
Riemann problem for kinematical conservation laws and

geometrical features of nonlinear wavefronts

S. Baskar and Phoolan Prasad∗

Abstract

A pair of kinematical conservation laws (KCL) in a ray coordinate system (ξ, t) are
the basic equations governing the evolution of a moving curve in two space-dimensions.
We first study elementary wave solutions and then the Riemann problem for KCL
when the metric g, associated with the coordinate ξ designating different rays, is an
arbitrary function of the velocity of propagation m of the moving curve. We assume
that m > 1 (m is appropriately normalized), for which the system of KCL becomes
hyperbolic. We interpret the images of the elementary wave solutions in the (ξ, t)-
plane to the (x, y)-plane as elementary shapes of the moving curve (or a nonlinear
wavefront when interpreted in a physical system) and then describe their geometrical
properties. Solutions of the Riemann problem with different initial data give the shapes
of the nonlinear wavefront with different combinations of elementary shapes. Finally,
we study all possible interactions of elementary shapes.

1 Introduction

Consider a one parameter family of curves in (x, y)-plane such that they represent successive

positions of a moving curve Ωt as time t varies. Associated with the family, we have a ray

velocity χ at any point (x, y) on the curve Ωt. We take χ to be in the direction of the

unit normal n to Ωt i.e., χ = nC; where C is the normal velocity of propagation of Ωt.

We introduce a ray coordinate system (ξ, t) such that ξ = constant represent the rays i.e.,

the family of curves orthogonal to Ωt and t = constant give successive positions of Ωt. An

element of distance along a ray is given by Cdt. Let g be the metric associated with the

coordinate ξ i.e., gdξ is the element of distance along Ωt. Assuming Ωt to be smooth, and

taking n = (cos θ, sin θ), Morton, Prasad and Ravindran (1992) derived a pair of conservation

laws

(g sin θ)t + (C cos θ)ξ = 0, (1.1)

(g cos θ)t − (C sin θ)ξ = 0. (1.2)
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The kinematical conservation laws (KCL) (1.1)-(1.2) are physically realistic in the sense

that they represent conservation of distance in x and y directions and hence in any two

independent directions (Monica and Prasad 2001; Prasad, 2001). The KCL, being two

equations in three unknowns g, θ and C, is an under determined system. The third equation

(or larger number of equations, Monica and Prasad, 2001) involving g and C (or some

more quantities) are obtained by consideration of energy propagation along rays (or from

dynamical compatibility conditions along rays for a given physical system; Prasad, 2001).

Here we take a simpler view and assume that the flux of energy F (C) associated with the

moving curve Ωt (or the wavefront Ωt) is the same at each section of a ray tube by Ωt

resulting in a third conservation law

(gF (C))t = 0. (1.3)

This leads to a complete system of three conservation laws (1.1)-(1.3) describing evolution of

a propagating curve Ωt. Linear wave propagation in a nonlinear medium such as a polytropic

gas correspond to small amplitude perturbation and hence carries vanishingly small energy

density. Let us consider a nonlinear wave propagation in the medium which is assumed to be

isotropic and homogeneous with a constant local sound speed a0 ahead of the wave. Isotropy

is equivalent to our basic assumption that rays are orthogonal to the successive positions of

the curves Ωt. We now nondimensionalize all variables with respect to an appropriate length

scale L and time scale La−1
0 and define a Mach number of Ωt by m = C/a0. It is found in

some examples (see (1.8) and (1.9) below) that

lim
m→1+

G(m) = ∞, where G(m) = 1/F (m). (1.4)

From now onwards, all dependent and independent variables are nondimensional so that

C = m. Even for an isotropic case, derivation (1.3) is difficult mainly due to difficulty in

capturing the nonlinear rays in a perturbation method (Prasad, 2001, chapter 4). The trans-

port equation (1.3) is then derived along these nonlinear rays. Derivation of an expression

for F (m) is equally difficult (see Baskar and Prasad, 2001) when Ωt is the crest-line of a

curved solitary wave.

It has been shown (Prasad, 1995) 1 that the KCL (1.1)-(1.2), derived purely on geometric

considerations, are equivalent to the ray equations derived from the eikonal equation

φt + m|∇φ| = 0. (1.5)

The first two of the three ray equations derived from the eikonal equation (1.5) are

xt = m cos θ, yt = m sin θ. (1.6)

1All results, obtained previously by us, are available in the book by Prasad (2001), however we shall refer
to individual papers.
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The third ray equation (second equation in (2.5) in the next section) follows from the trans-

port equations for φx or φy in the characteristic equations of (1.5) (see Prasad, 2001, equation

(2.4.25) with q = 0). g2 = x2
ξ + y2

ξ and (1.6) lead to the equation for g (third equation in

(2.5)). For more details, see Prasad (2001, section 3.3.2).

The KCL are ideally suited to describe kinks on the propagating curve Ωt (Prasad, 1995),

which are images of shocks (in weak solutions of the KCL) in (ξ, t)-plane to (x, y)-plane under

the transformation (1.6). At a kink in (x, y)-plane, the tangent direction to Ωt and the wave

amplitude m along Ωt change discontinuously. Kinks were first noticed by Whitham (1974)

as shock-shocks, in his shock dynamics. There are two more relations, which follows from

geometrical consideration, namely

xξ = −g sin θ, yξ = g cos θ. (1.7)

It is interesting to note that the KCL follow from (1.6) and (1.7) simply by equating xξt = xtξ

and yξt = ytξ.

From our weakly nonlinear ray theory (WNLRT) in gas dynamics, we derived (Morton,

Prasad and Ravindran, 1992; Prasad, 1993) an expression for g in terms of m in the form

g = (m − 1)−2e−2(m−1). (1.8)

When Ωt represents the crest-line of a curved solitary wave on the surface of a shallow water,

we have shown (Baskar and Prasad, 2001) that

g = (m − 1)−
3

2 e−
3

2
(m−1). (1.9)

For the solitary wave, we can deduce more than one expression for g, one of them being

g = (m − 1)−1e−(m−1) but only (1.9) is physically realistic. Note that both examples are

valid for small positive values of m − 1. The system (1.1)-(1.2) together with a relation

between g and m is now closed and hence the energy conservation law (1.3) is no longer

required.

When sonic boom from an accelerating aircraft is traced via linear rays, the rays tend

to converge to envelop a caustic line or meet at a focus. Beyond the region bounded by the

caustic line, called focal zone, linear solutions are singular, whereas the actual (experimental)

solution has finite amplitude with a u-wave shape due to nonlinear effects. Plotkin (2001),

in his recent review on sonic booms mentioned various methods to calculate the solution

in focal zones. The kinematical conservation law discussed above is yet another method to

handle this problem, as it is evident from the numerical solutions of KCL obtained by Prasad

and Sangeeta (1996). The KCL can also be used more effeciently to many other applications

such as in finding the shape of the leading wavefront in the blast wave problem produced
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by a charge confined in a container of arbitrary shape, studying geometrical shapes of the

crest-line on a curved solitary wave on a shallow water (Baskar and Prasad, 2002) and so

on. In different applications, we may need to solve the KCL with different functions G(m)

and with different initial wavefronts. So, a mathematical theory is needed for KCL with an

arbitrary G(m) for a better understanding of the practical problems. The Riemann problem

and the interaction of elementary waves are the building blocks for the general mathematical

theory of hyperbolic conservation laws and hence it is important to study the solution of the

Riemann problem and the interaction of the elementary waves for the KCL.

In this paper we shall also examine the situation when a relation of the form g = G(m) can

be assumed to be uniformly valid i.e., valid across all possible discontinuities. However, our

main aim in this paper is to solve the Riemann problem for the system of conservation laws

(1.1)-(1.3) with a general expression for G(m) subject to certain assumptions and interpret

the results as geometrical features of the moving curve Ωt (or a nonlinear wavefront). The

solution of the Riemann problem will lead to a number of elementary shapes (to be defined

later) on Ωt separated by straight parts of Ωt. In the last section we shall discuss interaction

of two elementary shapes of Ωt giving rise to new elementary shapes. This results in beautiful

geometrical features of Ωt and vastly extend incomplete results of Baskar, Potdar and Szeftel

(1999) with g given by (1.8).

2 Basic Equations, Riemann invariants and jump rela-

tions

We write the three basic conservation laws (1.1)-(1.3) in vector form as

(H(u))t + (F (u))ξ = 0, (2.1)

where u := (v, g)T = (m, θ, g)T , so that v = (m, θ)T and

H(u) := (g sin θ, g cos θ, g/G(m))T , (2.2)

F (u) := (m cos θ, −m sin θ, 0)T . (2.3)

We assume that the function G(m) given in (1.4) is defined for m > 1 and satisfies:

A1. G(m) ∼ 1
(m−1)k , k > 0 for 0 < m − 1 � 1.

A2. limm→∞ G(m) = 0; G(m) > 0.

A3. G′(m) < 0.

A4. G′′(m) > 0.

These properties are satisfied by the functions (1.8)-(1.9). Since, some of the results we use

in the section 6 are very difficult to prove (they involve dealing with nonlinear functions),
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we verify those results numerically. For this purpose, we select a form for G(m) as

G(m) = (m − 1)−ke−n(m−1), k > 0, n > 0, for all m > 1. (2.4)

Since

G′ = −
k + n(m − 1)

m − 1
G(m), G′′(m) =

{

k(k + 1)

(m − 1)2
+

2kn

m − 1
+ n2

}

G(m),

the above four assumptions are satisfied by (2.4).

For a smooth solution, the system (2.1)-(2.3) is equivalent to the following three partial

differential equations

mt −
mG

gG′
θξ = 0, θt +

1

g
mξ = 0, gt − mθξ = 0. (2.5)

The eigenvalues of the system (2.5) are given by

c1 = −

√

mG

g2(−G′)
, c2 = 0, c3 =

√

mG

g2(−G′)
. (2.6)

From the assumption A3, it follows that the system (2.1)-(2.3) is hyperbolic for m > 1. For

WNLRT in a polytropic gas, m > 1 corresponds to the gas pressure on the wavefront Ωt

being greater than the pressure in the ambient medium in which Ωt is propagating and for

a solitary wave on a shallow water, m > 1 always holds.

The right eigenvectors corresponding to the eigenvalues (2.6) are

r(1) =

(

G

gG′
,

√

G

mg2(−G′)
, 1

)T

, r(2) = (0, 0, 1)T ,

r(3) =

(

G

gG′
, −

√

G

mg2(−G′)
, 1

)T

.

The c1 - and c3 - characteristic fields are genuinely nonlinear, and the c2-characteristic field

is linearly denerate (for basic definitions, we refer to Smoller, 1983 or Prasad, 2001). Thus,

there are two families of nonlinear waves and one family of linear waves which propagate on

the curve Ωt in the (x, y)-plane. The elementary wave solutions of the system of conservation

laws will consists of centered simple waves, shocks and contact discontinuities, which we shall

study in the next section.

The linearly independent Riemann invariants corresponding to the ith characteristic fields

are denoted by (π
(i)
1 , π

(i)
2 ) for i = 1, 2, 3 and are given by

π
(1)
1 = θ + L(m), π

(1)
2 =

g

G
; π

(2)
1 = m, π

(2)
2 = θ; π

(3)
1 = θ − L(m), π

(3)
2 =

g

G
, (2.7)
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where

L(m) =
∫ m

1

√

−G′

mG
dm. (2.8)

Let the subscripts l and r represent the values of the solution on the left and the right

of a discontinuity at ξs(t) and s be the discontinuity velocity s = dξs(t)/dt. Then, from the

Rankine-Hugoniot jump condition for the KCL (1.1)-(1.2) (see Prasad, 1995), we get

cos(θr − θl) =
mlgl + mrgr

mlgr + mrgl

, (2.9)

s(glG(mr) − grG(ml)) = 0. (2.10)

The discontinuity velocity speed s is given by

s =
(m2

r − m2
l )

(mlgr + mrgl) sin(θr − θl)
. (2.11)

When s 6= 0, (2.10) implies

glG(mr) − grG(ml) = 0 (2.12)

and the relation (2.9) becomes

cos(θr − θl) =
mlG(ml) + mrG(mr)

mlG(mr) + mrG(ml)
. (2.13)

It has been shown in Lemma 3.1 in the next section that the right hand side of (2.13) belongs

to (0, 1] for mr ∈ [1, ∞). Therefore, for a given θl, the value of θr satisfies

−
π

2
< θr − θl <

π

2
. (2.14)

For this range of value for θr − θl, we can write (2.13) as

θr − θl = ± cos−1

(

mlG(ml) + mrG(mr)

mlG(mr) + mrG(ml)

)

= ±h(ml, mr) (say), (2.15)

where we take only the positive determination of the cos−1 function. However, we shall see

later that a shock transition is possible only for −π/2 < θr − θl < 0.

3 Elementary wave solutions; existence and unique-

ness of rarefaction and Hugoniot curves

Elementary wave solutions of conservation laws (2.1)-(2.3) are the non-constant parts of

solutions of the form m(ξ, t) = m(ξ/t), θ(ξ, t) = θ(ξ/t), g(ξ, t) = g(ξ/t). These are centered

rarefaction wave solutions centered at the origin, shocks and contact discontinuity passing
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through the origin. We shall discuss in this section all states which can be joined by an

elementary wave solution to a state ul on the left of it. Without loss of generality we shall

take θl = 0 in all figures of this paper so that ul = (ml, 0, gl) i.e., vl = (ml, 0)T .

The centered rarefaction waves can exist in the first and third characteristic fields and

we denote them as 1-R and 3-R waves. In 1-R wave, the two Riemann invariants π
(1)
1 and

π
(1)
2 are constants. Therefore, from (2.7), we get

θ−(m) = θ∗

+ −
∫ m

1

√

√

√

√

−G′(m)

mG(m)
dm, 1 < m < ∞ (3.1)

with

θ∗

+ = θl +
∫ ml

1

√

√

√

√

−G′(m)

mG(m)
dm. (3.2)

Similarly, in 3-R wave, the two Riemann invariants π
(3)
1 and π

(3)
2 are constants and hence we

have from (2.7)

θ+(m) = θ∗

−
+
∫ m

1

√

√

√

√

−G′(m)

mG(m)
dm, 1 < m < ∞ (3.3)

with

θ∗

−
= θl −

∫ ml

1

√

√

√

√

−G′(m)

mG(m)
dm. (3.4)

Assumption A2 and A3 implies that the integrands defining the two functions in (3.1)

and (3.3) are continuous for m > 1 and from A1, it follows that these integrals exists. The

leading order terms of these two functions for 0 < m − 1 � 1 are

θ− − θ∗

+ = −2k1/2(m − 1)1/2, θ+ − θ∗

−
= 2k1/2(m − 1)1/2.

Therefore the curve θ = θ−(m), m > 1 in (m, θ)-plane touches the line m = 1 at (1, θ∗

+)

and approaches this point as m → 1+ from below. We denote this curve by R1(vl) and

call it the rarefaction curve of the first family. Similarly, curve θ = θ+(m), m > 1 touches

the line m = 1 at (1, θ∗

−
) and approaches this point as m → 1+ from above. We denote

this curve, the rarefaction curve of the third family, by R3(vl). The above approximate

expressions for 0 < m − 1 � 1 shows that R1(vl) and R3(vl) are locally lower and upper

parts of the parabolas m − 1 = 1
4k

(

θ − θ∗

+

)2
and m − 1 = 1

4k

(

θ − θ∗

−

)2
respectively. Each

of the R1(vl) (and R3(vl)) family of curves depend on θl and ml through a single parameter

θ∗

+ (and θ∗

−
). We can also see that, for any point v′

l in the (m, θ)-plane, R1(v
′

l) (and R3(v
′

l))

can be obtained from R1(vl) (and R3(vl)) simply by translation in the direction of θ axis.

Both curves R1(vl) and R3(vl) pass through the point vl = (ml, θl) in (m, θ)-plane as shown

in Fig. 3.1. It can be directly seen from (3.1)-(3.4) that the R1(vl) and R3(vl) curves are

strictly monotonic. We note that for a particular G in (2.4),
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v

Fig 3.1: Rarefaction curve R1(vl) = R+
1 (vl) ∪ R−

1 (vl) ∪ {vl} of

first family and R3(vl) = R+
3 (vl) ∪ R−

3 (vl) ∪ {vl} of third family for

ml = 1.2 with θl = 0.

(

θ−(m)
)

′′

= −
(

θ+(m)
)

′′

=
1

2

(2m − 1)k + (m − 1)2n

m3/2(m − 1)3/2
.

Since k and n are assumed to be strictly positive, R1(ul) is convex and R3(ul) is concave.

Let us consider a 1-R wave joining constant states ul on the left and ur on the right. Let

u be the state on a straight characteristic in the 1-R wave, then from the condition c1(ul)

≤ c1(u) and π
(1)
2 (u)=π

(1)
2 (ul), we get

g/G(m) = gl/G(ml), (3.5)

and
ml

G(ml)(−G′(ml))
>

m

G(m)(−G′(m))
. (3.6)

Since G(m) and (−G′(m)) are decreasing functions of m, m/(G(m)(−G′(m))) is an increasing

function of m, the above inequality implies that ml > m. Hence, π
(1)
1 =constant in 1-R wave

shows that all states in it lie on a part R−

1 (vl) of the R1(vl) in the (m, θ)-plane, where R−

1 (vl)

is given by

R−

1 (vl) =
{

(m, θ)/θ ∈ θ−(m), 1 < m < ml

}

. (3.7)
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Thus, on R−

1 (ul) curve, we have

θ = θl +
∫ ml

m

√

−G′

mG(m)
dm, 1 < m < ml. (3.8)

This gives a value of θ > θl and the curve R−

1 (vl) is above the line θ = θl with 1 < m < ml

(see Fig. 3.1). For a given vr on R−

1 (vl), the points (m, θ), mr < m < ml and θl < θ < θr,

on R−

1 (vl) give the states in a 1-R wave. The arguments given above show that for every vl

with ml > 1 and for G satisfying the assumptions A1-A4 of the section 2, the curve R1(ul)

is uniquely determined. In particular, if vr lies on the curve R−

1 (vl), we get an unique 1-R

centered wave joining a constant state vl on the left and a state vr on the right.

Consider now a 3-R wave joining a constant state ul on the left to a state ur on the

right so that π
(3)
1 (ul) = π

(3)
1 (ur) and π

(3)
2 (ul) = π

(3)
2 (ur). Since the Riemann invariants

π
(1)
2 and π

(3)
2 are the same, the intermediate states u = (m, θ, g) satisfy the relation (3.5)

and an additional relation from the constant value of π
(3)
1 . Considering the slope of the

characteristics of the third family in a 3-R wave (these are straight lines passing through the

origin), we deduce as in the previous case ml < m ≤ mr, and therefore the constant value of

π
(3)
1 implies that all states in the 3-R wave and ur correspond to the points on R+

3 (vl) where

R+
3 (vl) =

{

(m, θ)/θ ∈ θ+(m), ml < m < ∞
}

, (3.9)

i.e., R+
3 (vl) curve is given by

θ = θl +
∫ m

ml

√

−G′

mG(m)
dm, ml < m. (3.10)

This gives a value of θ such that θ > θl for m > ml and the curve R+
3 (vl) is above the line

θ = θl with m > ml (Fig. 3.1). Thus, the set of points R+
3 (vl) which can be connected to a

state (ml, θl) on the left by a 3-R wave is a part of the rarefaction curve of the third family,

i.e. R3(vl).

As θ+(m) (and also −θ−(m)) may tend to infinity, θ on these curves may take numerically

any large value. From the point of view of physically realistic situations, we need to consider

only the strip −π < θ − θl < π in the (m, θ)-plane as shown in Fig. 3.4, though the part

−π < θ − θl < 0 cannot be attained by a rarefaction wave. At the end of the section 2, we

made relevant comments on the limitations of values of θ through a shock transition (which

we shall prove later in this section). Taking all transitions, we shall see that the points in

the (m, θ)-plane which are of interest to our discussion lie in the strip −π < θ − θl < π. In

Fig. 3.4, T denotes the curve represented by (3.3) with θ∗

−
replaced by θ1 = θ∗

+(vl) which is

also the R+
3 (v1) curve with v1 = (1, θ1).

Fig. 3.4 has been drawn on the assumption that θ∗

+(vl) < π. However it may turn out

that θ∗

+(vl) > π. In this case, the figure has to be modified. R−

1 (vl) would now intersect the
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line θ = π, the curve T would disappear and we shall get only four domains A, B, C and D

where vr may lie.

Consider now an elementary wave of the second characteristic family in a solution joining

two constant states ul and ur. Since this family is linearly degenerate, the elementary

wave solution will be a contact discontinuity moving with the speed zero. Thus, the R-H

conditions for the conservation laws (2.1)-(2.3) imply ml = mr, θl = θr and a discontinuity

in g. The set of points C in (m, θ)-plane, which can be joined to a point (ml, θl) by a contact

discontinuity, consists only of just one point: the point (ml, θl) itself. At a point P of the

contact discontinuity on Ωt, the slope dy/dx of Ωt is continuous. This follows from (1.7).

Next we consider two states ul and ur which satisfy the jump relations (2.9) and (2.10)

with s 6= 0. Then the two states are joined by one of two shocks 1-S and 3-S (of first and

the third characteristic families respectively) passing through the origin. When we use the

expression (3.5) in Lax’s stability condition c1(ur) < s < c1(ul) for 1-S shock, we get

ml

mr

<
G(ml)(−G′(ml))

G(mr)(−G′(mr))
. (3.11)

As in the case of 1-R wave, we can show that this inequality implies ml < mr. Since s 6= 0,

(2.10) and ml < mr give

gr =
G(mr)

G(ml)
gl < gl. (3.12)

From Lax’s stability condition, since we have s < 0 for 1-S, it follows from (2.11) that

θr < θl and from (2.13) that

−
π

2
< θr − θl < 0. (3.13)

Thus (2.14) for 1-S gives

θr − θl = − cos−1

(

mlG(ml) + mrG(mr)

mlG(mr) + mrG(ml)

)

= −h(ml, mr), (say) (3.14)

where we take only the positive determination of the cos−1 function.

We first study the properties of the function h(ml, m) not only for m ≥ ml but also for

1 < m < ml.

Lemma The function

f(ml, m) =
mlG(ml) + mG(m)

mlG(m) + mG(ml)
(3.15)

has a maximum value 1 at m = ml. It monotinically decreases for m > ml and tends to zero

as m → ∞ and monotonically increases from 1/ml to 1 in 1 < m < ml.

Proof: Proof of the Lemma is simple when we note that

df

dm
(ml, m) =

(m2 − m2
l )G(ml)G

′(m) + m(G2(m) − G2(ml))

(mG(ml) + mlG(m))2
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3.2: Hugoniot curves S1(vl) = S+
1 (vl) ∪ S−

1 (vl) ∪ {vl}

and S3(vl) = S+
3 (vl) ∪ S−

3 (vl) ∪ {vl}of first and third

families with ml = 1.2, θl = 0.

and G and G′ satisfy the assumptions A1-A3 in section 2.

Thus, the curve represented by

θ =

{

θl + h(ml, m) if 1 < m < ml

θl − h(ml, m) if m > ml,
(3.16)

where we take only the positive determination of cos−1, is a curve with continuously turning

tangent and is defined in the whole interval 1 < m < ∞. We denote this curve by S1(vl).

θ − θl decreases continuously from limm→1+(θ − θl) = cos−1 (1/ml) to −π/2 as m varies from

1 to ∞. S1(vl) is called Hugoniot curve of the first family.

We denote the upper part of S1(vl), given by θ = θl + h(ml, m) for 1 < m < ml, by

S−

1 (vl). Since for 1-S shock, ml < mr, the points on this part cannot be reached by 1-S

shock from a state ul on the left. The lower part S+
1 (vl) given by θ = θl −h(ml, m), m > ml

consists of the points vr which can be joined to vl by a shock of the first family. The curve

S1(vl) has been shown in Fig. 3.2 with θl = 0.

Consider now a shock of the third characteristic family i.e., 3-S shock, with states ul on

the left and ur on the right. The Lax’s entropy inequality implies ml > mr. Thus, for 3-S

shock, we have

ml > mr, gl < gr, − cos−1
(

1

ml

)

< θr − θl < 0. (3.17)

The curve S3(vl), called as Hugoniot curve of the third family, represented by

θ =

{

θl − h(ml, m) if 1 < m < ml

θl + h(ml, m) if m > ml,
(3.18)

is a reflection of S1(vl) in the line θ = θl as seen in Fig. 3.2 with θl = 0. The part
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v

v
v

v

Fig. 3.3: S+
1 (vl) and S−

1 (v′

l) curves meeting at the points vl and v′

l.

S−

3 (vl) of S3(vl) represents the set of points which can be joined to ul by a 3-S shock. Points

on the part S+
3 (vl) cannot be reached from vl by a 3-S shock.

The following result is an important property which follows immediately from the fact

that h(ml, m) is symmetric with respect to ml and m.

Lemma If v′

l = (m′

l, θ
′

l) lies on S+
1 (vl), then (ml, θl) lies on S−

1 (v′

l).

Note that the above curves S+
1 (vl) and S−

1 (v′

l) are two distinct curves meeting at the

points vl and v′

l as shown in Fig. 3.3. In fact, we can make a less precise statement: if v′

l

lies on S1(vl), then vl lies on another curve S1(v
′

l). This shows that through vl, an infinity

of S1 curves other than S1(vl) pass. Similar result is true for S3 curves. However, the one

parameter family of curves Ri(vl), i = 1 or 3 is much simpler. If v′

l lies on Ri(vl), then

Ri(vl) = Ri(v
′

l). Through each point vl, only one Ri, i = 1, 3 curve passes.

The Si (i=1,3) curve seems to have a point of inflection. Even for the particular function

G given in (2.4), the second derivative of h(ml, m) is a complicated function. We numerically

compute the derivative d
dm

h(ml, m) for various values of k and n and look for its extremum

point with respect to m. This will give the point of inflection of Si. We find that Si curves

have no point of inflection for k = 1, n = 1. Without a point of inflection, the curve S3(vl)

is everywhere concave and the curve S1(vl) is everywhere convex. For k = n close to 1, the

point of inflection is at a point mf close to 1. As k = n increase, mf increases and tends to

ml as k = n → ∞, but does not seem to cross ml.

In this section we have studied the curves R1(vl), R3(vl), S1(vl), and S3(vl), and their

different parts such as R−

1 (vl); passing through any point (ml, θl) in the half plane m > 1

when G satisfies the assumptions A1-A4 in the section 2. In spite of the fact that both the
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denominator and numerator of d
dm

h(ml, m) vanish simultaneously at m = ml, each one of

these curves if not smooth have at least continuously turning tangent.

Dependence of R1(vl) (or R3(vl)) on ml and θl is very simple, as we have described

earlier, R1(v
′

l) can be obtained from R1(vl) by translating R1(vl) in θ direction by θ′

l − θl +
ml
∫

m′

l

{

−G′(m)
mG(m)

}1/2
dm. Dependence of S1(vl) (or S3(vl)) on θl is also simple: S1(vl, θl) can be

obtained from S1(vl, θ
′

l) by translating the later by θ′

l − θl. Even though there are infinity of

S1 passing through vl, S1(vl) is unique and different from all other S1(v
′

l) which pass through

vl. The variation of S1(vl) on ml, when θl is kept constant, is also not very complicated.

We first note that when ml decreases, θl + cos−1 1
ml

decreases to θl. We use the lemma (3.1)

to deduce

f(m, ml1) < f(m, ml2) for ml1 < ml2 < m and f(m, ml1) > f(m, ml2) for m < ml1 < ml2

so that

h(m, ml1) > h(m, ml2) for ml1 < ml2 < m and h(m, ml1) < h(m, ml2) for m < ml1 < ml2.

Since h is a symmetric function of its arguments, the above relations lead to θl −

h(ml1, m) < θl − h(ml2, m) for ml1 < ml2 < m and θl + h(ml1, m) < θl + h(ml2, m) for

m < ml1 < ml2.

Thus, the curve S1(ml1, θl), which varies from θl + cos−1 1
ml1

to −π/2, always lies below

the curve S1(ml2, θl) when ml1 < ml2. Similarly, it can be shown that S3(ml1, θl) lies above

the curve S3(ml2, θl) when ml1 < ml2.

From the properties just discussed, we prove

Theorem 3.1 Two members of either R1 family or R3 family or S1 family or S3 family do

not intersect when only one of the two variable ml and θl varies.

This theorem is important as it helps us in solving the Riemann problem.

The set of points in (m, θ)-plane, which can be connected to vl (with θl = 0) by a shock

or a centered rarefaction wave, have been shown in Fig. 3.4. In addition to that, we have

also shown in Fig. 3.4 a part T of R+
3 (m = 1, θ = θ∗

+(vl)) for θ∗

+(vl) < θ < π by a broken

curve. The points in (m, θ)-plane relevant to our discussion lie in the domain 1 < m < ∞,

−π < θ < π. We denote different parts of this domain by A, B, C, D and E as follows:

A: Bounded by R−

1 (vl), T , θ = π and R+
3

B: Bounded by R+
3 (vl), S+

1 (vl) and m = ∞

C: Bounded by S−

3 (vl), S+
1 (vl), θ = −π and m = 1
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Fig. 3.4: Rarefaction and Hugoniot curves.

D: Bounded by m = 1, R−

1 (vl) and S−

3 (1, vl)

E: Bounded by m = 1, θ = π and T (1, θ∗

+(vl)).

It is important to note that if θ∗

+ ≥ π, then the set E is a void set.

4 Geometrical features arising out of the elementary

wave solutions: elementary shapes

A Riemann problem for the system of conservation laws (2.1) is to find a weak solution of

the system in the upper half plane: (ξ, t) ∈ IR × IR+, satisfying a cauchy data

u(x, 0) =

{

ul, if ξ < 0, with θl = 0
ur, if ξ ≥ 0,

(4.1)

where ul and ur are two constant states and for this system, we can choose θl = 0 without

any loss of generality. Since g is the metric along the wavefront Ωt, the initial position Ω0 of

the front is obtained by integrating the equation (1.7) (see Prasad, 2001, 3.3.10) with g and

θ as given in (4.1). Thus Ω0 : (x0(ξ), y0(ξ)) is

(x0(ξ), y0(ξ)) =

{

(0, glξ) , if ξ ≤ 0
(ξgr sin θr, ξgr cos θr) , if ξ > 0,

(4.2)

which has a singularity at the origin (0, 0) joining two straight parts. This singular point

is not necessarily a kink unless vr lies either on S+
1 (vl) or S−

3 (vl) as discussed in section

3. Once the Riemann problem is solved in the (ξ, t)-plane, the mapping from (ξ, t)-plane to

(x, y)-plane is obtained by integrating the ray equations (1.6) for a fixed value of ξ,

x(ξ, t) = x0(ξ) +
∫ t

0
m(ξ, τ) cos(θ(ξ, τ))dτ, (4.3)
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y(ξ, t) = y0(ξ) +
∫ t

0
m(ξ, τ) sin(θ(ξ, τ))dτ. (4.4)

A ray starting from (x0, y0) is given by (4.3)-(4.4) when ξ is kept fixed. The wavefront Ωt at

any point is again given by (4.3)-(4.4) when t is kept fixed and ξ varies.

Now we consider the structure of a 1-R wave in (ξ, t)-plane and the geometrical shape

R1, of the wavefront Ωt associated with this solution. To get a 1-R wave as a solution of the

Riemann problem, we choose the state vr to lie on R−

1 (vl) curve and glG(vr) = grG(vl).

If gl 6= gr, there must be a contact discontinuity along ξ = 0, hence we first solve m as a

function of ξ/t from

mG(m)

g2(−G′(m))
=

(

ξ

t

)2

, g =
glG(m)

G(ml)
; c1(vl) <

ξ

t
≤ c1(vr, gL), (4.5)

where

gL =
glG(m)

G(ml)

∣

∣

∣

∣

∣

ξ/t=c1(ur)

. (4.6)

Since m
−G′

is a monotonically increasing function, the solution m = m(ξ/t) exists uniquely.

Then the solution is given by (see Fig. 4.1)

u = ul, if − ∞ < ξ ≤ c1(ul)t (4.7)

=















m(ξ/t),

θ = θl +
∫ml

m

√

(−G′)
mG

dm, if c1(ul)t < ξ ≤ c1(vr, gL)t

g = gl
G(m)
G(ml)

,

(4.8)

=











mr,
θr, if c1(uL)t < ξ ≤ 0
g = gL,

(4.9)

= ur, if 0 < ξ < ∞. (4.10)

The 1-R solution is completely determined. Fig. 4.2 shows the geometry of the wavefront Ωt

associated with this solution. The wavefront Ωt contains a curved part R1 of the wavefront,

which we call an elementary shape R1. Ωt and rays can be determined with the help of (4.3)-

(4.4) as explained there. The rays starting from the points below the singularity at ξ = 0

on Ω0 enter R1 zone in the (x, y)-plane from below, curve upward and finally emerge out of

this zone again as straight lines. Thus the elementary shape R1 propagates downwards on

Ωt.

As in the case of R1 above, we define an elementary shape on Ωt to be the image in

(x, y)-plane of an elementary wave solution of the system of conservation laws. We denote

these elementary shapes by R1, R3, C, K1, and K3 where R3 corresponds to 3-R wave, C
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u
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Fig. 4.1: Solution of the Riemann problm when vr ∈ R−

1 (vl).

x

y

x

y

Fig. 4.2: R1 elementary shape with Fig. 4.3: R3 elementary shape with

ml = 1.2, mr = 1.08 and θr=0.4649. ml = 1.2, mr = 1.4 and θr=0.5239.

to a contact discontinuity, K1 to a 1-S shock and K3 to a 3-S shock. Note that C, K1 and K3

are point singularities on Ωt.

As the case of 1-R solution, we can discuss the structure of 3-R centered wave and the

associated elementary shape R3. They have been shown in Fig. 4.3. R3 is also convex, but

unlike R1, the elementary shape R3 moves upwards on Ωt and the rays starting from the

points on the upper part of Ω0, enter R3 zone from above and finally emerge out of this zone

as straight lines.

It is easy to derive the boundary lines of a R1 zone (or R3 zone) in the (x, y)-plane. Let

us do this for the R1 zone. The two characteristic lines which bound the 1-R wave in the

(ξ, t)-plane are ξ = c1(ul)t, and ξ = c1(ur)t (see Fig. 4.1). Since the lower part of Ω0 is the

lower half of the y-axis, a point on the image of ξ = c1(ul)t can be reached by a ray starting

from (0, glξ), ξ < 0 and moving with the velocity ml in x-direction. Hence, the equation of

the lower boundary of the image of (4.8) in (x, y)-plane is given parametrically in terms of
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t as

x = mlt, y = glξ = glc1(ul)t (4.11)

or since

glc1(ul)

ml

= −

√

√

√

√

G(ml)

ml(−G′(ml))
,

this lower boundary of R1-zone obtained by eliminating t from (4.1), is

y = −x

√

√

√

√

G(ml)

ml(−G′(ml)
. (4.12)

To get the image of ξ = c1(vr, gL)t, i.e., the upper boundary of R1-zone, we refer to

the Fig. 4.1 in (ξ, t)-plane, which is pre-image of Fig. 4.2. A point (c1(vr, gL)t, t) in

Fig. 4.1, can be reached from the origin first moving vertically up along the t-axis and

then moving horizontally in negative ξ direction. Thus a point on the upper boundary of

1-R region in (x, y)-plane can be reached from the origin by moving along the ray with

velocity (mr cos θr, mr sin θr) and then moving along the wavefront Ωt. The second move-

ment correspond to a displacement (−gLξ sin θr, gLξ cos θr) in the Fig. 4.2 from the point

(mrt cos θr, mrt sin θr). Therefore, the image of ξ = c1(vr, gL)t is given by

x = −gLξ sin θr + mrt cos θr, y = −gLξ cos θr + mrt sin θ (4.13)

or using ξ = c1(vr, gL)t, we write it as

y =

(

gLc1(vr, gL) cos θr + mr sin θr

−gLc1(vr, gL) sin θr + mr cos θr

)

x. (4.14)

We note that the lower boundary of R1-zone always has a negative slope, the upper

boundary may slope upward, for example for 0 < θr < π/2, if

gr

gL

√

√

√

√

mr(−G′(mr))

G(mr)
< cot θr, (4.15)

where gL is given by (4.6).

Consider now a solution u with constant v = (ml, θ = 0) in the whole of (ξ, t)-plane

and a contact discontinuity along ξ = 0 across which [g] 6= 0. Since m on Ωt is constant

equal to ml and θ = 0, the wavefront Ωt is a straight line x = mlt parallel to y-axis and the

elementary shape C corresponding the contact discontinuity consists of a single point on the

ray ξ = 0 i.e., y = 0. This elementary shape is not observable on the wavefront. However,

if a contact discontinuity appears in a solution in which Ωt is not a straight line and g is

not constant on Ωt (with a jump on C), then the second derivatives, xξξ and yξξ, obtained
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from (1.7) show that though the tangent direction of Ωt is continuous, its curvature may be

discontinuous across C.

When the Riemann data (4.1) is such that (mr, θr) ∈ S+
1 (vl), and (3.12) is satisfied, the

solution contains only one elementary wave solution, namely 1-S shock. The shock starts

from the origin in (ξ, t)-plane and moves with a negative velocity (2.11), since θr < 0. The

image of the 1-S shock in (ξ, t)-plane is a K1-kink in (x, y)-plane, its path i.e., the kink path

is

y = x

(

mr − ml cos θr

ml sin θr

)

(4.16)

(see the expression (3.3.33) for the kink slope S in Prasad, 2001). A ray starting from the

lower part of Ω0 (i.e., with ξ0 < 0) moves parallel to the x-axis, intersects the kink path and

then changes its direction so as to make an angle θr < 0 with the x-axis (Fig. 4.4).

Similarly, we can consider a Riemann data which leads to the elementary wave 3-S. The

image of this shock is an elementary shape K3-kink. The geometry of the wavefront Ωt, rays

and the kink path corresponding to this solution has been shown in Fig. 4.5.

Suppose now that the state ur be such that (mr, θr) lies either on R−

1 , or R+
3 or S+

1

or S−

3 but without satisfying the relation (3.5), then the solution of the Riemann problem

consists of either a 1-R wave or a 3-R wave or 1-S wave or 3-S wave respectively and in

addition there will be a contact discontinuity on ξ = 0. When (mr, θr) lies on R+
3 (vl), the

contact discontinuity will on the left of 3-R wave and when (mr, θr) lies on S+
1 (vl) the contact

discontinuity will be on the right of 1-S shock and so on.

The solution of the Riemann problem when (mr, θr) is an arbitrary point in (m, θ)-plane,

have been presented in the next section. Here we first analyze whether we can take g/G(m)

to be the same constant on the two sides of a 1-S or 3-S shock. This question was raised

by Whitham in his heuristic theory of shock dynamics. The answer to the question follows

immediately from the jump relation (2.10) with s 6= 0. Hence across both shocks, g/G(m) has

the same value and in a smooth solution g/G(m) =constant is an integral of the conservation

law (1.3). Thus, it is possible to take g/G(m) to be the same constant in the solution in

(ξ, t)-plane on the two sides of a shock.

Next, we analyze whether we can replace the system of three conservation laws (1.1)-

(1.3) simply by a system of two conservation laws (1.1)-(1.2) with a given expression for

g = G(m), as done in a previous work (Prasad and Sangeeta, 1999) for solutions which are

continuous (except for shocks) but piecewise smooth in (ξ, t)-plane. We consider an initial

value for the system of conservation laws (1.1)-(1.3):

u(ξ, 0) = u0(ξ) (4.17)
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Fig. 4.4: K1 with ml = 1.2, mr = 1.4 Fig. 4.5: K3 with ml = 1.2, mr = 1.08

and θr = -0.46. and θr = -0.3989.

such that

g0(ξ) = G(m0(ξ)). (4.18)

We can always achieve (4.18) in an initial data by replacing ξ by a new function of ξ (Prasad,

2001, page 209). For a smooth solution, we can integrate the equation (1.3) (with C = m)

to get g/G(m) as a function of ξ which is identically equal to 1, since g0/G(m0) = 1 from

(4.18). Hence

g(ξ, t) = G(m(ξ, t)). (4.19)

If the solution u(ξ, t) is continuous but piecewise smooth due to presence of simple waves or

more complex solutions in some sub-domains of IR×IR+, then across the common boundaries

of smooth regions, the relation (4.19) remains valid. When 1-S and 3-S shocks appear in

the solution, gl/G(ml) = gr/G(mr) being the common jump relation for both shocks, we

find that g/G remains continuous across these shock paths. Thus we note that a constant

value of g/G(m) is carried along lines ξ= constant as t evolves as long as the solution is

continuous and when there is a shock, the same value of g/G crosses over the shock and

is again maintained afterward along ξ = constant lines. Thus (4.18) implies (4.19) in all

continuous (except for shocks) and piecewise smooth solutions. This justifies the use of the

relation (4.19) and the KCL (1.1)-(1.2), provided we choose the initial data satisfying (4.18)

as done by Prasad and Sangeeta (1999). With such a choice of ξ, since m is continuous across

a contact discontinuity, g is also continuous across it i.e., the contact discontinuity disappears.

For a Riemann initial data (4.1), this would mean a suitable choice of ξ i.e., a choice of g on

the two sides of ξ = 0 such that gl/G(ml) = gr/G(mr) = 1. Thus we have justified the use of

the relation (4.19) along with the KCL (1.1)-(1.2) to discuss the propagation of a nonlinear

wavefront even for the initial data (4.1) which is discontinuous at a number of isolated points

on ξ-axis but otherwise smooth. However, though contact discontinuities disappear, their

trace on Ωt may still be seen as a discontinuity in the curvature of Ωt. But a discontinuity in



20

the curvature of Ωt may exist even in a piecewise C1 solution of (1.1) and (1.2) with (4.19)

due to discontinuity in the derivatives of m, for example across a curve in (ξ, t)-plane which

forms the boundary of a simple wave.

5 Geometrical shapes arising out of a general singular-

ity on Ωt

In this and the next section, we shall use the relation (4.19) instead of the conservation law

(1.3). Our governing equations are then the KCL (1.1)-(1.2) with (4.19). We shall first study

the general Riemann problem, when the point vl = (ml, θl = 0) is given and vr = (mr, θr)

is an arbitrary point in (m, θ)-plane. This problem can be easily solved with the help of the

Fig. 3.4 (or a slightly modified figure when θ∗

+ > π as mentioned in the section 3).

Let Pr(mr, θr) be a point in the domain A. The solution of the Riemann problem exists

because R−

3 (vr) being below T , it always meets R−

1 (vl) and in this case it consists of the state

(ml, 0) on the left of a 1-R wave continuing upto an intermediate constant state Pi(mi, θi),

which ends into a 3-R wave to the right of which we get the final state (mr, θr). This

intermediate state (mi, θi) is the point of intersection Pi of the curves R−

1 (vl) and R−

3 (vr)

which is unique because of the geometry of these curves (see Fig. 3.3) as discussed in section

3. Existence of the unique point of intersection can also be proved by using fixed point

method, but it appears that it is unnecessary because of very clear geometrical arguments.

It is important to note that, since R3(v) for v 6= vl is just a translation of R3(vl) in θ

direction, R−

3 (vr) can never intersect R+
3 (vl). This argument ensures the existence of the

intermediate point Pi(mi, θi) as the point of intersection of the R−

1 (vl) and R−

3 (vr) curves

if (mrθr) ∈ A. The above argument is equivalent to saying that there exists a unique

point Pi(mi, θi) on the R−

1 (vl) curve such that R+
3 (vi) passes through Pr. The shape of the

wavefront at t = 0 and at times t > 0 is shown in Fig. 5.1.

If we have considered the conservation law (1.3) instead of the relation (4.19), we would

have got a contact discontinuity along ξ = 0 but this would not have affected Fig. 5.1. We

describe these result symbolically as

(mr, θr) ∈ A → R1R3, (5.1)

which means that when (mr, θr) is in the domain A, the resultant wavefront has an elementary

shape R1 propagating below on Ωt, and R3 propagating above and these two are separated

by a plane (straight) section of the front.

Similarly, we get the results

(mr, θr) ∈ B → K1R3, (5.2)
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Fig. 5.1: Geometrical shape of Ωt when Fig. 5.2: Geometrical shape of Ωt when

vr ∈ A with ml = 1.2, mr = 1.25 and vr ∈ D with ml = 1.2, mr = 1.7 and

θr=0.6. θr=0.35.

and the geometrical shape of the wavefront at different times is shown in Fig. 5.2.

Let vr = (mr, θr) ∈ C. We expect the result vr ∈ C → K1K3 but we face a difficulty

now. When the point vr is close to the curve S−

3 (vl), then the curve S+
3 (vr) enters into the

domain D. Therefore, it looks as if the curve S+
3 (vr) may intersect the curve R−

1 (vl) instead

of S+
1 (vl). But this does not happen. Consider a point P ′

r(mr, θ
′

r) on S−

3 (vl) above the point

Pr(mr, θr). By lemma 3.2, the curve S+
3 (mr, θ

′

r) passes through vl = (ml, 0). But the curve

S+
3 (mr, θr) is obtained by translating the curve S+

3 (mr, θ
′

r) in the negative direction of θ-axis

by a distance θr − θ′

r and hence will meet S+
1 (vl) at a point Pi(mi, θi). Thus, we get the

following result

(mr, θr) ∈ C → K1K3. (5.3)

The geometrical shape of Ωt if (mr, θr) ∈ C is shown in Fig. 5.3.

Similar arguments as above can be made to show the result depicted in Fig. 5.4. i.e.,

(mr, θr) ∈ D → R1K3. (5.4)

Finally, let (mr, θr) ∈ E. Then θr > θ∗

++
∫mr

1

√

−G′(m)
mG(m)

dm, where θ∗

+ is given by (3.2), and

hence R−

3 (vr) touches the line m = 1 at θ > θ∗

+. This shows that there exist no intermediate

state which joins ul on the left and ur on the right. Thus we get the following theorem.

Theorem 5.1 When Pr ∈ E, there is no solution of the Riemann problem. For every pair

ml and mr, and mr sufficiently close to 1; there exists an angle θc(ml, mr)(0 < θc < π) such

that if θr > θc(ml, mr), the solution fails to exist.

We have not examined so far in this paper the case m → 1 + . We notice from the
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Fig. 5.3: Geometrical shape of Ωt when Fig. 5.4: Geometrical shape of Ωt when

vr ∈ C with ml = 1.2, mr = 1.3 and vr ∈ B with ml = 1.2, mr = 1.02 and

θr=-0.785. θr=0.35.

from the assumption A1 in section 2, that G(m) → ∞ as m → 1 + . As gdξ = G(m)dξ

represents an element of length dl along the wavefront Ωt it follows that between two given

rays corresponding to ξ and ξ + δξ, the distance δl = G(m)(δξ) tends to infinity as m → 1+.

It means that the energy flux F (m) = 1/G(m) along a ray tends to zero as m → 1+. The

situation is similar to that encountered in gas dynamics where the mass density ρ → 0

implies appearance of a vacuum (Courant and Friedrichs, 1948) in a piston problem when

the piston is withdrawn sufficiently rapidly giving a complete simple wave (see also Prasad,

2001, section 3.1.1). In our theory, a vacuum with vanishing energy flux appears on the

wavefront Ωt wherever m → 1+.

We have not studied the way in which this limiting process takes place but we can quickly

write down the consequences of KCL in the degenerate case when m = 1:

θt = 0 , gt = θξ. (5.5)

The first equation states that the rays are straight lines given by xt = cos θ, yt = sin θ.

The second one is the usual relation of the convergence of rays with the ray tube area.

Thus m = 1 corresponds to the linear theory. It is an important and difficult problem to

study mathematically, the experimentally observed transition from linear to weakly nonlinear

results (Sturtevant and Kulkarni (1976)).

6 Interaction of elementary shapes

Elementary shapes on a nonlinear wavefront Ωt propagate on the front. Two elementary

shapes, separated by a straight portion of Ωt, may or may not interact. The process of
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interaction if it takes place, may take finite or infinite time depending on the relative strengths

of the two elementary shapes. Although, it is not possible to compute the shape of Ωt during

the process of interaction without a full numerical solution of the conservation laws (1.1)-

(1.2), we shall see that we can make a very good prediction of the final results qualitatively.

When the interaction period is finite, we show that the final results will again consists of

a pair of elementary shapes. All these geometrical features of Ωt can be studied from the

corresponding results on the interaction of simple waves and shock waves in (ξ, t)-plane (for

Euler’s equations of one-dimensional unsteady gas flow, see Courant and Friedrichs (1948),

Smoller (1983)).

We have highlighted “elementary shapes” in the last paragraph in italics, since interaction

of two elementary waves need not result in waves both of which are elementary because if

any one of the two end products is a simple wave, it will not in general be centered. We

note that a more general non-centered simple wave in the form of a compression wave, in

which the characteristics converge in t-increasing direction does not seem to appear after

interaction. This conjecture is based on the analysis of all possible interactions. Thus, the

resulting waves from a complete interaction of two elementary waves or the reflected wave

during the process of reflection is always either a shock wave or a rarefaction wave. Even if

this rarefaction (say of ith family) wave is not centered, the Riemann invariants
{

π
(i)
1 , π

(i)
2

}

,

i = 1, 3 are constant. Hence the states vr, which can be joined to a state vl through a

non-centered rarefaction wave, lie on the curve R−

1 (vl) and R+
3 (vl). Therefore, we can study

interaction of two elementary waves or elementary shapes with the help of Fig. 3.4. For this

purpose, we use not the full set of three conservation laws (2.1) but the reduced set of two

equations (1.1)-(1.2) with (4.19).

Two elementary shapes on Ωt separated by a straight part of Ωt correspond to the initial

stages of the solution from the following initial data for (1.1)-(1.2) and (4.19)

v(ξ, 0) =











vl = (ml, 0) , −∞ < ξ ≤ ξl

v0 = (m0, θ0) , ξl < ξ ≤ ξr

vr = (mr, θr) , ξr < ξ ≤ ∞
(6.1)

with an appropriate choice of v0 and vr in terms of vl and arbitrary ξl, ξr ∈ IR.

In order to describe the result of interaction, we use a notation EiEj to denote a state

of Ωt corresponding to an elementary shape Ei joining states vl, v0 and Ej joining v0 and

vr on Ωt. Thus R1K1 → K1R3 means that interaction of R1 elementary shape and K1

elementary shape will give K1 kink and R3 shape. We take up now discussion of all possible

interactions: K1K1, K3K3, R1K1, R3K3, K1R1, K3R3, R3R1, R3K1, K3R1 and K3K1 one by

one starting first with six simpler cases R3R1, R3K1, K3K1, K3R1, K1K1 and K3K3 where

the interactions are always completed in finite time.
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(i) K3R1 interaction: Here v0 ∈ S−

3 (vl) and vr ∈ R−

1 (v0) so that vr ∈ D. This is one of

the simplest cases but care must be taken such that mr > 1. The result is

K3R1 → R1K3. (6.2)

(ii) R3K1 interaction: Here v0 ∈ R+
3 (vl) and vr ∈ S+

1 (v0) respectively. Since S+
1 (v0) and

S+
1 (vl) are asymptotic to θ = θ0 − π/2 and θ = θl − π/2 respectively and θ0 > θl, we have

vr ∈ B (the proof of this statement is not rigorous but has been verified numerically (see

(v) below)). Hence, it follows that

R3K1 → K1R3. (6.3)

(iii) K3K1 interaction: Here v0 ∈ S−

3 (vl) and vr ∈ S+
1 (v0) so that vr ∈ C. From (5.3) we

get

K3K1 → K1K3. (6.4)

Proof of this statement is also not rigorous because we have not proved that when v0 is very

close to vl, S
+
1 (v0) will not intersect S+

1 (vl). This has been only numerically verified.

(iv) R3R1 interaction: Here v0 ∈ R+
3 (ul) and vr ∈ R−

1 (u0). This interaction will always

be complete since the trailing end of 3-R wave has a positive velocity in (ξ, t)- plane and

that of 1-R wave has a negative velocity. Since m0 > ml, R−

1 (v0) may intersects either the

curve T or the boundary θ = π. Hence there exists a δ4(ml, m0) such that for

m0 − mr = δ4(ml, m0), vr ∈ T or the line θ = π. (6.5)

We give an equation to determine δ4(ml, m0) in the appendix. Equations for δi(ml, m0), i

= 7, 8, 9, 10 (which appear below) can be similarly obtained. This leads to the following

result

(a) If m0 − mr < δ4(ml, m0), vr ∈ A and we have

R3R1 → R1R3. (6.6)

(b) When m0 − mr = δ4 and vr ∈ T , the 1-R wave ends up at the point vr on T - this

point can be joined to vl by a 1-R wave on the left and a 3-R wave on the right through the

point (m = 1, θ = θ∗

+), which represents a vacuum with vanishing energy flux. This is not

an acceptable solution as the ray coordinate formulation breaks down. Our theory does not

provide any information on the result of this interaction.

(c) when m0 − mr > δ4, and the point vr ∈ E and our theory provides no information on

the result of this interaction.
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(d) When vr lies on the line θ = π, we get a limiting case of the wavefront folding on itself.

This degenerate case does not seem to be physically realistic.

(v) K1K1 interaction: Here v0 ∈ S+
1 (vl) and vr ∈ S+

1 (v0). It is one of the difficult cases

where we are unable to prove whether S+
1 (v0) which starts from v0, enters into the domain

C or the domain B. We take help of drawing the curves S+
1 (v0) by numerical computation

for a large number of values of the parameters k and n in (2.4) and m0, and verify that the

point vr remains entirely in C. This result as m → ∞ is true, as can be seen from the fact

that θ on S+
1 (vl) tends to −π/2 and θ on S+

1 (v0) tends to θ0 − π/2 with θ0 < 0. Once we

accept that S+
1 (v0) lies entirely in C, we get the result

K1K1 → K1K3. (6.7)

(vi) K3K3 interaction: Situation is similar to the previous case, we do numerical experi-

ments with a large number of cases with the function (2.4) to accept the result that vr ∈ C

so that

K3K3 → K1K3. (6.8)

(vii) R1K1 interaction: Here v0 ∈ R−

1 (vl) and vr ∈ S+
1 (v0) This is a case when the

interaction is not completed in finite time when the strength of the 1-R wave is large compared

with that of 1-S wave (we denote it by saying that R1 is strong compared to K1). This follows

from the theorem on the persistence of a shock (Prasad, 2001, p 35, see also Prasad, 1993)),

K1 cannot disappear in finite time. From numerical computation, we find S+
1 (v0) to be

above R−

1 (vl) i.e., in the domain A for small values of mr − m0. Now there exists a value

δ7(ml, m0) say, such that for mr − m0 = δ7(ml, m0), the point vr ∈ R+
3 (vl).

(a) When mr − m0 = δ7(ml, m0), the interaction is completed in infinite time and we get

limt→∞ R1K1 → R3. In this case both, 1-R wave and 1-S shock keep on interacting with

diminishing strengths and the precise result is

R1K1 → R1K1R3, lim
t→∞

R1K1R3 = R3. (6.9)

In (ξ, t)-plane, the state at any time t on the right side of 1-S shock will also be the state on

the left of the 3-R wave and this state will tend to vl as t → ∞. This is a very interesting

case, when two waves of the first family interact and give rise only to a wave of the third

family after the interaction. At any finite time we have a shape represented by R1K1R3.

(b) When mr − m0 < δ7, vr ∈ A and we may think that R1K1 → R1R3, which is not

strictly correct. The theorem on the persistence of a shock implies that the 1-S shock cannot

disappear to form a 1-R wave. The correct result at any finite time t is R1K1 → R1K1R3.

In (ξ, t)-plane, the 1-R wave on the left continues to interact indefinitely with the 1-S shock
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(the shock is unable to penetrate the 1-R wave fully), then appears asymptotically a constant

state vi which is the state behind the 1-S shock and into which the 3-R wave ends on its

left. The strength of 1-S shock tends to zero but the two expansion waves 1-R and 3-R will

have finite strength confirming

lim
t→∞

R1K1R3 = R1R3

a result which we get from the fact that vr ∈ A. Thus, we get

R1K1 → R1K1R3, lim
t→∞

R1K1R3 = R1R3. (6.10)

(c) When mr − m0 > δ7(ml, m0), vr ∈ B. The shock S1(v0, vr), where the bracket now

indicates that the 1-S shock joins a state v0 on the left and vr on the right in (ξ, t)-plane,

is strong compared to the simple wave R1(vl, v0) and hence traverses through this simple

wave in finite time. The diagram in (m, θ)-plane, which we have been using so far, does

not describe the process of interaction but from our understanding of shock propagation we

can describe qualitatively the process of interaction. When the 1-S shock overtakes from the

right the trailing end of the 1-R wave, a 3-R wave (reflected wave) starts getting generated.

The 1-S shock becomes weaker (note m0 < ml so that mr − m0 > mr − ml) and after

the completion of the interaction in finite time, it joins the state vl on the left and a new

constant state vi on the right. The 3-R wave generated by the interaction is R3(vi, vr). The

final result is given by the position of vr ∈ B in (m, θ)-plane. We have shown the result (in

(ξ, t)-plane) in Fig. 6.1. Symbolically the result is represented by

R1K1 → K1R3, (6.11)

which has been presented in detail in Fig. 6.2.

(viii) K1R1 interaction: Here v0 ∈ S+
1 (vl) and vr ∈ R−

1 (v0). We have observed from

extensive numerical computation that the curve R−

1 (v0) is above the curve S+
1 (vl). Then

there exists a function δ8(ml, m0) such that when m0 − mr = δ8(ml, m0), the state vr ∈

R+
3 (vl). As in the last case, three cases arise.

(a) When mr > m0 − δ8(ml, m0), the point vr is in the domain B and we get the result

K1R1 → K1R3. (6.12)

The kink K1 is sufficiently strong to annihilate the elementary shape R1. The new elementary

shape R3 produced as a result of the interaction is separated from the kink K1 by a straight

portion represented by a constant state vi.

(b) When mr = m0 − δ8(ml, m0), as in the case (vii)-(a), the kink K1 annihilates the

elementary shape R1 in infinite time but asymptotically the strength of the kink K1 also
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t

Fig. 6.1: Pre-image of the R1K1 → K1R3 interaction in (ξ, t)-plane

when mr − m0 > δ7. The straight line characteristic curves in R1-

wave and those in R3 are shown in the figure.

vanishes as t → ∞. Thus we get

K1R1 → K1R1R3, lim
t→∞

K1R1R3 = R3. (6.13)

(c) When the elementary shape R1 is sufficiently strong, there exists a function δ′

8(ml, m0)

such that for m0 − mr = δ′

8(ml, m0), the state vr is on the curve T . For m0 − δ′

8(ml, m0) <

mr < m0 −δ8(ml, m0), the point vr ∈ A. The kink K1 is unable to annihilate the elementary

shape R1 but in this process the strength of K1 tends to zero as t → ∞ and we get the result

K1R1 → K1R1R3, lim
t→∞

K1R1R3 = R1R3. (6.14)

(d) When mr ≤ m0 −δ′

8(ml, m0), the point vr ∈ T or the domain E. As discussed in (iv)-(b)

and (c), we draw no conclusion.

(ix) R3K3 interaction: Here v0 ∈ R+
3 (vl) and vr ∈ S−

3 (v0). We see from numerical results

that S−

3 (v0) is above R+
3 (vl). Now there exists a δ9(ml, m0) such that if m0−mr = δ9(ml, m0),

the point vr ∈ R−

1 (vl). The following cases arise

(a) When the kink K3 is strong compared to the elementary shape R3 i.e., m0 − mr >

δ9(ml, m0), which implies mr < m0 − δ9(ml, m0), the point vr ∈ D and

R3K3 → R1K3. (6.15)

The interaction is of finite duration.
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Fig. 6.2(a):Up to the time of interaction. Fig. 6.2(b): From initial to final time

of interaction.

y
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x

Fig. 6.2(c): After interaction. Fig. 6.2(d): Kink path.

Fig. 6: The R1K1 interaction when mr − m0 > δ7

(b) When mr = m0 − δ9(ml, m0), the interaction between K3 and R3 continues indefinitely,

both ultimately become infinitesimally weak and we have

R3K3 → R1R3K3, lim
t→∞

R1R3K3 = R1. (6.16)

(c) When mr > m0−δ9(ml, m0), vr ∈ A. The interaction of R3 with K3 continues indefinitely

during which process strength of K3 decays to zero and we get

R3K3 → R1R3K3, lim
t→∞

R1R3K3 = R1R3. (6.17)

(x) K3R3 interaction: Here v0 ∈ S−

3 (vl) and vr ∈ R+
3 (v0). On the basis of numerical re-

sults, we accept that R+
3 (v0) lies above S−

3 (vl). Therefore, there exists a function δ10(ml, m0)

such that when mr − m0 = δ10(ml, m0), the point vr ∈ R−

1 (vl). We again get three cases.

(a) When mr < m0 + δ10(ml, m0), vr ∈ D, the K3 annihilates R3 in finite time and we get

K3R3 → R1K3. (6.18)
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(b) When mr = m0 + δ10(ml, m0), we get

K3R3 → R1K3R3, lim
t→∞

R1K3R3 = R1. (6.19)

(c) When mr > m0 + δ10(ml, m0), vr ∈ A. We finally have

K3R3 → R1K3R3, lim
t→∞

R1K3R3 = R1R3. (6.20)

Appendix: Equation for δ4(ml, m0) when vr ∈ T .

Since v0 ∈ R+
3 (vl) with θl = 0, and vr ∈ R−

1 (v0), we get

θ0 =
∫ m0

ml

√

√

√

√

−G′(m)

mG(m)
dm, θr = θ0 +

∫ m0

mr

√

√

√

√

−G′(m)

mG(m)
dm.

On the other hand, since vr ∈ T , the expression of the curve T gives

θr = θ∗

+ +
∫ mr

1

√

√

√

√

−G′(m)

mG(m)
dm.

Since θ is monotonically increasing function of the curve T and is monotonically decreasing

on R−

1 (v0), these two curves will intersect at a unique point. This point of intersection can

be obtained by equating the above two expressions for θr, which gives after simplification

∫ mr

1

√

√

√

√

−G′(m)

mG(m)
dm =

∫ m0

ml

√

√

√

√

−G′(m)

mG(m)
dm.

Once the function G is given explicitely, mr can be obtained from the above expression and

hence δ4 can be calculated using the formula δ4 = m0 − mr.
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