 0)

is also increased with a rise in magnetic field parameter,M . The increase however

is not as substantial as forf ′′(ξ, 0) and−s′(ξ, 0) as convection is only affected

indirectly by the influence of the magnetic field on the flow fields.

3. Rising buoyancy factor (α) accelerates the flow and increases bothx-

direction shear stress (f ′′(ξ, 0)), and they-direction shear stress (−s′(ξ, 0)). The

profiles however ascend more steeply in the latter case than they do forx direction

shear stress,f ′′(ξ, 0). This can have significant influence in chemical treatment

processes involving very high rotational velocities as described by Leeet al. [2].

4. Increasing buoyancy (α) elevates the heat transfer rate i.e.−g′(ξ, 0),

which is beneficial in rotational process control in chemical engineering systems

as described by Takhar and Whitelaw [3].

5. Rising rotational parameter (λ) greatly enhances thex direction shear

stressf ′′(ξ, 0) and also increases they-direction shear stress i.e.−s′(ξ, 0) mag-

nitude, although to a much lesser extent. Primary flow is therefore considerably

accelerated by the increase in rotational velocity whereasλ (rotation parameter)

only weakly affects the secondary flow regime.

6. The non-dimensional surface heat transfer rate,−g′(ξ, 0) is positively

affected by a rise in rotation parameter (λ) but to a much lesser extent than the

flow fields.

7. Increasing Prandtl number (Pr) strongly decreases thex-direction surface

shear stressf ′′(ξ, 0) and also they-direction shear stress−s′(ξ, 0).

8. Rising Pr largely increases the non-dimensional surface heat transfer

rate,−g′(ξ, 0) since largerPr values augment convection heat transfer and boost

heat transferred from the surface of the sphere to the engulfing fluid.Therefore
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in industrial applications higherPr fluids are more effective in enhancing heat

transfer to ambient fluids with the converse apparent for lowerPr values. Such

results concur also with the case for a rotating flat plate as described by Bég et

al. [15].

The present study is currently being extended to examine the heat transfer

and flow field characteristics of more complex non-Newtonian fluids, the results

of which will be communicated in future research (Béget al. [16,17]).
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