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Abstract. For the structure of a sonic boom produced by a simple aerofoil at a large
distance from its source we take a physical model which consists of a leading shock (LS),
a trailing shock (TS) and a one-parameter family of nonlinear wavefronts in between
the two shocks. Then we develop a mathematical model and show that according to this
model the LS is governed by a hyperbolic system of equations in conservation form and
the system of equations governing the TS has a pair of complex eigenvalues. Similarly,
we show that a nonlinear wavefront originating from a point on the front part of the
aerofoil is governed by a hyperbolic system of conservation laws and that originating
from a point on the rear part is governed by a system of conservation laws, which is
elliptic. Consequently, we expect the geometry of the TS to be kink-free and topologically
different from the geometry of the LS. In the last section we point out an evidence of
kinks on the LS and kink-free TS from the numerical solution of the Euler’s equations
by Inoue, Sakai and Nishida [5].

Keywords. Sonic boom; shock propagation; ray theory; elliptic equation; conserva-
tion laws; Cauchy problem.

1. Introduction

When an aircraft moves with a supersonic speed, two conical shock surfaces extending
behind the aircraft from nose and tail are generated. The region between the two conical
surfaces is the entire region of pressure disturbance at a given instant. The lower part of this
pressure disturbance propagates from the aircraft to the ground. The leading shock front (let
us call it LS) starting from the nose of the aircraft gives rise to a sudden pressure increase
in the atmosphere. For a steady motion of the aircraft, the pressure disturbance in between
the LS and the trailing shock (TS) decreases almost linearly across the disturbance till it
reaches the TS in front of which the pressure falls below the atmospheric pressure. A sudden
compression takes place at the TS and the pressure is restored to its atmospheric value.
Thus the pressure disturbance far from the body develops N -shape which is commonly
known as N -wave. An observer on the ground will recognize this pressure variation as a
noise which starts with a bang and ends with another bang. This phenomenon of the noise
with two bangs is called sonic boom. The loud noise of the sonic boom and the associated
bangs are undesirable effects of supersonic flights in any locality which is not far away
from the aircraft. The N -wave signature of a boom is modified to a U -wave signature in
a focused boom produced by an accelerating aircraft (or more generally a maneuvering
aircraft, figure 3 of [10]), for which the only available code is a very old one, PCBoom
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3 by Crow [4]. Our main aim in this paper is to present a new mathematical formulation
(i) to find full geometrical shape of the LS and TS with all finer details for an arbitrary
motion (i.e., general maneuvering) of the aircraft and (ii) to calculate the full signature
of the boom at any location far away from the aircraft. The method which we develop is
computationally efficient.

Sonic boom had been anticipated in the early 50’s of the 20th century even in early
stages of supersonic flights of aircraft. Due to this unpleasant and destructive feature, an
aircraft is restricted today to fly at supersonic speeds only across the oceans. This restriction
clearly shows the importance of the study of sonic boom problem. Developments in the
fundamental theory of sonic boom and the implementation to practical models took almost
two decades but this field of research is still active (see [10]) and the particular issue
of the JASA containing this paper and a large number of other papers dealing with the
various aspects of sonic boom research till the end of the last century). An extensive
literature survey shows that though menace of the sonic boom cannot be fully eliminated,
the mathematical aspects of the problem need much more attention. This is mainly because,
the commonly used codes developed so far use linear ray theory to start the solution and
then use an approximate but a very elegant simple nonlinear theory (due to Whitham [13])
in which the amplitude is calculated along the linear rays. The results are fine as long as
the problem can be described in two independent variables, for example, a steady two-
dimensional case, but once three independent variables appear (say, x, y and t) as in the
case of an unsteady two-dimensional case, the results using linear rays become inadequate
since the nonlinear rays diffract significantly from the linear ones. Hence, the sonic boom
problem produced by a maneuvering aircraft remains an open mathematical problem even
today. Also, it is important to note [10] that while calculating sonic boom signature one
needs to calculate the far-field solution, as the main aim in this problem is to find the
pressure disturbance on the ground when a supersonic aircraft flies at a high distance from
the ground level. In such cases it is expensive and sometimes may not be possible to go
for a full numerical solution of the original gas dynamics equations [5,9]. So, we need
approximate methods to take into account diffraction of nonlinear rays and which also
reduces computational time. The new mathematical formulation of this problem presented
here is restricted to two spatial dimensions but gives the full far-field sonic boom signature
with finer geometrical features of the LS and TS. This simple formulation is valid also in
the case of a maneuvering aerofoil – which is a challenging problem and is achieved in
a ray coordinate system with just two independent variables instead of the original three
independent variables x, y and t . The basis of formulation are two previous theories –
a weakly nonlinear ray theory (WNLRT) [12] and a shock ray theory (SRT) [8] for a weak
shock. For the role played by the two theories, it is crucial to understand the difference
between a nonlinear wavefront (across which the flow variables are continuous) in the
high frequency approximation and a shock front (§1.8 of [11]). Some of the equations
of the two approximate theories are equivalent to the differential forms of a pair of exact
geometrical results, namely kinematical conservation laws (KCL) by Morton, Prasad and
Ravindran [7]. All these basic results are available in a book by Prasad [11]. The SRT is
ideally suited in dealing with the sonic boom problem since

(i) it has been shown that it gives results which agree well with known exact solutions
and experimental results [6],

(ii) it gives a sharp geometry of the shock and many details of its finer geometrical
features [8],
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(iii) results obtained by it also agree well with those obtained by numerical solutions of
full Euler equations [2] and

(iv) it takes considerably less computational time (say less than 10%) compared to
computation by the original Euler equations.

As described in the next section, the far-field sonic boom satisfies high frequency
approximation, and hence its signature in between the LS and TS is generated by a one-
parameter family of nonlinear wavefronts �ζ starting from the various points Pζ on the
upper and lower surfaces of the aerofoil separated by a linear wavefront �G from a point
PG where the tangent to the aerofoil surface is parallel to the camber line. Our mathe-
matical formulation is in terms of one-parameter family of Cauchy problems for a system
of conservation laws (i.e., WNLRT) governing the evolution of this one-parameter family
of nonlinear wavefronts. The system changes its nature from hyperbolic to elliptic as the
parameter ζ goes from one sub-interval to another sub-interval on the two sides of ζ = G.
The formulation also contains two Cauchy problems for another system of conservation
laws (SRT) governing the evolution of the LS and the TS, the system is hyperbolic for
the LS and is elliptic for the TS. We hope to report in future many interesting physical
features of the sonic boom through some theoretical results and extensive computation
with the help of our formulation. These computations will require not only new numerical
schemes but also a lot of trials with different schemes for the cases when the system is
elliptic. Hence, we present only the mathematical formulation in this paper with just a few
simple numerical results at the end. Those involved in calculating sonic boom signature
from a maneuvering aircraft, will notice a simplicity in our method, enormous time-saving
in computation and evidence of new results such as the trailing shock must always be
free from kinks and the leading shock may have a different topological shape with two or
more kinks on it. Unlike the previous methods, our method fully takes into account the
nonlinearity of the evolution equations from the very beginning. It does not take linear
solution to start the solution for small time and then builds nonlinearity on linear solu-
tion.

2. Formulation of the problem

Consider a two-dimensional unsteady flow produced by a maneuvering supersonic aerofoil
whose leading edge (or the nose) is moving along a curved path. We assume the ambient
unperturbed medium to be uniform and at rest. Our formulation is based on four assump-
tions:

Assumption A.1. The aerofoil is thin.

Assumption A.2. The length of the aerofoil, i.e., its camber length d̄ is small compared to
the distance L of the point of observation of the sonic boom from the aerofoil.

Assumption A.3. The camber length d̄ is small compared to the radius of curvature R of
the path of the leading nose.

Assumption A.4. The camber line is aligned along the direction of motion of the aerofoil.

Due to Assumptions A3 and A4, we can assume the camber line to be approximately
coincident with the path of the leading edge or the nose of the aerofoil.
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We denote the coordinate system in the plane of the motion of the aerofoil by (x̄, ȳ)
and the time by t̄ . The appropriate time scale for our problem is T = L/a0, where a0
is the constant sound velocity in the uniform ambient medium. We introduce the non-
dimensional variables as follows:

t = t̄

T
, x = x̄

L
, y = ȳ

L
, d = d̄

L
,

where a quantity with a bar denotes a dimensional variable. Throughout our work, all the
independent variables we use are non-dimensional in the above sense.

To describe the geometry of the aerofoil, we introduce a local rectangular coordinate
system (x′, y′) with the origin O ′ at the nose of the aerofoil such that at any time t , O ′x′
is in the direction tangential to the aerofoil path and O ′y′ is perpendicular to it. Let us
denote the curved path of the aerofoil traced by the nose of the aerofoil in the (x, y)-plane
by (x = X0(t), y = Y0(t)). Every point on the surface of the aerofoil moves with the same
velocity (Ẋ0(t), Ẏ0(t)) making an angle, say ψ(t) with the direction of the x-axis, so that

tanψ = Ẏ0(t)

Ẋ0(t)
. (2.1)

Thus, the aerofoil moves in the direction (cosψ, sinψ) of theO ′x′ axis (figure 2.1). Hence,

x′ = 〈(cosψ, sinψ), (x −X0(t), y − Y0(t))〉
= x cosψ + y sinψ − X0(t), (2.2)

y′ = 〈(− sinψ, cosψ), (x −X0(t), y − Y0(t))〉
= −x sinψ + y cosψ − Y0(t), (2.3)

where

X0 = X0 cosψ + Y0 sinψ, Y0 = −X0 sinψ + Y0 cosψ. (2.4)

Due to Assumption A3, we can take the camber line to be straight and coincident with the
O ′x′-axis between x′ = −d and x′ = 0 (due to the Assumption A4, the lineO ′x′ deviates
from the path only over a distance large compared to the camber length d). We denote the
upper and the lower surfaces of the aerofoil by

(x′ = ζ, y′ = bu(ζ )) and (x′ = ζ, y′ = bl(ζ )), − d ≤ ζ ≤ 0 (2.5)

respectively. We assume that bu(ζ ) ≥ 0, bl(ζ ) ≤ 0, b′′
u(ζ ) ≤ 0, b′′

l (ζ ) ≥ 0 for −d ≤ ζ ≤ 0.
In addition, we also assume that b′

u(−d) > 0, b′
u(0) < 0, b′

l (−d) < 0 and b′
l (0) > 0, so

that the nose and the tail of the aerofoil are not blunt.
We denote a point on the surface of the aerofoil by Pζ . The position of this point at a

given time t in the fixed (x, y)-plane is (Xζ (t), Yζ (t)) where

Xζ (t) = X0(t)+ ζ cosψ(t)− bu(ζ ) sinψ(t), (2.6)

Yζ (t) = Y0(t)+ ζ sinψ(t)+ bu(ζ ) cosψ(t), (2.7)

where −d ≤ ζ ≤ 0 and the path of P0 i.e., the nose of the aerofoil is (X0(t), Y0(t)) as
stated earlier.
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Figure 2.1. Sonic boom produced by the upper and lower surfaces: y ′ = bu(x
′)

and y ′ = bl(x
′) respectively. The boom produced by either surface consists of a

one-parameter family of nonlinear wavefronts �(ζ)t , −d < ζ < 0 (shown by thin
lines) and is bounded by a leading shock LS and a trailing shock TS. The linear
wavefront �(G)t is shown by a broken line.

Figure 2.2. An enlarged version of the upper part of figure 2.1 near the aerofoil.

In figure 2.1, we show the geometry of the aerofoil and the sonic boom produced by it
at any time t . The sonic boom produced either by the upper surface or the lower surface
consists of a leading shock LS: �(0)t and a trailing shock TS: �(−d)t , which are shown by
thick lines in the figure. The sonic boom produced by the upper and the lower surfaces
spread slowly (figure 2.1). Figure 2.2 shows an enlarged version of the upper part of



102 S Baskar and Phoolan Prasad

figure 2.1 near the aerofoil. Since d = d̄/L =: ε � 1, the flow in the sonic boom between
LS and TS is contained in a thin strip for which the ratio of the width to its length is of the
order of ε, so that this flow satisfies high frequency assumption. The aerofoil is thin i.e.,
the ratio of the thickness max−d<ζ<0 (bu(ζ )− bl(ζ )) of the aerofoil to d is also small and
is assumed to be ofO(ε), which implies that the amplitude of the disturbance in the sonic
boom is small. Thus, the high frequency and small amplitude assumption of chapter 4
of [11] is satisfied and the flow in the boom between LS and TS can be characterized
by one-parameter family of weakly nonlinear wavefronts �(ζ)t , {−d < ζ < 0, ζ �= G}
originating from the various points Pζ on the aerofoil. We shall define G later. To be
more specific, we discuss only the sonic boom produced by the upper surface and in
this paper Pζ is a point on the upper surface as seen in figure 2.2. Thus, the nonlinear
wavefront at a given time t starting from a point Pζ on the upper surface of the aerofoil

is �(ζ)t , {−d < ζ < 0, ζ �= G}. By �(0)t , we denote the leading shock front LS (note
that the nonlinear wavefront starting from the leading edge P0 is immediately annihilated
by the LS and disappears from the flow). Similarly, we denote the trailing shock TS by
�
(−d)
t .
Nonlinear wavefronts produced from points on the front portion of the aerofoil start

interacting with the LS and those from the points near the trailing edge do so with the
TS, and after interaction they keep on disappearing continuously from the flow. These
two sets, one interacting with the LS and another interacting with the TS are separated
by a linear wavefront �(G)t , which is explained at the end of §3. Note that figure 2.2 is
simply an enlarged version of figure 2.1 near the aerofoil. Actually the high-frequency
approximation is not valid in a neighborhood of the aerofoil and the flow is far more
complex. We have mentioned in the beginning of the introduction that the signature of a
boom produced by a maneuvering aerofoil is not a N -wave but a U -wave. A difference in
the rates of interactions of the nonlinear wavefronts from the front and rear parts with the
LS and TS respectively will produce a difference in the signature of the boom. We would
like to examine in subsequent papers whether our theory is able to produce U -shape (and
some other shapes also) of the signature.

Our objective in this work is to develop a ray theoretical method based on a weakly
nonlinear ray theory (WNLRT) to calculate the nonlinear wavefronts �(ζ)t {−d < ζ <

0, ζ �= G}, (G to be defined later) and a shock ray theory (SRT) to calculate the shock fronts
LS and TS produced by a supersonic maneuvering aerofoil. An advantage of WNLRT and
SRT theories is that the amplitude of the perturbation on�(ζ)t is calculated simultaneously
with the geometry of�(ζ)t . We describe the ray coordinate system and the basic equations
for the calculation of each �(ζ)t in the next section and derive the Cauchy data on a datum
curve in the ray coordinate plane in §4. The introduction of the ray coordinate system (ξ, t)
is such that the datum curve for calculation of each�(ζ)t , −d ≤ ζ ≤ 0 is the same, namely
ξ + t = 0.

3. Ray coordinate system

Let us now introduce a ray coordinate system (ξ, t) for�(ζ)t , where t = constant represents
the position of �(ζ)t at the time t and ξ = constant is a ray associated with the successive
positions of �(ζ)t . As mentioned earlier, we restrict ourselves only to the upper surface of
the aerofoil unless stated explicitly.
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Figure 3.1. A formulation of the ray coordinate system (ξ, t) for �(ζ)t . AB repre-
sents the path of a fixed point Pζ on the aerofoil. A and B are the positions of Pζ
at times η and t respectively, η < t .

When�(ζ)t propagates in a uniform isotropic medium at rest, the rays are orthogonal to
the successive positions of it. The front�(ζ)t at a given time t can be obtained by Fermat’s
method of wavefront construction i.e., the line joining the tips of the rays at time t in the
(x, y)-plane starting from all positions Pζ |η of Pζ at times η < t as shown in figure 3.1.

The ray velocity will depend on the type of the front �(ζ)t , that is whether it is a linear or
a nonlinear wavefront for −d < ζ < 0 or whether it is a shock front for ζ = 0,−d.

For a front�(ζ)t , −d ≤ ζ ≤ 0, the ray coordinate system (ξ, t) is such that ξ = constant
is a ray. We note that a ray associated with�(ζ)t can be identified by the starting point Pζ |η
of the ray at time η. Hence, as shown in figure 3.1, we choose

ξ = −η, η ≤ t. (3.1)

As t → ∞ we get the full ray as the front �(ζ)t moves away to infinity. Note that we shall
have different ray coordinates (ξ, t) for different fronts �(ζ)t , i.e., for different values of ζ
satisfying −d ≤ ζ ≤ 0. For this choice of ξ , the variable ξ increases along �(ζ)t as we
move away from the aerofoil i.e., the curve �(ζ)t is described in the positive sense so that
the unit normal to �(ζ)t points in the direction of propagation of �(ζ)t . For a front starting
from the lower surface of the aerofoil, we take ξ of the ray coordinate system (ξ, t) to be

ξ = η, η ≤ t. (3.2)

In this case ξ increases as we move towards the aerofoil on �(ζ)t in order that the unit
normal to �(ζ)t points in the direction of propagation of �(ζ)t .

We assume the medium to be a polytropic gas with equilibrium state: gas density ρ̄ = ρ̄0,
velocity q̄ = 0 and pressure p̄ = p̄0. The sound velocity a (note that there is no bar on
a even though it is not non-dimensional) in the medium is given by a2 = γ p̄/ρ̄, where
γ is the ratio of specific heats. In high-frequency small amplitude approximation, the
perturbations in the flow variables on any one of �(ζ)t , −d ≤ ζ ≤ 0, can be expressed in
terms of an amplitude w̃ as follows:

ρ̄ = ρ̄0 +
(
ρ̄0

a0

)
w̃, q̄ = (n1w̃, n2w̃), p̄ = p̄0 + ρ̄0a0w̃,
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where n = (n1, n2) is the unit normal of the front �(ζ)t (wavefront or shock front) and
w̃/a0 = O(ε), with 0 < ε � 1 and a0 is the sound velocity in the equilibrium state. We
introduce the non-dimensional variables

ρ = ρ̄/ρ̄0, q = q̄/a0, p = p̄/(γ p̄0), w = w̃/a0

in the physical quantities defined above to get

ρ = 1 + w, q = nw, p = 1

γ
+ w. (3.3)

Note that w here is w/a0 in (6.1.1) of Prasad [11], but is same as w of Baskar and Prasad
[2]. w is a small quantity of the order ε and represents excess of the density over the
(nondimensional) density having value 1 in the medium in which the boom propagates. In
the compression part of the boom (which we show to be in the front part) w > 0 and in
the expansion part w < 0.

The Mach number m of the nonlinear wavefront is defined as the ratio of its normal
velocity to the sound velocity in the ambient medium and is given by

m = 1 + γ + 1

2
w. (3.4)

The system of conservation laws governing the evolution of each �(ζ)t , −d < ζ < 0,
ζ �= G, are the equations of the WNLRT given by

(g sin θ)t + (m cos θ)ξ = 0, (g cos θ)t − (m sin θ)ξ = 0, (3.5)

(g(m− 1)2e2(m−1))t = 0, (3.6)

where g is the metric associated with the variable ξ (i.e., gdξ is an element of length along
�
(ζ)
t ).
The value of w|shock at the LS or TS at any time t is the value of w on the nonlinear

wavefront �(ζ)t which interacts with the shock at that time. This nonlinear wavefront is
identified by a particular value ζ(t) of ζ and limt→∞ ζ(t) = G. The Mach number M of
the LS (or TS) is the mean of the Mach number m on the nonlinear wavefront just behind
the LS (or just ahead of the TS) and that of the wavefront on the other side where w = 0
and therefore is given in terms of w|shock by

M = 1 + γ + 1

4
w

∣∣∣∣
shock

. (3.7)

We introduced a ray coordinate system (ξ, t) also for the shock fronts �(0)t and �(−d)t

by the same definition (3.1) and (3.2) for the upper and lower surfaces of the aerofoil
respectively. However, the rays used for a shock are shock rays. We remind once more that
a ray coordinate system is different for different moving curves and hence (ξ, t)-coordinate
system depends on ζ , −d ≤ ζ ≤ 0. In this coordinate system t is the actual time but ξ is
different for different�(ζ)t . A system of conservation form of the equations governing the
evolution of LS and TS are [2]

(G sin
)t + (M cos
)ξ = 0, (G cos
)t − (M sin
)ξ = 0, (3.8)

(G(M − 1)2e2(M−1))t + 2M(M − 1)2e2(M−1)GV = 0, (3.9)

(GV 2e2(M−1))t +GV 3(M + 1)e2(M−1) = 0, (3.10)
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where N = (cos
, sin
) is the unit normal to the shock front and

V = γ + 1

4
{〈N,∇〉w}

∣∣∣∣
shock front

(3.11)

in which the normal derivative 〈N,∇〉w is first evaluated in the region behind the LS for
ζ = 0 and from the region ahead of the TS for ζ = −d and then the limit is taken as we
approach the shock.

We note that since η → t, B → A in figure 3.1 and ξ has been chosen to be η, the
point (ξ = −t, t) in the ray coordinate plane (see figure 4.2) correspond to the point Pζ |t .
Hence as t varies, the points on the line ξ + t = 0 represent the successive positions of a
fixed point Pζ on the aerofoil. Thus, in the (ξ, t)-plane, the point of intersection of �(ζ)t
and the aerofoil surface y′ = bu(ζ ) lies on the line ξ + t = 0. In the next section, we shall
use the inviscid fluid flow condition on the boundary of the aerofoil to derive the Cauchy
data on the boundary line ξ + t = 0 for systems (3.5) and (3.6). Similarly, we shall derive
Cauchy data for systems (3.8)–(3.10) on the line ξ + t = 0.

For a simple, smooth and convex aerofoil, we shall show in the next section that w
continuously increases from a negative value at P−d to a positive value at P0 attaining
value zero at a point PG, where bu(ζ ) is maximum. Thus,m = 1 on�(G)t , which becomes
a linear wavefront. Equation (3.6) is not valid atm = 1 and hence the evolution of�(G)t is
obtained by the linear ray equations. The nonlinear wavefronts �(ζ)t ahead of �(G)t (i.e.,
those for G < ζ < 0) interact gradually with the LS and those behind �(G)t interact in
a similar way with TS. Thus, individual nonlinear wavefronts �(ζ)t gradually disappear
from the flow field and ultimately as t tends to infinity the sonic boom signature would
consist of the LS, TS and the nonlinear wavefronts produced by points in an immediate
neighborhood of (G, bu(ζ )) on the aerofoil.

Before closing this section, we make a precise statement of the Assumptions A1 to A3.
The thin aerofoil Assumption A1 is

O

{
max−d<ζ<0 bu(ζ )

d

}
= O

{
max−d<ζ<0(−bl(ζ ))

d

}
= O(ε), (3.12)

which implies |b′
u(ζ )| � 1 and hence (see eq. (4.9) in the next section for the value on the

aerofoil)

w = O(ε). (3.13)

For Assumptions A2 and A3, we take

d = d̄

L
= O(ε),

d̄

R
= O(ε), i.e., L/R = O(1). (3.14)

4. Derivation of the Cauchy data on the line ξ + t = 0ξ + t = 0ξ + t = 0

In this section, we derive the Cauchy data for the system of equations (3.5) and (3.6) of
the nonlinear ray theory for the evolution of the nonlinear wavefronts �(ζ)t (−d < ζ < G

and G < ζ < 0), and the Cauchy data for the system of equations (3.8)–(3.10) of the
shock ray theory for the evolution of the shock front TS: �(−d)t from the upper surface of
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the aerofoil (the Cauchy data for the above systems for �(ζ)t originating from the lower
surface of the aerofoil can be derived similarly on the line ξ = t). These are obtained from
the condition that the normal velocity of an inviscid fluid on the surface of the aerofoil is
same as the normal velocity of the surface at that point.

We define a function f ≡ f (x, y, t) as

f (x, y, t) = y′ − bu(x
′), − d ≤ x′ ≤ 0, (4.1)

where x′ and y′ are given as functions of x, y and t by (2.2) and (2.3). Then from (2.5),
the equation of the upper surface of the aerofoil is given by the equation

f (x, y, t) = 0, − d ≤ x′ ≤ 0. (4.2)

A point Pζ fixed on this surface moves with the velocity (Ẋ0, Ẏ0) and hence equating
the normal velocity (Ẋ0fx + Ẏ0fy)/|∇f | of the moving surface f (x, y, t) = 0 to the
normal component qn = (q1fx + q2fy)/|∇f | of the fluid velocity q = (q1, q2), we get
the condition q1fx + q2fy = Ẋ0fx + Ẏ0fy on the upper surface (4.2). Using (2.2) and
(2.3), we get fx = − sinψ − b′

u(ζ ) cosψ , fy = cosψ − b′
u(ζ ) sinψ , −d ≤ ζ ≤ 0, so

that this condition reduces to

(q2 cosψ − q1 sinψ)− (q1 cosψ + q2 sinψ)b′
u(ζ )+ b′

u(ζ )

√
Ẋ2

0 + Ẏ 2
0 = 0.

(4.3)

Mach angle is a well-known term in gas dynamics (see page 260 of [3]). In context
with an unsteady motion of the type considered here, we define the Mach angle φ (see
figure 4.1) to be the angle which the nonlinear wavefront �(ζ)t makes with the stream line
which on the aerofoil is in the tangent direction T Pζ of the aerofoil surface. The tangent
PζT makes an angle φ1 = tan−1{b′

u(ζ )} with the line Pζ x′′ parallel to the local coordinate
axis O ′x′, which itself makes an angle ψ with the line Pζ x parallel to the original x-axis.
In a frame of reference instantaneously coincident with the aerofoil, the fluid velocity

at the point Pζ consists of the velocity (Ẋ2 + Ẏ 2)
1
2 + a quantity of the order of w along

x′′Pζ . For simplicity in this paper, we neglect this quantity of the order of w. Its inclusion
any way does not affect the results (4.13)–(4.15), which will be discussed in a subsequent
paper. The sine of the Mach angle φ at Pζ is equal to the ratio of the normal velocity m

Figure 4.1. Figure showing the nonlinear wavefront�(ζ)t making an angle φ with
the stream direction TPζ on the aerofoil. Note that the dotted horizontal line is not
the x-axis but is only in the direction of the x-axis
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(given by (3.4)) of the nonlinear wavefront to the fluid speed (Ẋ2
0 + Ẏ 2

0 )
1/2, relative to the

aerofoil, at the fixed point Pζ on the aerofoil i.e.,

sin φ = 1 + (γ + 1)w/2√
Ẋ2

0 + Ẏ 2
0

. (4.4)

Now we go back to figure 3.1, where the limiting direction of AB as η → t is the
direction Pζ x′′ and hence the ∠ABC = φ − φ1. We also note that if B and C correspond
to ξ and ξ + δξ , then (due to choice (3.1)) for small t − η = −δξ , BC � gδξ and

AB � ∣∣√Ẋ2 + Ẏ 2(t − η)
∣∣ =

√
Ẋ2

0 + Ẏ 2
0 δξ (note δξ = −δη), so that

gδξ = BC

AB
AB = δξ

√
Ẋ2

0 + Ẏ 2
0 cos(φ − φ1).

Hence, the value of g (with choice (3.1) for ξ ) at the point of intersection of �(ζ)t and the
upper surface of the aerofoil is

g(ξ, t = −ξ) =
√
Ẋ2

0 + Ẏ 2
0 cos(φ − φ1) = g0(ξ), (say). (4.5)

The unit normal to the nonlinear wavefront i.e., the direction of AC in figure 3.1 makes
an angle θ = (π/2)− (φ − φ1)+ ψ with the x-axis and hence its direction n is given by

n = (n1, n2) = (sin(φ − ψ − φ1), cos(φ − ψ − φ1)). (4.6)

Perturbation of ρ, q and p on a nonlinear wavefront �(ζ)t is given by (3.3) with the above
expression for n. Substituting it in the boundary condition (4.3), we get

w{cos(φ − φ1)− sin(φ − φ1)b
′
u(ζ )} +

√
Ẋ2

0 + Ẏ 2
0 b

′
u(ζ ) = 0 on ξ + t = 0.

(4.7)

We note in figure 4.1 that φ1 is the angle which the tangent PζT makes with the flight
direction i.e., Pζ x′′ axis. This angle is small and of the same order as b′(ζ ) for a thin
aerofoil. In fact,

φ1 � tan φ1 = b′
u(ζ ) = O(ε). (4.8)

Hence, retaining terms only up to first order in b′
u(ζ ), we get from (4.7)

w cosφ +
√
Ẋ2

0 + Ẏ 2
0 b

′
u(ζ ) = 0 on ξ + t = 0. (4.9)

Equations (4.4) and (4.9) are two relations at a point where �(ζ)t meets the upper surface
of the aerofoil i.e., at the point Pζ . Solving these two equations for w and φ, we get the
Mach angle φ and the amplitudew of the perturbation at Pζ . Eliminating φ from these two
relations, we get

w2

{
Ẋ2

0 + Ẏ 2
0 −

(
1 + γ + 1

2
w

)2
}

= {Ẋ2
0 + Ẏ 2

0 }2[−b′
u(ζ )]

2 = 0, on ξ + t = 0, (4.10)
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Figure 4.2. The successive positions of a fixed pointPζ on the aerofoil corresponds
to points on ξ + t = 0, where Cauchy data is prescribed. Solution domain is
ξ + t > 0.

which gives w(ξ, t = −ξ) = w0(ξ), i.e., w at Pζ at any time t . Since the nonlinear ray
theory and the shock ray theory used here are both for small amplitude, a second order
correction in w from (4.10) is not necessary. This gives on ξ + t = 0,

w(ξ, t = −ξ) = − (Ẋ2
0 + Ẏ 2

0 )b
′
u(ζ )

(Ẋ2
0 + Ẏ 2

0 − 1)1/2
=: w0(ξ), say, −d ≤ ζ ≤ 0. (4.11)

The negative sign is appropriate for the upper surface. For lower surface of the aerofoil,
we shall take the positive sign in the expression for w. Similarly, we take the initial value
of the Mach angle φ to be the linear value given by neglecting w (= O(ε)) in (4.4), i.e.,

φ(ξ, t = −ξ) = sin−1 1

(Ẋ2
0 + Ẏ 2

0 )
1/2

= φ0(ξ), say,

so that, neglecting φ1 in comparison with φ, we get

θ(ξ,−ξ) = π/2 − (φ − φ1)+ ψ ≈ π/2 − φ0 + ψ = θ0, say. (4.12)

Using the value φ0 of angle φ at Pζ we get the value g0 of g from (4.5). Finally, the value
of m at ξ = −t is obtained from (3.4).

We have now completed setting up the Cauchy problem on the line ξ + t = 0 for each
of the one-parameter family of nonlinear wavefronts �(ζ)t . This is depicted in figure 4.2
where

m0(ξ) = 1 − (γ + 1)(Ẋ2
0 + Ẏ 2

0 )b
′
u(ζ )

2(Ẋ2
0 + Ẏ 2

0 − 1)1/2
, (4.13)



Formulation of sonic boom by a maneuvering aerofoil 109

g0(ξ) = (Ẋ2
0 + Ẏ 2

0 − 1)1/2, (4.14)

θ0 = π

2
+ ψ − sin−1

(
1

(Ẋ2
0 + Ẏ 2

0 )
1/2

)
. (4.15)

Let us derive the Cauchy data on the line ξ + t = 0 for the system of equations (3.8)–
(3.10) governing the propagation of the LS and the TS. For this we shall need the results
we have derived for the nonlinear wavefront �(ζ)t immediately behind the LS (i.e., ζ very
close to 0) and also immediately ahead of the TS (i.e., very close to −d). We have denoted
the unit normal of the LS or TS by N.

Let us first take up the trailing shock TS. Let� be its Mach angle i.e., the angle which this
shock makes with the stream line. Consider a figure similar to figure 4.1 with φ replaced
by �, then since M is given by (3.7), � at P(−d) is given by (see derivation of (4.4))

sin� = 1 + (γ + 1)w/4

Ẋ2
0 + Ẏ 2

0

. (4.16)

It is simple to show that at P(−d),

φ −� � 0(w) = O(ε). (4.17)

The normal N = (cos
, sin
) of the TS is given by


 = π

2
− (�− φ1)+ ψ = π

2
− (φ − φ1)+ ψ + (φ −�) = θ + (φ −�).

(4.18)

Following the procedure of the derivation of (4.5), we can show that the value of the metric
G(ξ, t) on ξ + t = 0 is

G(ξ, t = −ξ) =
√
Ẋ0

2 + Ẏ0
2

cos(�− φ1) = G0(ξ), say. (4.19)

The value of w just ahead of the TS (for the LS it would be the value just behind it) is
given by (4.11). The results (4.17) and (4.18) show that up to the first order terms, we can
replace θ at P(−d) by 
, so that the perturbations of the (non-dimensional) flow variables

ahead of the TS: �(−d)t is given, up to order ε, by

ρ = 1 + w, q = (N1w,N2w), p = 1

γ
+ w. (4.20)

Substituting this in the boundary condition (4.3) at a point Pζ on the aerofoil but close to

�
(−d)
t , we get the expression for the shock amplitude similar to (4.9) with φ replaced with

� on the boundary point Pζ . The Cauchy data w(ξ, t = −ξ) ≡ w0(ξ) for a nonlinear
wavefront can also be treated as a function w(ζ, t) given by

w0(ξ) = w(ζ, t) := w(p, q, t), p = ζ + X0(t),

q = bu(ζ )+ Y0(t), − d ≤ ζ ≤ 0, (4.21)

where X0 and Y0 are given by (2.4) and we remind that (X0,Y0) are the coordinates of the
leading edge of the aerofoil in a frame in which x-axis is parallel to the x′-axis. Note also
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that ψ(t) depends on t . Hence, we can write (4.11) in the form

w(p, q, t) = − (Ẋ
2
0 + Ẏ 2

0 )b
′
u(ζ )√

Ẋ2
0 + Ẏ 2

0 − 1
, − d ≤ ζ ≤ 0. (4.22)

Now, we proceed to derive the Cauchy data for V on ξ + t = 0. We shall like to differ-
entiate (4.22) once with respect to t and in the next step with respect to ζ . Differentiation
with respect to t will give terms wt , Ẋ0(t) and Ẏ0(t). We now recall Assumption A3 i.e.,
the camber length of the aerofoil is small compared to the radius of curvature of the path
of the aerofoil. Under this assumption, for the consideration of the relation (4.22) on the
boundary of the aerofoil, the path of the leading edge may be taken to be a straight line with
the aerofoil instantaneously aligned along the tangent to the path. This implies that we may
treat Ẏ0(t)/Ẋ0(t) to be small of the O(ε) or less. Differentiating (4.22) with respect to t
and neglecting Ẏ0(t) in comparison with Ẋ0(t) on the left-hand side of the result, we get

wt + wpẊ0(t) = − (Ẋ
2
0 + Ẏ 2

0 − 2)(Ẋ0Ẍ0 + Ẏ Ÿ0)

(Ẋ2
0 + Ẏ 2

0 − 1)3/2
b′
u(ζ ). (4.23)

Differentiating (4.22) with respect to ζ and neglecting this time the term containing b′
u(ζ )

on the left-hand side (so that wq term again disappears), we get

wp = − (Ẋ2
0 + Ẏ 2

0 )b
′′
u(ζ )

(Ẋ2
0 + Ẏ 2

0 − 1)1/2
. (4.24)

Eliminating wp from (4.23) and (4.24), we get

wt = (Ẋ2
0 + Ẏ 2

0 )b
′′
u(ζ )

(Ẋ2
0 + Ẏ 2

0 − 1)1/2
{Ẋ0(t)} − (Ẋ2

0 + Ẏ 2
0 − 2)(Ẋ0Ẍ0 + Ẏ Ÿ0)

(Ẋ2
0 + Ẏ 2

0 − 1)3/2
b′
u(ζ )

=: F(ζ, t), say, − d ≤ ζ ≤ 0, (4.25)

where we note that Ẋ0(t) has been put in a curly bracket – it has a special significance
as it represents approximately the component of the velocity of the aerofoil in a direction
tangential to the path of the aerofoil. In (4.25) both b′

u(ζ ) and b′′
u(ζ ) are small and of the

same order

b′
u(ζ ) = O(ε) = b′′

u(ζ ), − d ≤ ζ ≤ 0, (4.26)

so that F(ζ, t) = O(ε).
We note that up to first order terms (in replacing θ by
), the transport equation (6.1.3)

of [11], on the nonlinear wavefront just ahead of the shock �(−d)t can be written as

∂w

∂t
+
(

1 + γ + 1

2
w

)
〈N,∇〉w = Ωw, (4.27)

where Ω is now the mean curvature of the nonlinear wavefront just ahead of the shock and
εw̃ of (6.1.3) of [11] is w in this paper. This equation is equivalent to equation (10.1.4) of
[11] (eq. (10.1.4) is not correctly printed, see eq. (10.1.7) or see eq. (2.5) of [8]).

Equation (4.27) is valid in the interior of the flow on the nonlinear wavefront�(ζ)t , which
meets the boundary of the aerofoil at a point Pζ . The relation (4.25) is valid at this point
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of the boundary. Taking first the limit of (4.27) as we move along �(ζ)t to Pζ , eliminating
wt with the help of (4.25) and finally taking the limit as ζ → −d, we get

V (ξ, t = −ξ) = γ + 1

4
(

1 + γ+1
2 w(−d, t)

) {ΩP(−d)w(−d, t)− F(−d, t)},

(4.28)

where the quantity V has been defined by (3.11),

ΩP(−d) = curvature at the trailing end P(−d) of the nonlinear wavefront
emanating from that point,

w(t,−d) = value of the amplitude of the perturbation at the trailing end
≡ w0(ξ) there.

Thus, the value V (−d)0 (ξ) = V (−d)(ξ, t = −ξ) on the Cauchy line ξ + t = 0 is obtained,
provided we can calculate the curvature ΩP(−d) of the nonlinear wavefront at the trailing
end. We now give a formula for ΩP(−d) .

The expression for ΩP(−d) , namely − 1
2 〈∇,n〉 in terms of θ becomes

ΩP(−d) = − 1

2g

∂θ

∂ξ
. (4.29)

To calculate the value of the expression on the right, we use figure 3.1 and the definition
(3.2). Then with infinitesimal BC as the directed line segment = gδξ = g(t − η) > 0 we
get

∂θ

g∂ξ
= lim
δξ→0

θC − θB

BC
= lim
η→t

θC − θB

g(t − η)
. (4.30)

Before we use this result, we need to do some intermediate steps. The expression (4.22)
at a point Pζ on the surface of the aerofoil is rewritten as

w(ξ, t = −ξ) = w(ξ = −t, t) = − (Ẋ
2
0 + Ẏ 2

0 )b
′(ζ )√

Ẋ2
0 + Ẏ 2

0 − 1
, (4.31)

which gives dw
dξ

∣∣
ξ=−t = wξ − wt = dw

dt

∣∣
ξ=−t so that

wξ − wt = (Ẋ2
0 + Ẏ 2

0 − 2)(Ẋ0Ẍ0 + Ẏ Ÿ0)

(Ẋ2
0 + Ẏ 2

0 − 1)3/2
b′
u(ζ ) =: −F1(ζ, t). (4.32)

wt appearing in (4.32) is the derivative of w(ξ, t) at ξ = constant and is, according to our
definition, the rate of change along a ray, i.e., the whole expression on the left-hand side
of (4.27) with N replaced by n. Hence, wt = �P(−d)w, so that (4.32) gives

wξ
∣∣
t=constant = ΩP(−d)w − F1(ζ, t). (4.33)

From (3.5) we can obtain an evolution equation for θ in the form θt = −mξ/g, which with
the help of (3.4) and (4.33) gives on the line ξ = t ,

θt = −γ + 1

2g
wξ = −γ + 1

2g
{ΩP(−d)w − F1(ζ, t)}. (4.34)



112 S Baskar and Phoolan Prasad

For an infinitesimal increment t − η we get θC − θA ≈ θt |A(t − η) so that from (4.29) and
(4.30), we have

ΩP(−d) ≈ − 1

2g

θC − θB

t − η

= 1

2g

{
θB − θA

t − η
− θC − θA

t − η

}

= 1

2g

θB − θA

t − η
− 1

2g
θt

= 1

2g

θB − θA

t − η
+ γ + 1

4g2
{ΩP(−d)w − F1(ζ, t)}, from (4.34). (4.35)

The expression on the right-side of (4.35) is split into two terms. Since both w and F1 are
of the order ε, the second term is of O(ε). We now examine the first term.

Note that θ = π
2 − (φ − φ1)+ ψ . Since, the point ζ = −d on the profile is kept fixed,

we have φ1A = φ1B and

θB − θA = −(φB − φA)+ ψB − ψA. (4.36)

Since, sinψ = Ẏ0/Ẋ0, ψB −ψA = (Ẋ0Ÿ0 − Ẏ0Ẍ0)(t −η)/Ẋ2
0, for small t −η. Retaining

only the terms up to order one in (4.4), we get sin φ = 1/(Ẋ2
0 + Ẏ 2

0 )
1/2, so that

φB − φA = − (Ẋ0Ẍ0 + Ẏ0Ÿ0)

(Ẋ2
0 + Ẏ 2

0 )(Ẋ
2
0 + Ẏ 2

0 − 1)1/2
(t − η). (4.37)

When we substitute these values for the expression for θB − θA in (4.36), we note that
(θB − θA)/(t − η) is of order one so that the first term on the right-hand side of (4.35) is
O(1). Hence, retaining only the most dominant terms in (4.35), we finally get

ΩP(−d) = (Ẋ0Ẍ0 + Ẏ0Ÿ0)

2g(Ẋ2
0 + Ẏ 2

0 )(Ẋ
2
0 + Ẏ 2

0 − 1)1/2
+ Ẋ0Ÿ0 − Ẏ0Ẍ0

gẌ2
0

. (4.38)

In (4.28), w(−d, t) and F(−d, t) are both of order ε and in the denominator on the right-
hand side we may neglect (γ + 1)w(−d, t)/2 and finally we get

V
(−d)
0 (ξ) = γ + 1

4
{ΩP(−d)w(−d, t)− F(−d, t)}, (4.39)

where �P(−d) is given by (4.38) and F(−d, t) is given by (4.25).
Collecting all these results, we write the Cauchy data on the line ξ + t = 0 for the

system (3.8)–(3.10) here.

M(ξ,−ξ) = M0(ξ) := 1 − (γ + 1)(Ẋ2
0 + Ẏ 2

0 )b
′
u(ξ)

4(Ẋ2
0 + Ẏ 2

0 − 1)
1
2

, (4.40)

G(ξ,−ξ) = G0(ξ) := (Ẋ2
0 + Ẏ 2

0 − 1)
1
2 , (4.41)


(ξ,−ξ) = 
0(ξ) := π

2
+ ψ − sin−1{1/(Ẋ2

0 + Ẏ 2
0 )

1
2 }, (4.42)
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V (ξ,−ξ) = V0(ξ) := γ + 1

4
{Ωp(−d)w0(ξ)− F(−d, t)}, (4.43)

where

ΩP(−d) = (Ẋ0Ẍ0 + Ẏ0Ÿ0)

2g(Ẋ2
0 + Ẏ 2

0 )(Ẋ
2
0 + Ẏ 2

0 − 1)1/2
+ Ẋ0Ÿ0 − Ẏ0Ẍ0

gẌ2
0

,

F(ζ, t) = (Ẋ2
0 + Ẏ 2

0 )b
′′
u(ζ )

(Ẋ2
0 + Ẏ 2

0 − 1)1/2
{Ẋ0(t)} − (Ẋ2

0 + Ẏ 2
0 −2)(Ẋ0Ẍ0 +Ẏ Ÿ0)

(Ẋ2
0 +Ẏ 2

0 − 1)3/2
b′
u(ζ ),

X = X0 cosψ + Y0 sinψ.

5. Discussion on the hyperbolic and elliptic nature of the equations governing
the evolution of�(ζ)t�

(ζ)
t�
(ζ )
t

Let us first start with the eqs (3.5) and (3.6) for −d < ζ < 0, ζ �= G. The expression (4.13)
for the value of m at Pζ at a time t gives valuable information about the nature of the
equations (3.5) and (3.6). The Mach angle φ is defined for values of the aerofoil speed
(Ẋ2 + Ẏ 2)1/2 ≥ 1+((γ +1)/2)w and since |w| � 1, the right-hand side is approximately
equal to 1. In any case 0 < φ < π/2. For simple aerofoil, bu(ζ ) has its maximum at just
one point ζ = G, −d ≤ G ≤ 0 and we assume that the aerofoil has non-zero angles at the
leading and trailing edges. This means

b′
u(G) = 0, b′

u(ζ ) > 0 for − d ≤ ζ < G, b′
u(ζ ) < 0 for G < ζ ≤ 0. (5.1)

This justifies the negative sign in the beginning of the expression in (4.11) since w should
be positive in G < ζ < 0 and negative when −d < ζ < −G.

Equation (4.11) or (4.13) now implies that (see figure 2.2)

w > 0 i.e., m > 1 at Pζ for G < ζ ≤ 0, (5.2)

w < 0 i.e., m < 1 at Pζ for − d ≤ ζ < G, (5.3)

w(PG) = 0 i.e., m(PG) = 1. (5.4)

Thus, we are able to determine the sign of w or m − 1 at a point Pζ where the nonlinear

wavefront �(ζ)t meets the surface of the aerofoil. Is the sign of the amplitude w same
on all points of �(ζ)t ? We discuss it in the next paragraph based on our experience with
computational results.

What should be the sign ofm− 1 on the whole wavefront�(ζ)t for a given ζ? There are
two ways to get the answer. The first way is based on experimental results or observation.
The sonic boom, as depicted in figure 2.1, is bounded by a LS, through which the gas is
compressed and hence w > 0 behind this shock i.e., M − 1 > 0 on it, and a TS through
which an expanded gas is compressed to the normal atmospheric pressure and hencew < 0
ahead of this shock i.e., M − 1 < 0 on it. The value of m − 1 on a nonlinear wavefront
which interact the LS or TS, is related to the value M − 1 through the relations (3.4) and
(3.7). Thus, for G < ζ < 0, m− 1 > 0 not only at the base point Pζ of �(ζ)t , but also at

the point where �(ζ)t interacts with the LS. If we assume (following some experimental
results) that the variation of w or m − 1 across a sonic boom at any time has an N -wave
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or U -wave shape (see figure 4 of [10]), then there is only one curve in between the two
shocks where m = 1 and which does not intersect with the LS and the TS. This curve,
therefore must be a linear wavefront as depicted in figure 2.1 by the line �(G)t . On the
nonlinear wavefronts between the linear wavefront and LS we must have m− 1 > 0 and
on those between the linear wavefront and TS we must have m− 1 < 0.

The second way is purely mathematical. For this, we need to go back to figure 4.2. For
a fixed point Pζ , (ζ �= G) on the aerofoil i.e., for a given ζ , m0(ξ) − 1 is either greater
than or less than zero on the whole Cauchy line ξ + t = 0. From the full Cauchy data
i.e., the values of m0(ξ), θ0(ξ) and g0(ξ) as given in (4.13)–(4.15) and the conservation
laws (3.5) and (3.6), it should be possible to determine the sign of m− 1 in the half plane
ξ + t > 0. We have not been able to do this, but we believe that m0(ξ) − 1 > 0 or
m0(ξ) − 1 < 0 on ξ + t = 0 would imply m − 1 > 0 or m − 1 < 0 respectively. Our
extensive numerical computation with m − 1 > 0 reported in our previous publications
does indicate that if m0(ξ)− 1 > 0 at any point P of a nonlinear ray, then m− 1 > 0 at
all points of the ray. Therefore, it should be possible to prove that for the Cauchy problem
in figure 4.2,m0 − 1 > 0 on the line ξ + t = 0 would implym− 1 > 0 at all the points on
any horizontal line ξ = constant on the right side of the Cauchy line. We give below only
a convincing argument based on the assumption that the mean curvature Ω of �(ζ)t does
not tend to infinity along a ray. We have found this assumption to be true in our previous
theoretical and computational results form− 1 > 0 where caustic type of singularities on
a linear wavefront are resolved into kinks on the corresponding nonlinear wavefront.

Let us further discuss the case m − 1 > 0. We first note that when we follow a ray,
g = (x2

ξ + y2
ξ )

1/2 vanishes at a point where the ray meets a caustic. But a caustic type of
singularity does not appear on a nonlinear wavefront for m − 1 > 0 so that g does not
vanish on a nonlinear ray. Integrating the ray equation (3.6) with respect to t (or taking its
jump across a kink path), we get

g(m− 1)2e2(m−1) = g0(m0 − 1)2e2(m0−1), (5.5)

which shows that m does not tend to infinity along a ray. Our computational results also
show that m always remains bounded. From the equations (3.5) and (3.6), we can deduce
a transport equation for w along a ray

dw

dt
= Ωw (5.6)

(see equation (6.1.3) of [11]; or equation (2.5) of [8]). Integrating along the ray, we get

w = w0e
∫ t
η Ω(τ )dτ

, w(t) = w0, (5.7)

which shows thatw retains the same sign as long as the mean curvature Ω of�(ζ)t does not
tend to −∞. The case Ω < 0 corresponds to a wavefront convex to the state ahead of it and
hence the case Ω tending to −∞ cannot arise as long as the rays keeps on diverging. The
divergence of rays is ultimately arrested (except in the case of circular symmetric shape
and uniform distribution of the amplitude on the wavefront at any time t) and they tend
to become parallel as seen in figure 10.3.11 of [11]* and figure 5 of [2] so that magnitude
of Ω actually decreases. As seen in figure 10.3.4 of [11], when the initial wavefront has a

*Note that figures 10.3.4, 10.3.9, 10.3.10 and 10.3.11 of [11] has been reproduced from figures 5, 10, 11 and 12
of [8].
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concave part (with Ω > 0) and a convex part (with Ω < 0), the diverging rays from the
convex part are usually pushed and start converging but even then the magnitude of the
curvature keeps on decreasing. Also, as seen in figures 10.3.4, 10.3.9 and 10.3.10 of [11],
the converging rays from the concave part of a nonlinear wavefront (or shock front) are
prevented from focusing by appearance of kinks and Ω tending to +∞ on a ray is always
avoided. There are many other numerical results in these papers, the results always show
that the magnitude of the curvature of a nonlinear wavefront along a ray keeps on decreasing
as time passes and never tends to infinity. Hencew given by (5.7) always remains bounded
and maintains the same sign so that m > 1.

At present, we do not have a very clear idea of the nature of singularities which appear
on �(ζ)t when w < 0 i.e. m − 1 < 1. However, we shall see that when w < 0 on �(ζ)t ,
eqs (3.5) and (3.6) governing the evolution of�(ζ)t is elliptic and hence θ and g are expected
to remain smooth functions of ξ and t so that�(ζ)t is kink-free. In this case, based only on
experimental results, we assume that w retains the same sign on a ray as w0 at Pζ . This
assumption requires a mathematical proof or at least is to be checked from computation.
The discussion so far leads to a conclusion that the model of the sonic boom which we
have proposed is consistent in every respect and it is generated by one-parameter family
of nonlinear wavefronts�(ζ)t such thatm > 1 forG < ζ < 1 andm < 1 for −d < ζ < 1
and these nonlinear wavefronts are bounded by LS with M > 1 and TS with M < 1.

The eigenvalues of the system (3.5) and (3.6) are

λ1 = −
√
m− 1

2g2
, λ2 = 0, λ3 =

√
m− 1

2g2
. (5.8)

Similarly, the eigenvalues of the systems (3.8)–(3.10) are

�1 = −
√
M − 1

2G2
, �11 = �12 = 0, �3 =

√
M − 1

2G2
. (5.9)

There exist two linearly independent eigenvectors corresponding to the double eigenvalue
0 in (5.9).

Since, m > 1 on each of the nonlinear wavefronts �(ζ)t , G < ζ < 0 and M > 1 on the
leading shock front�(0)t , the systems of conservation laws (3.5) and (3.6) and (3.8)–(3.10)
governing them are hyperbolic. As seen in our earlier work, these nonlinear wavefronts
and the LS may develop kinks. In fact, in the case of the motion of an accelerating aerofoil
on a straight path (say, along the x-axis), the linear wavefronts are concave to the medium
ahead and develop a caustic as in figure 5.1, where we have shown the linear wavefront
from the leading edge i.e., from ζ = 0. In the same figure, we have also shown the
nonlinear wavefront from the leading edge ζ = 0 and note the qualitative difference in its
shape, the nonlinear wavefront does not have a fold: a pair of cusp type of singularities
on the linear wavefront are replaced by a pair of kinks on the nonlinear wavefront. When
the aerofoil moves with a constant speed on a curved path, say concave downwards, then
the wavefronts from the points on the upper surface of the aerofoil remain smooth for
all time, whereas those wavefronts from the lower surface of the aerofoil develop a pair
of kinks. These results are depicted in figure 5.2. In figure 5.3, we have shown details
of the wavefronts from the leading edge in the focused region from the lower surface of
the aerofoil at time t = 5. Since, the wavefronts are concave to the medium ahead, the
one from the linear ray theory develops a cusp type of singularity and the wavefront from
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Figure 5.1. Sonic boom wavefront at t = 2 from the leading edge of an accelerating
aerofoil moving in a straight path. Kinks on the nonlinear wavefront are shown by
dots. The initial Mach number is 1.8 and the acceleration is 10 in the time interval
(0, 1/2).

Figure 5.2. The nonlinear wavefront from the
leading edge of an aerofoil moving with a con-
stant Mach number 5 along a path concave
downwards with b′

u(0) = −0.01.

Figure 5.3. Linear and nonlinear wavefronts
in the case of figure 5.2 at t = 5.

WNLRT develops a pair of kinks as seen in the figure. As in our previous investigation
[2], we expect the LS: �(0)t to have the same shape as that of the nonlinear wavefront. In
fact, some preliminary computation of �(0)t by SRT has already shown that �(0)t is very
close to the nonlinear wavefront from the leading edge. We shall report the exact results of
our extensive numerical computation in future publications. It is very interesting to note
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Figure 5.4a, b. Numerical solutions of Euler equations for the flow over a
diamond-shaped aerofoil moving from right to left with Mach number starting from
1.2 to 4. The figures are reproduced from [5] with the permission of the authors.

that similar results have been obtained from a limited (due to limited choice of parameters
to imitate a sonic boom problem) numerical computation of the full Euler’s equations by
Inoue, Sakai and Nishida [5]. Some of their results have been reproduced in figures 5.4
and 5.5.

The aerofoil in figure 5.4a is moving from left to right and accelerates from a Mach
number 1.2 to 4.0. The figure depicts the boom produced by the lower surface of a diamond-
shaped aerofoil. We note that the leading shock (LS) tends to focus and develops two kinks
(marked in the figure by IPE and IPS).

Sincem−1 < 0 on each of the nonlinear wavefront�(ζ)t (−d < ζ < G) andM−1 < 0
on the trailing shock �(−d)t , the pair of eigenvalues (λ1, λ3) and (�1, �3) are purely
imaginary. The systems (3.5) and (3.6) and (3.8)–(3.10) are no longer hyperbolic. In fact,
for the two important modes corresponding to the eigenvalues (λ1, λ3) and (�1, �3)
respectively, the two systems have the same nature as that of an elliptic equation. We may
think that M < 1 for the TS is physically unrealistic but this is not so because the trailing
shock is moving not into the undisturbed gas with (ρ = ρ0, q = 0, p = p0) but into a gas
which has already gone through an expansion phase between −d < ζ < G. The actual
Mach number of the TS is MTS

MTS = M − 1 − (m− 1)

|m− 1|
∣∣∣∣
TS

= − γ + 1

4|m− 1|w
∣∣∣∣
TS
> 0, (5.10)

since w|TS = w(−d, t) < 0. We can easily verify that the TS satisfies Lax’s entropy
condition (

1 + γ + 1

2
w

)
<

(
1 + γ + 1

4
w

)
< 1 (5.11)

since w here is w|TS < 0.
The elliptic nature (in the modes corresponding to the eigenvalues λ1, λ3, �1 and �3)

of the systems (3.5) and (3.6) for d < ζ < G and (3.8)–(3.10) for ζ = −d implies that the
systems have no discontinuous solutions in the (ξ, t)-plane which would map on to kinks
in the (x, y)-plane and the corresponding curves �(ζ)t and �(−d)t must be free from kinks.
Thus, we expect that the trailing shock TS will not develop kinks and will remain smooth.
Though a property like smoothness is hard to see in and predict from a numerical result,
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Figure 5.5a, b. The flow produced by a blunt body on a curved path. We find
in the upper part a LS with two kinks (denoted by TP) and a TS which is smooth.
In the lower part we find a LS which is curved upward and smooth as far as we can
see. The figures are reproduced from [5] with the permission of the authors.

especially from the numerical solution of Euler’s equations, we note that figures 5.4a and
5.4b show the trailing shock to be smooth. This is in spite of the fact that the Mach stems
(one from IPE as seen in figure 5.4b) from LS come and interact with the TS. Formation
of kinks IPE and IPS on the LS follows from the results of our previous papers (since LS
is concave) but smoothness of the TS is a surprising new result which we conjecture in this
paper and this requires a deeper investigation and a mathematical proof. In figure 5.5 we
reproduce another result of Inoue, Sakai and Nishida [5]. Though the flow in this case is
produced by a blunt body, it illuminates the most important part of our theory. The LS in
the upper part (the direction in which the flight path is concave) has two kinks (TP). The
third shocks from the kinks enter into the disturbed region but seem to become so weak
that they hardly affect the TS, which appears to be smooth. The LS in the lower part is
convex with respect to the region into which it is propagating and hence it is smooth as
far as it is seen and our theory shows that it would not develop kinks. Another interesting
result, which we note is that the two kinks of figure 5.5a are about to interact in figure 5.5b.
Interaction of kinks (and also elementary waves) have been studied in detail by Baskar
and Prasad [1]. These two kinks after interaction, will produce another pair of kinks which
will start moving apart.

The strength of a convex shock, for which rays diverge, decreases as the shock propa-
gates. Hence the flight of a maneuvering aircraft should be such that it produces a convex
shock propagating towards the ground. This means that the path of an accelerating aircraft
should curve upward in order to minimize the effect of the boom on the ground. How-
ever, extensive calculations for a convex nonlinear wavefront or a shock by our weakly
nonlinear ray theory (WNLRT) and shock ray theory (SRT), show that the corrugational
stability of the shock (see §§10.3–10.5 of [11] and figure 5 of [2]), which is a nonlinear
effect, will intervene and would not allow the shock strength to decay as fast it could have
been according to the linear theory. In this case the decay in the shock strength is not due
to geometric effect but more due to dissipation of energy (see figure 10.3.11 of [11]). If an
aircraft continues to accelerate in a straight path either horizontally or at an angle, say π/6,
the boom produced will be concave downwards as in figures 5.2, 5.3 and 5.4a, and hence
will be stronger. Our theory shows that a concave leading shock (LS) does not focus, in
this case the caustic having infinite wave intensity is replaced by a pair of kinks in such a
way that on all points of the concave shock, the shock strength increases but it remains of
the same order of strength as that of the strength of the initial shock produced on the body
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of the aircraft. In addition the dissipation through kinks starts dominating and this leads
to a decay in the shock strength (see figures 10.4.3 of [11]). Hence, when LS is converg-
ing there is no possibility of getting a very strong shock with strength of higher order of
magnitude than what is produced. However, the aircraft should avoid producing a concave
shock towards the ground.
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