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Propagation of a curved shock is governed by a system of shock ray equations which
is coupled to an infinite system of transport equations along these rays. For a two-
dimensional weak shock, it has been suggested that this system can be approximated
by a hyperbolic system of four partial differential equations in a ray coordinate system,
which consists of two independent variables (ξ, t) where the curves t = constant give
successive positions of the shock and ξ = constant give rays. The equations show that
shock rays not only stretch longitudinally due to finite amplitude on a shock front
but also turn due to a non-uniform distribution of the shock strength on it. These
changes finally lead to a modification of the amplitude of the shock strength. Since
discontinuities in the form of kinks appear on the shock, it is necessary to study the
problem by using the correct conservation form of these equations. We use such a
system of equations in conservation form to construct a total-variation-bounded finite
difference scheme. The numerical solution captures converging shock fronts with a
pair of kinks on them – the shock front emerges without the usual folds in the caustic
region. The shock strength, even when the shock passes through the caustic region,
remains so small that the small-amplitude theory remains valid. The shock strength
ultimately decays with a well-defined geometrical shape of the shock front – a pair of
kinks which separate a central disc from a pair of wings on the two sides. We also
study the ultimate shape and decay of shocks of initially periodic shapes and plane
shocks with a dent and a bulge.

1. Introduction
The propagation of a curved shock governed by a system of conservation laws is

a complex phenomenon due to three important physical processes which take place
simultaneously. These are (i) different points of the front travel with different speeds
along rays, depending on the amplitude at these points, leading to a longitudinal
stretching of the rays; (ii) a lateral deviation in the direction of a normal to the
shock front, i.e. that of a ray, takes place due to non-uniform distribution of the
shock strength on the shock; and (iii) the waves which catch up with the shock front
from behind not only modify the shock motion but are themselves modified after
getting reflected from it. Due to the first two processes, a smooth concave shock
front with continuous amplitude distribution on it develops a pair of kinks after
some time. Across the kink, the shock strength and the direction of the normal to
the shock change discontinuously. A simple heuristic (approximate) theory for the
propagation of curved shocks (Whitham 1974) shows that there are nonlinear waves
propagating on a shock front itself, as a result of which kinks (called shock–shocks by
Whitham) are formed. Formation of a kink and its propagation on a shock front was
experimentally captured by Sturtevant & Kulkarni (1976). For a weak shock (but not
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so weak that it follows the linear theory of acoustics), rays of the converging shock
front curve away from the focal region and the shock front emerges flattened, with no
loop. A kink on a shock front has been interpreted by Whitham as a trace of triple
shock interaction, some understanding of which has emerged from experiments and
computation of full gas dynamic equations, as well as a model equation called the
two-dimensional Burgers equation (Collela & Henderson 1990; Brio & Hunter 1992,
1994; Tabak & Rosales 1994). We discuss the relation between the results obtained
from the two-dimensional Burgers equation with our results in this paper in § 6.

Kinks appear not only on a shock front but also on each one of a one-parameter
family of weakly nonlinear wavefronts in the high-frequency approximation (Prasad
1993, 1994; Prasad & Sangeeta 1999). Unlike a shock front, the solution is continuous
across a nonlinear wavefront and the governing equations are much simpler. Because
of the formulation of the weakly nonlinear ray theory (WNLRT) by Morton, Prasad
& Ravindran (1992) and due to the availability of modern and highly sophisticated
numerical methods for solutions of conservation laws, the work of Prasad & Sangeeta
shows that the computation of successive positions of a nonlinear wavefront with a
kink is now a routine task. These conservation forms play an important role in this
paper also.

Kevlahan (1996) studied weak shock propagation in non-uniform flows by using
the shock ray equations together with an approximate form of the compatibility
conditions for shock strength and the normal derivative of a physical variable behind
the shock (following Ravindran & Prasad 1993, also see Prasad 1993). But the solution
could be easily obtained only till the critical time when the kinks form on the shock
front. For a short time after the formation of kinks, he was able to extend the solution
by propagating the shock disc and wing as separate fronts. The position of the kink
at a later time was given by the intersection of the two parts. But this method gives
only a rough estimate of the geometry and strength of the shock, which may change
considerably over time. Therefore, to study the propagation of kinks over a large
interval of time, one needs a physically realistic conservation form of these equations
so that we can use available numerical schemes of conservation laws for capturing the
kinks automatically and for obtaining the long-term behaviour of the solutions. It is
simple to show that the intersection method used by Kevlahan gives a kink position
which is the same as that obtained by solving the conservation laws used in this paper.
A detailed proof of this is available in Prasad (2001). Therefore, the solutions obtained
by Kevlahan are also the solutions of these conservation laws except for errors in
numerical computation. Kevlahan has shown that the results of this theory agree
very well with the experimental results of Sturtevant & Kulkarni (1976) and with the
numerical solution of the original gas dynamic equations. In fact, the comparison of
the geometric shape of the shock front and kink position obtained by the NTSD (new
theory of shock dynamics, that we have used in this paper) and those by the numerical
solution of Euler’s equations is presented in figure 4 of Kevlahan’s paper. Since the
two results overlap completely, we conclude that kinks actually propagate at the speed
predicted by the conservation laws (3.12) and (3.13) in this paper. The results of the
NTSD also agree completely with the experimental results (Kevlahan 1996, figure 7).
This has prompted us not to question the correctness of the results of the NTSD
and we concentrate in this paper on obtaining the long-term behaviour of a shock
front with kinks and other minute details quantitatively. Apart from these numerical
comparisons with the Euler solution and experimental results, following Giles, Prasad
& Ravindran (1996), we shall prove in § 3 that the kinematic conservation laws
(3.12) and (3.13), true for any propagating curve, represent conservation of the vector
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distance traversed by the kink (the meaning of which shall be explained along with
the proof).

In this paper, we first present a derivation of the weak shock ray equations from
WNLRT, a physically realistic conservation form of NTSD equations and finally,
some results of numerical solutions of these equations for converging shock fronts
starting from various kinds of initial geometry. Distributions of the shock strength
and the normal derivative on these initial shock fronts have been varied in order to
bring out some interesting results. A total-variation-bounded finite difference scheme
based on the Lax–Friedrichs flux has been used to solve the system of conservation
laws and Strang splitting is used to take into account the effects of the source term
that appears in one of the equations. Effects of changing the initial strength of the
shock or that of the normal derivative, and the effect of initial curvature on the
formation, propagation and separation of kinks have been studied. Then we have
studied the ultimate shape and decay of shocks with initially periodic shapes and
plane shocks with a dent and bulge, and interpreted these results as corrugational
stability of a shock front. Finally we have presented a comparison of our results with
those obtained from other theories.

In order that we can appreciate the results on the resolution of a caustic in this
paper, we present here the details of a representative case of the caustic formed by
the linear wavefront of the two-dimensional wave equation with wave speed unity
and with initial position of the front given in § 5.1, case (i). We take here b = 4 and
z = 2, i.e. the initial position of the wavefront is given by

y2 = 4x for 0 6 x 6 1 and y = ±(x+ 1) for x > 1, (1.1)

which consists of a central part which is a parabola and two wings on both sides of
it. The wings are simply the two tangents to the parabola at the points (±2, 1). It is
interesting to note that the two branches of the caustic starting from the arête (2,0)
end at (5,±2) as shown in figure 1. However, the linear wavefront has the usual fold
not only in the region bounded by the two branches of the caustic, but also after it
has crossed the end points of the two branches at t = 4

√
2 even though there is no

caustic for t > 4
√

2. The persistence of the cusp type of singularity on the wavefront
is due to the discontinuities in the curvature of the initial wavefront at (±2, 1).

2. Governing equations of the NTSD
A system of shock ray equations consists of the ray equations derived from a

shock manifold partial differential equation (or eikonal equation for a shock front,
Prasad 1982) and an infinite system of compatibility conditions along a shock ray
(Grinfel’d 1978; Maslov 1980; Anile & Russo 1986; Srinivasan & Prasad 1985). These
compatibility conditions are derived from the equations governing the motion of the
medium in which the shock propagates. It is interesting to note that unlike the well-
known geometrical optics theory for the propagation of a one-parameter family of
wavefronts across which wave amplitude is continuous, the shock ray theory with an
infinite system of compatibility conditions is exact. This is because geometrical optics
requires a high-frequency approximation, which is satisfied exactly for a shock front.
The explicit form of the first two compatibility conditions for a two-dimensional
curved shock front in a polytropic gas has been derived by Ravindran & Prasad
(1993). These equations, even with just two compatibility conditions, are so complex
that not much progress in actual computation of a shock propagation could be made
(for some numerical results, see Singh & Singh 1999). Under suitable assumptions,
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Figure 1. Linear wavefront propagation in an isotropic homogeneous medium with speed of
propagation unity. Broken curves: wavefront; solid lines: caustic; dotted lines: rays.

these equations for a weak shock reduce to a rather simpler set (equations (5.73)–(5.77)
of Prasad 1993), which we shall use in this paper.

The derivation of the equations of the NTSD for a weak shock (we simply call it
NTSD omitting ‘for a weak shock’ henceforth in this paper) described in the previous
paragraph, is quite clear but requires extremely complex algebraic calculations. Hence
we first present one more derivation (Prasad 2000) from the equations of weakly non-
linear ray theory (Prasad 1993, 1994; Prasad & Sangeeta 1999) simply denoted by
WNLRT, derived under short-wave or high-frequency assumptions. Consider a weak
shock front propagating into a polytropic gas at rest ahead of it. Then the shock
will be followed by a one-parameter family of nonlinear waves belonging to the same
characteristic field (or mode). Each one of these wavefronts will catch up with the
shock, interact with it and then disappear. A nonlinear wave, while interacting with
the shock, will be instantaneously coincident with it in the short-wave assumption.
The ray equations of the WNLRT in three space dimensions for a particular nonlinear
wavefront are

dx

dt
= na0

(
1 + ε

γ + 1

2
w

)
(2.1)

and

dn

dt
= −εγ + 1

2
a0 Lw, (2.2)

where x is the position of a nonlinear ray at time t, n is the unit normal of the
wavefront (i.e. the direction of the ray), γ is the ratio of the specific heats, L is a
vector operator

L = ∇− n〈n · ∇〉 (2.3)

each component of which represents a tangential derivative to the wavefront, a0 is
the constant sound velocity in the medium in which small-amplitude waves are prop-
agating and εw represents the amplitude of the wave in terms of which pertubations
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due to the waves in the density ρ, fluid velocity q and pressure p are given by

ρ− ρ0 = ερ0w, q = εna0w, p− p0 = ερ0a
2
0w. (2.4)

The transport equation for the amplitude w on the nonlinear wavefront is

dw

dt
= − 1

2
a0〈∇ · n〉w (2.5)

where
d

dt
=

∂

∂t
+ a0

(
1 + ε

γ + 1

2
w

)
〈n · ∇〉. (2.6)

Now we use the following theorem (Prasad 1993, p. 74):

Theorem. For a weak shock, the shock ray velocity components are equal to the mean
of the bicharacteristic velocity components just ahead of and just behind the shock,
provided we take the wavefronts generating the characteristic surfaces ahead of and
behind to be instantaneously coincident with the shock surface. Similarly, the rate of
turning of the shock front is equal to the mean of the rates of turning of such wavefronts
just ahead of and just behind the shock.

We denote the unit normal to the shock front by N . For the linear wavefront just
ahead of the shock and instantaneously coincident with it (this is actually a linear
wavefront moving with the ray velocity N multiplied by the local sound velocity
a0), w = 0 and the bicharacteristic velocity is Na0. For the nonlinear wavefront just
behind the shock and instantaneously coincident with it, we denote the amplitude w
by µ. Then µ is the shock amplitude of the weak shock under consideration. Using
the theorem and the results (2.1) and (2.2) with n = N , we get for a point X on the
shock ray

dX

dT
=

1

2

{
a0N +Na0

(
1 + ε

γ + 1

2
µ

)}
= Na0

(
1 + ε

γ + 1

4
µ

)
, (2.7)

dN

dT
= −1

2

{
0 + ε

γ + 1

2
a0Lµ

}
= −εγ + 1

4
a0Lµ, (2.8)

where T is the time measured while moving along a shock ray. We take w = µ and
n = N in (2.5) and write it as

dµ

dT
≡
{
∂

∂t
+ a0

(
1 + ε

γ + 1

4
µ

)
〈N · ∇〉

}
µ

= − 1
2
a0〈∇ ·N〉µ− εγ + 1

4
µ〈N · ∇〉w, (2.9)

where we note that since µ is defined only on the shock front (and also on the instan-
taneously coincident nonlinear wavefront behind it but not on the other members of
the one-parameter family of wavefronts following it), the normal derivative 〈N · ∇〉µ
does not make sense mathematically. We introduce a new variable, defined on the
shock front

µ1 = ε{〈N · ∇〉w}|shock front, (2.10)

where ε appears to make µ1 = O(1) since we wish to consider variation of w on
a length scale over which the fast variable θ (introduced in the derivation of (2.5),
see Prasad 2000) varies. This variable is θ = φ/ε, where φ satisfies the characteristic
partial differential equation φt + 〈q · ∇φ〉+ a|∇φ| = 0.
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The equation (2.9) leads to the first compatibility condition along a shock ray:

dµ

dT
= Ωsµ− γ + 1

4
µµ1 (2.11)

where

Ω̄s = − 1
2
a0〈∇ ·N〉

is the value of the mean curvature of the nonlinear wavefront instantaneously coin-
cident with the shock from behind.

To find the second compatibility condition along a shock, we differentiate (2.5) in
the direction of n but on the length scale over which θ varies. On this length scale, n
is constant and we get after rearranging some terms{

∂

∂t
+ a0

(
1 + ε

γ + 1

4
w

)
〈n · ∇〉

}
〈n · ∇〉w = − 1

2
〈∇ · n〉〈n · ∇〉w − εγ + 1

4
w〈n · ∇〉2w

−εγ + 1

4
{〈n · ∇〉w}2 . (2.12)

Writing this equation for the wavefront instantaneously coincident with the shock,
multiplying it by ε and introducing a variable µ2 by

µ2 = ε2{〈n · ∇〉2w}|shock front (2.13)

we get

dµ1

dT
= Ω̄sµ1 − γ + 1

4
µ2

1 − γ + 1

4
µµ2, (2.14)

which is the second compatibility condition along shock rays given by (2.7) and (2.8).
Similarly, higher-order compatibility conditions can be derived. Thus, for the Euler

equations, we have derived the infinite system of compatibility conditions for a weak
shock just from the dominant terms of WNLRT. Since the shock ray theory (SRT)
can be derived from the WNLRT, the latter is more general than SRT. However,
the results obtained by SRT are quantitatively different from those by WNLRT (see
§ 6.3).

As we have already mentioned, the shock ray theory is an exact theory (the weak
shock assumption is another independent assumption) but since there is an infinite
number of compatibility conditions on it, it is impossible to use it for computing
shock propagation. Prasad & Ravindran proposed a new theory of shock dynamics
(NTSD) in 1990–91 (Prasad 1993) according to which the system of equations (2.7),
(2.8), (2.11) and (2.14) can be closed by dropping the term containing µ2 in (2.14).

Unlike Whitham’s heuristic theory of shock dynamics, the NTSD is based on only
one assumption, which is dropping the last term on the right-hand side of (2.14). This
step is justified in the case µ1 > 0, which occurs very frequently in applications such
as a blast wave. For a single conservation law, equation (2.28) of Prasad (1993) shows
that when φ′(ξ) > 0, i.e. when µ1 > 0, the second derivative uxx at the shock, namely
µ2, monotonically decreases as t increases and for large t, µ2 ∼ t−3. The numerical
results presented in § 5 clearly justify use of a theory with µµ2 neglected. The NTSD
is not expected to give good results when µ1 < 0. In this case, (2.28) of Prasad (1993)
shows that for a single conservation law in one space dimension, both µ1 and µ2 tend
to infinity at a finite time. In this paper, we consider only the case µ1 > 0.

When we consider propagation of even stronger shocks in gas dynamics, the results
of Lazarev, Prasad & Singh (1995) show that neglecting the term µµ2 in the second
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compatibility condition gives good results not only when µ1 > 0 but also when µ1 is
small but less than zero (as exemplified by the accelerating piston problem with small
piston acceleration after the initial push of the piston). Thus NTSD is quite a robust
method for gas dynamics. The results presented in Prasad, Ravindran & Sau (1991)
show that even when µ1 > 0, Whitham’s theory may give more than 100% error. In
this case, the NTSD does give a very good result but a clear mathematical proof of
the bound of the error is still not available.

The final equations of the NTSD, which we use in this paper, for the propagation
of a weak shock, are (2.7), (2.8), (2.11) and (2.14) with the third term on the right-hand
side of (2.14) omitted.

3. Conservation form of the equations for two-dimensional shock
propagation

We first consider a non-dimensional coordinate system which has been non-
dimensionalized with respect to the sound speed a0 of the polytropic gas at rest
ahead of the shock and a suitable length scale L in the problem and use the same
symbols x, y and t for the non-dimensional coordinates. Then we introduce a shock
ray coordinate system (ξ, t) such that ξ = constant represents a shock ray (which for
a shock moving into a polytropic gas at rest is orthogonal to the successive positions
of the shock) and t = constant represents the shock front. Note that in this section
and the rest of paper, we let M be the Mach number of the shock, i.e. the shock
velocity divided by the constant speed of sound in the gas ahead of it:

M = 1 + ε
γ + 1

4
µ. (3.1)

Then Mdt represents an element of length scale along a ray. Let G be the metric
corresponding to the variable ξ, i.e. Gdξ is an element of length, say l along the shock
front at a time t. We can measure l from a suitable point on the wavefront, say the
point where the ray ξ = 0 meets the wavefront. Then

l =

∫ ξ

0

G dξ. (3.2)

We choose the origin of the (x, y)-plane to be a suitable point on the initial shock
front and ray ξ = 0 to be the one which starts from (0, 0) at t = 0. We also define a
quantity N by

N =
γ + 1

4
µ1. (3.3)

Let Θ be the angle that a shock ray (i.e. the normal to the shock front at time t)
makes with the x-axis. Then the shock ray velocity is given by MN = M(cosΘ, sinΘ).
A general displacement dr = (dx, dy) in (x, y)-plane is given by

dr ≡ (dx, dy) = (cosΘ, sinΘ)M dt+ (− sinΘ, cosΘ)G dξ. (3.4)

In the ray coordinate system, the subscript t denotes the non-dimensional time
derivative along the shock ray, i.e. ∂t stands for d/dT in expression (2.9) with T
now representing non-dimensional time. Then equations (2.7), (2.8), (2.11) and (2.14)
giving the successive positions (X(t, ξ), Y (t, ξ)) of a weak shock and distributions of
M and N on it, take the form

Xt = M cosΘ, Yt = M sinΘ, (3.5)
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Θt +
1

G
Mξ = 0, (3.6)

Mt +
1

2

1

G
(M − 1)Θξ + (M − 1)N = 0, (3.7)

Nt +
1

2

1

G
NΘξ + 2N2 = 0, (3.8)

where we have omitted the last term on the right-hand side of (2.14). To make this
a complete set, we need to add an equation for G. This is the equation derived from
differential geometry for the evolution of the metric G along the shock front. This
equation, in the notation of the present paper, is

Gt −MΘξ = 0 (3.9)

and follows from relations (6.51) of Prasad (1993). This equation also follows from
the conservation laws (3.12) and (3.13) below.

Equations (3.5) define rays. Equations (3.6) and (3.9) are geometric conditions. The
other two, namely (3.7) and (3.8), are dynamic compatibility conditions along a shock
ray.

We eliminate Θξ from (3.7)–(3.9) to get two relations from which we derive a
homogeneous relation between Mt, Nt and Gt in the form

2NMt +
(M − 1)N

2GM
Gt − (M − 1)Nt = 0. (3.10)

For the weak shock under consideration, 0 < M − 1� 1, we can replace (M − 1)/M
by (M− 1) and get an integral of (3.10) in the form G(M− 1)4N−2 = h(ξ), where h(ξ)
can be obtained from the distribution of G,M and N on the initial position of the
shock front. Initially, ξ is chosen to be the arclength along the shock front. Therefore,
initially, G = 1. By changing ξ to another function of ξ, (say ξ′), it is possible to
choose h(ξ) = 1. This gives

G = (M − 1)−4N2. (3.11)

We denote ξ′ by ξ.
The system of equations (3.5)–(3.8) where G is given by (3.11) forms a complete set

of equations to give successive positions of a shock front and distribution of M and
N. The system (3.6)–(3.8) decouples from (3.5) and forms a hyperbolic system with
characteristic velocities 0,±√(M − 1)/2G2 in the (ξ, t)-plane.

The characteristic fields of the non-zero eigenvalues are genuinely nonlinear and
in the solutions of (3.6)–(3.8), shocks appear in the (ξ, t)-plane. Study of these shocks
which map into kinks on the shock front in the (x, y)-plane, would require the
conservation form of (3.6)–(3.8). From (3.4), we get expressions for xξ , yξ , xt and yt.
We use these to derive expressions for the second derivatives and equate xξt = xtξ
and yξt = ytξ . These give the following conservation laws first obtained by Morton,
Prasad & Ravindran (1992):

(G sinΘ)t + (M cosΘ)ξ = 0, (3.12)

(G cosΘ)t − (M sinΘ)ξ = 0. (3.13)

These are purely geometric results, true for any propagating curve with velocity of
propagation M and with the associated orthogonal family of curves as rays. For
continuously differentiable functions M and Θ, which satisfy the above conservation
laws, we can easily deduce the equations (3.6) and (3.9) from (3.12) and (3.13).
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However, as mentioned above, we also have discontinuous solutions M and Θ in
which the discontinuities are shocks for which the shock velocity S in the (ξ, t)-plane
satisfies the jump relations

S[G sinΘ]− [M cosΘ] = 0, S[G cosΘ] + [M sinΘ] = 0, (3.14)

where [f] is the usual notation for the jump f− − f+ of the quantity f across the
discontinuity. These shocks are mapped into kinks in the (x, y)-plane by the mapping
(3.5).

We shall now show that the jump relations (3.14) imply conservation of distance
in the x- and y-directions in a sense that the vector displacement (dr)k of a kink in
an infinitesimal time interval dt when computed in terms of the variables (G−,M−, Θ−)
and (G+,M+, Θ+) on the two sides of the kink path is the same. This result was first
proved by Giles et al. (1996) in a more general context of the propagation of a
three-dimensional nonlinear wavefront. In the two-dimensional case, the expression
(3.4) for a displacement along a kink path gives

(dr)k = (cosΘ−, sinΘ−)M−dt+ (− sinΘ−, cosΘ−)G−dξ

= (cosΘ+, sinΘ+)M+dt+ (− sinΘ+, cosΘ+)G+dξ. (3.15)

Taking the first component of the above relation, dividing by dt and using dξ/dt = S ,
we get the first jump relation in (3.14). Similarly the second jump relation in (3.14)
also follows from (3.15). Thus, we have shown that the conservation laws (3.12) and
(3.13) are physically realistic because they represent conservation of distance in the sense
explained above.

For a discontinuous solution, different conservation laws with ξ, t as independent
variables are, in general, not equivalent. Hence (3.12) and (3.13) are the only physically
realistic conservation laws.

The third conservation form is obtained from the consideration of the flow of
energy along a ray tube. Eliminating Θξ from (3.7) and (3.9), we get

Mt +
M − 1

2GM
Gt + (M − 1)N = 0. (3.16)

Since the second term has M − 1 in the numerator, we can set M = 1 in the
denominator as explained earlier. This leads to a form

(G(M − 1)2)t + 2G(M − 1)2N = 0. (3.17)

In a small-amplitude theory, the quantity G(M−1)2 is interpreted as the energy density
along a ray tube (per unit length in ξ variable). This quantity remains constant as
we move with the wave along the ray in the linear theory, i.e. (G(M − 1)2)t = 0. In a
nonlinear theory, there is an additional term due to dissipation through the shock and
we take (3.17) as the third conservation law. There appears to be no other physically
realistic guiding principle from which another conservation law can be deduced. Since
(3.11) has been obtained as an integral (though an approximate one) of the governing
equations (3.6)–(3.9), we treat it as a relation valid along a shock ray even when it
crosses a kink. This is an assumption: the function h(ξ) mentioned following (3.10)
need not be the same on the two sides of the kink. A detailed discussion of this point
is available in Whitham (1974). Thus we take the fourth conservation law as

(G(M − 1)4N−2)t = 0. (3.18)

The equations (3.12), (3.13), (3.17) and (3.18) form the system of conservation laws
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which with appropriate initial values can be solved numerically in (ξ, t)-plane. By
numerically integrating the two equations (3.5), the solution can be mapped onto the
(x, y)-plane giving the successive positions of the shock front and the distribution of
amplitude on them.

Experimental results of Sturtevant & Kulkarni (1976) show that in the linear case
a complex wave field develops near the focus of the wavefront. If the shock wave is
relatively weak, the wavefront emerges from focus crossed and folded (in accordance
with the predictions of geometric acoustics theory), whereas, in the stronger shock
case, the caustic of the linear theory is resolved and the shock front beyond the
focus is uncrossed, as predicted by the theory of shock dynamics. In both cases, the
behaviour at the focus is nonlinear. Explanation or determination of the transition
from the linear to fully nonlinear behaviour (of uncrossed geometry with kinks) is
a very important and challenging mathematical problem. It appears that the present
mathematical formulation may not be able to describe this transition because as
M → 1, G could tend to infinity according to (3.11) or equivalently, (3.18).

We present the results of extensive numerical solutions of the conservative form
of four equations for quite general forms of initial data for M and N and also
X and Y giving initial position of shock. We are able to numerically simulate the
experimentally observed behaviour when the caustic is resolved. A total-variation-
bounded (TVB) scheme based on the Lax–Friedrichs flux has been used to solve this
system of conservation laws. The source term in the equation was handled through
Strang splitting (LeVeque & Yee 1990). The effects of varying initial curvature and
the effects of varying the initial Mach strength M and normal derivative N on the
formation and propagation of kinks has been established.

4. Initial conditions and description of numerical method
We consider an initially concave shock front moving from left to right (i.e. in the

positive direction of the x-axis into a gas at rest).
Let

X(ξ, 0) = X0(ξ), Y (ξ, 0) = Y0(ξ) (4.1)

denote the initial shock front with an initial distribution of amplitude M and N given
by

M(ξ, 0) = M0(ξ), (4.2)

N(ξ, 0) = N0(ξ). (4.3)

The initial value of Θ is obtained from (4.1) as

Θ(ξ, 0) = Θ0(ξ) (4.4)

and the initial value of G is obtained from the relation

G = (M − 1)−4N2 (4.5)

as

G(ξ, 0) = G(M0(ξ), N0(ξ)) = G0(ξ). (4.6)

4.1. A finite difference scheme

To solve the initial value problem (3.12), (3.13), (3.17) and (3.18) with (4.1)–(4.6), we
use a total-variation-bounded finite difference scheme based on the Lax–Friedrichs
flux (Shu 1987; Cockburn, Lin & Shu 1989). Application of the scheme to the system
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of conservation laws (3.12), (3.13), (3.17) and (3.18) is based on the decomposition
of these equations into characteristic components. The scheme is then applied to
individual characteristic components and the solution is obtained from summation of
the contributions from the characteristic components. Consider the conservation law

ut + (f(u))x = 0 (4.7)

where u = (u1, . . . , um)t and the Jacobian matrix A(u) = ∂f/∂u has m real eigenvalues
and its eigenspace is complete (i.e. (4.7) is hyperbolic).

On the computational grid xj = j∆x, tn = n∆t, and unj denotes the computed
approximation to the exact solution u(xj, tn) of (4.7).

Let Aj+1/2 = (∂f/∂u)u=uj+1/2
denote the average Jacobian where

uj+1/2 =

(
u(0)
j + u(0)

j+1

2

)
.

We denote the eigenvalues and left and right eigenvectors of Aj+1/2 by

λ
(p)
j+1/2, l(p)j+1/2, r(p)

j+1/2, p = 1, 2, 3, 4, (4.8)

normalized so that

l(p)j+1/2 · r(q)
j+1/2 = δpq. (4.9)

Denote

∆+uj = uj+1 − uj , ∆−uj = uj − uj−1. (4.10)

A semidiscrete method of lines to (4.7) is a system of ordinary differential equations

∂uj
∂t

= − 1

∆x
(F j+1/2 − F j−1/2) (4.11)

where the numerical flux F j+1/2 is defined by

F j+1/2 = F (uj−k+1, . . . , uj+k) (4.12)

for some positive integer k. F j+1/2 is Lipschitz continuous in all its arguments and
satisfies the consistency condition

F (u, . . . , u) = f(u). (4.13)

Taking the Euler forward time discretization of (4.11), we get

un+1
j = unj − λ(F n

j+1/2 − F n
j−1/2) (4.14)

where λ = ∆t/∆x is the CFL number. In the TVB modification, the numerical flux
F j+1/2 is replaced by a monotone flux (whose choice is defined later)

hj+1/2 = h(u−j+1/2, u
+
j+1/2) (4.15)

where u±j+1/2 = u(x±j+1/2, t) are defined suitably subject to some local projection limiting.

First, project everything to the eigenspace of Aj+1/2,

a(p) = l(p)j+1/2 · a (4.16)

where we take a = u(0)
j , u(0)

j+1, ∆−u(0)
j , ∆+u

(0)
j , ∆−u(0)

j+1.
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Then apply the local projection limiting in each characteristic field:

(ũj)
(p) = m((u(0)

j )(p), (∆+u
(0)
j )(p), (∆−u(0)

j )(p)), (4.17)

(ũj+1)
(p) = m((u(0)

j+1)
(p), (∆+u

(0)
j )(p), (∆+u

(0)
j+1)

(p)), (4.18)

where m is the minmod function, i.e.

m(b1, b2, . . . , bn) =

{
∆min

16i6n
|bi|, if sgn (b1) = sgn (b2) = · · · = sgn (bn) = ∆

0, otherwise.
(4.19)

We then form

(u−j+1/2)
(p) = (u(0)

j )(p) + Φ(ũj)
(p), (4.20)

(u+
j+1/2)

(p) = (u(0)
j+1)

(p) − Φ(ũj+1)
(p), (4.21)

where Φ is the limiter, 0 < Φ < 1. Also, Φ = 0 gives the Lax–Friedrichs flux.
Taking a = u±j+1/2, we return to the component space using

a =

m∑
p=1

a(p) · r(p)
j+1/2 (4.22)

and find f±j+1/2 = f(u±j+1/2).

Next, we compute (f±j+1/2)
(p) from (4.16), and then use any scalar monotone flux in

the pth characteristic field, p = 1, 2, . . . , m. We have used the local Lax–Friedrichs flux
defined by

h
(p)
j+1/2 = h((u−j+1/2)

(p), (u+
j+1/2)

(p))

= 1
2
[(f−j+1/2)

(p) + (f+
j+1/2)

(p) −L(p)
j+1/2{(u+

j+1/2)
(p) − (u−j+1/2)

(p)}] (4.23)

with

L(p)
j+1/2 = max (| λ(p)

j |, | λ(p)
j+1 |).

We finally obtain hj+1/2 by making use of (4.22) with a = hj+1/2

hj+1/2 =

m∑
p=1

h
(p)
j+1/2 · r(p)

j+1/2. (4.24)

Now, replacing F j+1/2 by hj+1/2 in (4.14), the TVB finite difference scheme can be
written as

un+1
j = unj − λ(hnj+1/2 − hnj−1/2). (4.25)

The above scheme can be applied to the system of equations (3.12), (3.13), (3.17)
and (3.18). The source term in equation (3.16) is handled by employing a time splitting
in which one alternates between solving a system of conservation laws with no source
terms, and a system of ordinary differential equations. In the simplest case, this
splitting takes the form (LeVeque & Yee 1990)

un+1 = SΨ (k)Sf(k)u
n (4.26)

where Sf(k) represents the numerical solution operator for the system of conservation
laws

ut + (f(u))x = 0 (4.27)
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over a time step of length k, and SΨ (k) is the numerical solution operator for the
ODE system

ut = Ψ (u). (4.28)

To maintain second-order accuracy, we use the Strang splitting in which the solution
Un+1 is computed from Un by (Strang, 1968)

Un+1 = SΨ (k/2)Sf(k)SΨ (k/2)Un. (4.29)

The fact that the splitting is second-order accurate suggests that the interaction
of different effects is adequately modelled by a split method (at least for smooth
solutions). Moreover, there are distinct advantages to using the splitting form from the
standpoint of algorithm design. High-quality numerical methods have been developed
for systems of conservation laws. By decomposing the problem into subproblems of
these types, it is possible to take advantage of these methods directly.

To assess the accuracy, we first applied the method to a Burgers equation with
source term

ut + ( 1
2
u2)x = ku, k = constant (4.30)

with initial condition

u(x, 0) =

{
x, 0 < x < 1

0, elsewhere.
(4.31)

An exact solution of this problem can easily be obtained. We find that the solution
obtained numerically agrees with the exact solution up to four significant figures in
the shock-free region when ∆x = 0.01, ∆t = 0.01 and cannot be distinguished on the
graph from the solution obtained analytically. Thus the numerical method is accurate
for this test case.

4.2. Method of construction of the shock front and the rays

The governing equations (3.12), (3.13), (3.17) and (3.18) are discretized on a two-
dimensional grid along the ξ-direction and t-direction in the (ξ, t)-plane. The solution
of the discrete equations is obtained starting with initial data for different sets of
values Θ0, M0, N0 and G0. The numerical procedure for obtaining the successive
positions of a shock front and rays is as follows.

Along a ray given by ξ = ξ0, M and Θ are known from the solution of the above
discretized system. Integrating the equations

Xt = M cosΘ, Yt = M sinΘ (4.32)

along ξ = ξ0, with initial values given by (4.1), we can find (X,Y ) at any time t > 0
on the shock front. The composite Simpson’s rule was used for integration. We store
these data and then vary ξ0. This procedure gives both the rays (joining points (X,Y )
on ξ0 = constant for various values of t) and the shock front (joining points (X,Y )
for various values of ξ0 at a given t).

5. Results and discussion
In this section, we discuss the geometrical features of the successive positions of

a shock front and the amplitude distribution on it as obtained from computations
which have been carried out by varying the distribution of amplitude along different
initial shock fronts. To save space we do not reproduce here many of the figures
from which conclusions have been derived (see Monica 1999, for these figures). The
following cases are considered.
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5.1. Case(i): Propagation of a shock front initially parabolic in shape

The initial shock front is taken as

y2 = bx, 1 6 b 6 8, | y |6 z, (5.1)

extended on either side as a straight line for | y |> z. M0 is prescribed on the initial
front as a symmetric function of Θ0. We take

M0 = α exp (−βΘ2
0 ) (5.2)

where the parameter α is a measure of the strength of the initial shock front and β
is a measure of the rate of change of M0 along the shock front. The distribution of
amplitude on the shock front can be varied by varying α and β.

We also prescribe the initial value of N. For most cases, we have taken N0 to be a
constant and have varied it from 0.1 to 1.0.

5.1.1. Effect of varying the initial amplitude distribution

Computations were carried out for b = 2, 4, 8. For each value of b, the initial
distribution of α was varied between 1.1 and 1.2. We present below some of the
representative cases. We start with general qualitative behaviour from one case.

Figure 2 with b = 8, z = 1 is typical of the results of computation, part (a) shows
the successive positions of the shock front and (b–e) the distributions of M, Θ, N
and G on the shock at different times marked by the values of t from t = 0 to 10 at
time interval two. The shock rays, except the central one, initially tend to converge
but later deviate from a straight path due to the non-uniform distribution of the
amplitude (according to equation (3.6)) and become parallel to the x-axis. Thus the
formation of the caustic (which happens in the linear theory) is avoided and the
propagating shock front becomes plane in the central region. A pair of kinks, shown
in figure 2(a) by dots, appears on the shock. The position of the kink on the shock is
very accurately determined by the sharp gradient from the M, l graph in figure 2(b).
The ultimate shape of the shock front consists of a plane central disc separated
from straight wings on the two sides by the two kinks. In this and all the cases
we considered in our numerical computation, we found that the kinks move away
from one another leaving an ever increasing shock disc. There is, though, a definite
condition (Kevlahan 1994; Prasad 2001) involving the values of M on the two sides
of the kink and the jump in Θ across it, which if satisfied, would make the shock
disc shrink. As we shall see at the end of § 6.3, both M− 1 and N tend to zero on the
wings as well as on the disc as t→∞.

The strength M0 on the shock at t = 0 is prescribed to be constant in figure 2.
Due to convergence of rays, the shock strength in the central part increases initially
but it decreases on those rays which start from the straight part (i.e. |y| > 1) of the
initial shock front. At a critical time tc, depending on the values of α and β, the shock
strength M attains a maximum value on the central ray and after that it continuously
decreases along all rays. The Θ, l graph in figure 2(c) shows that till time t = 10, Θ is
not constant on the disc, implying that the central disc is not plane, but it tends to a
plane as time increases. The value of N, the gradient of the gas density (or velocity)
just behind the shock, has also been prescribed to be a constant equal to 0.15. Since
the nonlinear waves from behind catch up with the shock and then disappear from
the flow field, N decreases continuously but with different rates along different rays.
The N, l graph in figure 2(d) shows that from N = 0.15 at t = 0, the value of N has
decreased to less than 0.06 at t = 10. It is important to note that the shape of the
shock front is qualitatively the same as that of the nonlinear wavefront (Prasad &
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Figure 2. Propagation of a weak nonlinear shock front starting from an initial shock front wherein
the central part is a parabola y2 = 8x for |y| < 1. The initial amplitude distribution is given by
M0 = 1.2 and N0 = 0.15. The dotted curves are the rays. (a) Successive positions of the shock front.
(b–e) Distributions of M, Θ, N and G.



134 A. Monica and P. Prasad

Sangeeta 1999). Figure 2(e) shows that the metric G, which was constant initially with
value about 14, decreases significantly in the central part of the shock front. For an
efficient numerical computation, the lower bound of G should be greater than zero.

We have done a number of computations changing the value of M0 all over the
initial front by changing the value of α (say 1.15, 1.12, 1.10) and keeping all the other
parameters in the initial data of the case represented in figure 2 the same. We found
that as α increases
N decreases faster along each ray,
the shock disc becomes larger, and
the shock front moves faster – an obvious result.
It was also found that the maximum value M, which is attained at t = tc on the

central ray, always appears before the kinks appear. Next, the initial value of M0 is
so prescribed that it is maximum (minimum) at the centre and decreases (increases)
monotonically to the values on the two sides. These values of M0 are chosen in such
a way that they coincide on the straight line part, but are different on the parabolic
part of the initial front. In figure 3, we have chosen an initial shock front with the
values b = 8, z = 1 and taken α = 1.2, β = 0.5 for M0 maximum at the centre (say
case I) and α = 1.1301, β = −0.5 for M0 minimum at the centre (say case II). In both
cases, the M0 on the straight line part is 1.1645. Figure 3(c, d) show the comparison
of the graph of M in the two cases. The solid lines correspond to case I and the
dotted lines correspond to case II. Although the maximum value of M at a given
time in case I is more than the corresponding value in case II before the critical time
(i.e. the time at which the shock front develops kinks), the behaviour is reversed after
the critical time. We note that the smaller value of M0 in the central region leads to
a delay in the formation of kinks and to a slight lagging of the central disc initially.
However, as time increases, the constant value on the wings ultimately determines
the geometry of the shock front and the amplitude distribution. This is expected as
the value of M0 is changed only on a small bounded interval near the origin on the
ξ-axis leaving the value of M0 unchanged outside this interval. The distribution of
M0 on this outside infinite part determines the ultimate shape and the shock strength
of the shock front.

An interesting result to note from figure 3(c, d) is that as M0 is decreased, the
central part of the shock front remains more concave for a longer time, leading to
the convergence of the rays for a longer time which ultimately pushes the value of M
to a larger value. This result was also observed in the WNLRT (Prasad & Sangeeta
1999).

5.1.2. Effect of varying the initial N

The value of N represents the gradient in the normal direction of the gas density
just behind the shock and hence is a measure of the rate of interaction of the
nonlinear waves with the shock. As we have noted earlier, and as will be seen later,
this interaction, for N > 0, leads to the ultimate decay of the shock strength to zero.
Larger value of N means a higher rate of interaction leading to faster decay of the
shock. In all calculations in this paper, we have taken N > 0, i.e. expansion waves
behind the shock. Taking N < 0 initially may lead to a very large and even infinite
value of the shock strength M − 1 showing that the small-amplitude assumption
breaks down and this theory is no longer valid. In figure 4, we present results of
computation with N0 = 0.15 and 0.5, keeping all the other parameters same. We note
that when N0 is increased everywhere on the initial shock front (and not just on the
curved part)
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Figure 3. Comparison of the results when the amplitude distribution is decreased on the parabolic
part of the initial shock front (b = 8, z = 1). Solid lines: results for α = 1.2, β = 0.5; dotted lines:
results for α = 1.1301, β = −0.5.

shock strength decreases everywhere on the shock front faster as t increases (see
Monica 1999 for figures showing this result),

the shock position lags behind,
the shock disc becomes smaller,
the kinks are formed later, and
Mmax(t)−Mmin(t) initially increases and then decreases with time,

where we define

Mmax(t) = max
ξ∈R M(ξ, t), Mmin(t) = min

ξ∈R M(ξ, t).

5.1.3. Effect of varying geometry of the initial shock front

We first consider the effect of changing z in (5.1), so that the inclination to the
x-axis of the wings of the initial shock front changes without changing the curvature
at the centre. When z in (5.1) is increased from z = 1 to z = 2, the central curved part
of the front is increased and the inclination of the wings with respect to the x-axis
is decreased but the curvature at the centre of the front does not change with z. A
comparison of the results shows that when z is increased

the rays from the wings converge more strongly leading to a stronger shock strength
in the centre,

the shock disc between the two kinks becomes smaller, and
the value of N decreases more slowly showing that the interaction of the waves

from behind is slower.
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Figure 4. It shows the effect of increase in the value of N0, on the shock position. Initial shock
front is for b = 8, z = 1 with α = 1.2, β = 0. Solid lines: N0 = 0.15; dotted lines: N0 = 0.5.

Next, we increase the curvature of the initial shock front at the centre by increasing
the value of b. This leads to

a higher value of the shock strength M − 1 and the normal derivative N near the
centre, and

a smaller shock disc.
However, as time increases, M − 1 and N on the disc seem to approach the same
value as that for the case z = 1. This is to be expected as the long-time behaviour of
the solution is determined by the initial value of the shock strength on the wings.

5.1.4. Effect of increasing the shock strength on the initial shock front

Increase of α leads to an obvious result of the shock moving faster. It also resulted
in an increase in the distance separating the two kinks (see also Prasad & Sangeeta
1999, figure 9).

5.2. Case (ii): propagation of a shock front with initially sinusoidal shape and
periodic amplitude distribution

We consider now the initial shock front to be of a periodic sinusoidal shape

x = 0.2− 0.2A cos (πy/B), where A = 1, B = 2, (5.3)

where M0 is prescribed as in (5.2) with α = 1.2 and β = 0 and N0 = 0.1. Figure 5
shows the shock fronts and the associated rays at successive times. The convergence
and divergence of the rays is seen quite clearly in figure 5(a), i.e. during the time
interval (0,10). With increasing time, the rays become straight lines parallel to the
x-axis and the shock front tends to become planar.

A pair of kinks appears in each period of the shock front at t ≈ 2. Two kinks
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Figure 5. Successive positions of an initially sinusoidal shock front and rays plotted at
t = 0, 1, 2, 3, . . . , 40. Initial shock front is x = 0.2− 0.2 cos (πy/2) with M0 = 1.2 and N0 = 0.1.

suitably paired first move closer to one another, and then interact, producing a new
pair of kinks which move apart, and the process continues. After a long period of
time, the amplitude M − 1 decays to zero along each ray. The total variation of M
in each period keeps on decreasing with increasing time and M − 1 → 0 as t → ∞.
After a long time, even when the shock front has become almost a straight line, it
is not difficult to locate the position of the kinks. At any time t, the kinks are easily
located from the (M, l) graph as shocks (see figure 6).

As before, we define Mmax(t) (Mmin(t)) as the maximum (minimum) Mach number
attained on the front at a given time t. Mmax(t) attains a maximum value greater
than Mmax(0) at t = 2, which is approximately the time when the kinks first appear.
Similarly, Mmin(t) attains a minimum value at t = 6, the time when the kinks first
interact. Figure 7 shows that Mmax(t) and Mmin(t) both tend to 1 and Mmax(t) −
Mmin(t) → 0 as t → ∞. We note that when the kinks interact, Mmax(t) and Mmin(t)
suddenly jump from smaller to larger values – the amount of the jump tends to zero
as t→∞.

The two kinks which approach each other and interact correspond to shocks belong-
ing to two different characteristic fields with characteristic velocities ±√(M − 1)/2G2.

The shock speed in the (ξ, t)-plane is given by ±{[M2]/[G2]}1/2 (see Prasad 1993).
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When these shocks interact, a new pair of shocks is produced, which leaves behind it
a much higher value of M as seen in figure 6.

5.3. Case (iii): propagation of a shock front with initially asymmetric but piecewise
parabolic shape in each period

The initial shock front is taken as

x =



0.6− 1
8
(y + 6.4)2, −6.4 < y < −6.0

− 1
10

(y + 0.2), −6.0 < y < −0.4
1
8
y2, −0.4 < y < 1.0

1
4
(y − 0.5), 1.0 < y < 2.4

0.6− 1
8
(y − 3.4)2, 2.4 < y < 3.4

and this configuration is repeated periodically in y. M0 has been prescribed as 1.1.
Here too, the behaviour of the shock front is similar to the sinusoidal case except

that the shape remains asymmetric in each period and with increasing time the rays
become parallel to the x-axis and the shock front tends to become planar. This case
is shown in figure 8. We note that the shock front in case (ii) has become almost
planar at t = 30 but this is not so in this case. It is not clear whether it is due to the
fact that the initial shock front has a bigger oscillation in its shape or due to the lack
of symmetry in its shape in each period.

5.4. Case (iv): propagation of a shock front with initially periodic but arbitrary shape
in each period

An arbitrary periodic shape is not possible numerically but we choose here a shape
so far removed from the symmetric shape that it may be considered practically as a
representative of any unsymmetric shape. The initial shock front is formed in each
period by joining a series of parts of parabolas and straight lines, the slope being
continuous at the points where they are joined. This curve is given by

x =



1
4
(y + 4.4)2, −5.0 < y < −3.4

1
2
(y + 3.9), −3.4 < y < −3.2

− 1
4
(y + 2.2)2 + 0.6, −3.2 < y < −1.2

− 1
2
(y + 0.5), −1.2 < y < −1.0

1
4
y2, −1.0 < y < 0.4

1
5
(y − 0.2), 0.4 < y < 2.0

− 1
4
(y − 2.4)2 + 0.4, 2.0 < y < 2.8

− 1
5
(y − 4.6), 2.8 < y < 4.4

1
4
(y − 4.8)2, 4.4 < y < 5.0

in |y| 6 5 and extended for all y periodically. The results of the computation for this
case are shown in figure 9.

We shall make in § 6.5 one observation from all computations for shock fronts of
periodic shape. This concerns the corrugational stability of shocks of arbitrary shape
(Anile & Russo 1986). It implies that a shock, which is obtained by small perturbation
in the shape from a plane shock, tends to become planar.



140 A. Monica and P. Prasad

10

0

–10

32 34 36

(c) t = 31 to 40

x

y

38 40 42

10

0

–10

22 24 26

(b) t = 21 to 30

y

28 30 32

10

0

–10

0 2 4

(a) t = 0 to 10

y

6 8 10 12

Figure 8. Successive positions of the shock and associated rays starting from a periodic shock,
asymmetric and with piecewise parabolic shape in each period.

5.5. Case (v): when the initial shock front has a single smooth dent or bulge

We take the initial shock front to be given by

x = ± exp (− 1
2
y2) (5.4)

where + represents a bulge and − represents a dent. The initial Mach number is
prescribed as

M0 = α exp (−βx2) (5.5)

which tends to α as x → 0 for y → ±∞. The value of N is taken to be a constant
equal to 0.1.

We first discuss the results when there is a dent. Figures 10 and 11 give the successive
positions of the shock front for some representative cases. In figure 10(a), initially
the shock Mach number at the centre is minimum, in figure 10(b) it is maximum and
figure 10(c) it has the same value everywhere on the front. The graphs representing
the distribution of M, N and Θ with l at various times can be found in Monica
(1999). The amplitude first increases in the initially dented region, the increase being
maximum at the centre. Elsewhere, it continues to decrease but it decreases more
rapidly near the outer edges of the dent (i.e. near l = ±1.25). A pair of kinks is
formed which moves away from the centre. The dent tends to become planar but
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Figure 9. Long-term behaviour of a shock of periodic shape but far removed from a symmetric
shape in each period.

in this process, the centre of the dent moves faster in such a way that the central
portion becomes convex with the two kinks on its two sides contained in two dents
as seen in figure 10. It has also been found that as the amplitude of the shock in the
dent increases (i.e. β decreases), the shock strength M as well as the gradient of the
density N behind the shock increase (all measured at a fixed time, say t = 1).

When the dent is quite deep (figure 11(b)), it appears that a kink has developed at
the centre but a detailed study of the (M, l) graph at t = 1 shows that it is a pair of
kinks which appears very close to the centre. At this time, the shock strength M rises
very rapidly at the centre to a value about 1.45; elsewhere it remains small and close
to the initial value near 1.1. Soon the two kinks move away, and the shock develops
a convex part at the centre separated by kinks from a concave part on either side.

The case of a single bulge is shown in figure 12: the bulge spreads initially and
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Figure 10. Successive positions of a shock front which initially has a smooth dent:
x = − 1

2
exp (−y2/4), M0 = 1.12 exp (−βx2), N0 = 0.1. (a) β = −0.05, (b) β = 0.02, (c) β = 0.

tends to become planar. Later on (after t = 16), it becomes concave at the centre
followed by two convex portions – one on either side. A pair of kinks (one on either
side) is formed quite early and they move away from one another.

6. Comparison with other theories
6.1. Qualitative verification of the shape of the front obtained by DNS to support the

kink theory

As already mentioned in the introduction, numerical results of Kevlahan (1996)
provide enough justification of the validity of the present theory. We present here just
one result of a numerical solution of the full gas dynamic equations.

The most important aspect of the results obtained by us is the resolution of
the linear caustic and appearance of kinks on the shock front (also on nonlinear
wavefronts by Prasad & Sangeeta 1999). Numerical solution of Euler’s equations
of gas dynamics also leads to the same result: resolution of a linear caustic and
appearance of kinks. We have done a computation for a curved piston problem with
piston shape given by

y2 = x/2 for |y| < 0.2, y = ±(x/0.8 + 0.1) for |y| > 2 (6.1)

and initial piston velocity equal to 1, piston acceleration also equal to 1. The result is
shown in figure 13. The numbers on the contours represent the values of the particle
velocity in the x-direction on the contour. We first notice that the figure shows a
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Figure 12. The initial front has a smooth bulge: x = 1
2

exp (−y2/4), α = 1.12, β = −0.05 and
N0 = 0.1. Here also, a pair of kinks appears on the shock front and the two kinks move away from
each other.

leading shock front with a well-defined kink across which the direction of the shock
changes abruptly; on one side is the central disc and on the other side the wing. This
clearly agrees with the qualitative picture of the shape of the shock front obtained
by NTSD. In addition, there is a rapid compression region starting from the kink
on the shock. The structure of the kink, as a shock front with continuously turning
direction of the tangent, can be found on a length scale (along the shock) smaller
than the radius of curvature of the piston and is discussed below. Numerical solution
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Figure 13. A shock front with a kink has been captured in the numerical solution of an accelerating
curved piston problem using full gas dynamic equations in conservation form. The figure presents
particle velocity contours (in the direction of the piston motion).

of the shock front using the shock ray theory of this paper takes very little computer
time, say only 20% of the time of the results shown in figure 13.

6.2. Comparison with earlier theories

The first and simplest theory of curved weak shock propagation to calculate the
shock position is by fitting a weak shock in a one-parameter family of nonlinear
waves moving along linear rays (Whitham 1956). This nonlinearization technique is
equivalent to a systematic and formal derivation of a nonlinear ray theory for a
general hyperbolic system by Choquet-Bruhat (1969) and for gas dynamic equations
including many physical processes by Parker (1969, 1971).

Consider a hyperbolic system of n conservation laws for

u : IRm+1 → IRn

(f(0)(u))t +

m∑
α=1

(f(α)(u))xα = 0. (6.2)

A high-frequency asymptotic solution is of the form

u = εu0(t, x, θ) + ε2u1(t, x, θ) + · · · , ε→ 0+, (6.3)

where the fast variable θ is related to the phase function φ(t, x) by

θ =
φ

ε
. (6.4)

A straightforward substitution of (6.3) in (5.1) and equating coefficients of ε0 and ε1

to zero leads to the nonlinear theory of Choquet-Bruhat, Parker and Whitham (CPW
theory).

This CPW-nonlinear ray theory for Euler’s equations of gas dynamics for waves
moving into a uniform medium at rest is described by ray equations (in suitable non-
dimensionalized variables) obtained by setting w = 0 in the terms on the right-hand
side of (2.1) and (2.2):

dx

dt
= n, (6.5)

dn

dt
= 0, (6.6)

and a transport equation {
d

dt
+
γ + 1

2
εw〈n · ∇〉

}
w = Ωw (6.7)
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where w is the non-dimensional form of the perturbation in the density on the wave
front, a scalar measure of the first term u0 in the expansion (6.3), and Ω is the mean
curvature of the linear wavefront given by

Ω = − 1
2
〈∇ · n〉. (6.8)

Equations (6.5)–(6.6) give the rays and successive positions of a wavefront (chosen
from the one-parameter family). These equations decouple from the transport equation
(6.7), which is used to find the amplitude of the wave after the wavefront or the rays
have been traced. A caustic appears whenever the initial wavefront is concave and
amplitude becomes infinite, showing that the small-amplitude theory is no longer
valid. A shock front fitted in the solution obtained by the above method cannot be
continued in the caustic region where diffraction becomes important.

The diffraction effect, in the caustic region of the linear theory, takes place on a
length scale of the order of ε1/2 in a direction transverse to the direction of the rays.
To capture the diffraction phenomenon in a nonlinear wave, Hunter (1997) expanded
the solution u of (6.2) in the form

u = εu0(t, x, θ, η) + ε3/2u1(t, x, θ, η) + ε2u2(t, x, θ, η) + O(ε5/2) (6.9)

where θ is related to the phase function φ by (5.3) and η is a variable related to a
new function ψ(t, x) by

η = ψ(t, x)/ε3/2. (6.10)

It turns out that ψ is constant along the rays, confirming that the diffraction effects
are captured on a length scale of order ε1/2 in the transverse direction. Expressing the
amplitude of u0 in terms of a scalar w and that of u1 in terms of v and taking φ and
ψ to be linear functions of t, x1, . . . , xn, it is possible to derive the two-dimensional
Burgers equation

wt + ( 1
2
w2)θ + vη = 0, (6.11)

wη − vθ = 0. (6.12)

Numerical solution of (6.11)–(6.12) by Hunter & Brio (2000) (see also Hunter 1997)
does show both the fish tail pattern of the very weak shock (see figures on pp. 242
and 243 of Hunter 1997) and the nonlinear Mach stem pattern for a moderately weak
shock (see figures on pp. 240 and 241 of the same reference) observed by Sturtevant
& Kulkarni (1976). These are important and local solutions but it will be difficult
to get them as a part of the global solution starting from a concave shock front,
as done in this paper. What is important to note is that if we look at the shock
front in the (ξ, η)-plane on a length scale of the order of 1/ε, then the finer structure
containing the continuously turning tangent of the figures on pp. 237, 239 and 240
(Hunter 1997) will reduce to a point – the leading shock will become a shock with a
kink. Our theory does not give the flow behind the shock and hence the Mach stem
or rapid compression region behind the two branches of the main shock cannot be
obtained by our theory. Thus, we suggest that the Mach stem pattern solution of
the two-dimensional Burgers equation gives the structure of a kink on a shock front.
Of course, the two-dimensional Burgers equation has a limitation on its own validity
for kinks which join the shocks on its two sides at angles which are not small. The
two-dimensional Burgers equation (6.11)–(6.12) has been derived assuming that φ = 0
represents a plane shock. It will be interesting to study the original two-dimensional
Burgers equation without an assumption that φ is a linear function of x1 and x2.

A second weakly nonlinear ray theory developed by Prasad since 1975 (see Prasad
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1994) is based on approximating the system (6.2) not in the neighbourhood of a
linear wavefront but in the neighbourhood of the exact wavefront corresponding to
the leading-order term εu0 in (6.3) – we have been referring to this theory as WNLRT.

Numerical results using this theory are available in Prasad & Sangeeta (1999).
Derivation of the present NTSD from WNLRT in § 2 (there also exists a completely
independent derivation of NTSD) shows that NTSD and WNLRT are consistent.
We shall discuss comparison with numerical results of WNLRT in the next section.

6.3. Comparison with weakly nonlinear ray theory

Now we discuss a comparison of the results of Prasad & Sangeeta (1999) using the
WNLRT and the shock ray theory presented in the previous section. Unlike equation
(3.7), the transport equation for the WNLRT is homogeneous (i.e. without a term like
(M − 1)N) and the second transport equation (3.8) is absent. This leads to a solution
of a pair of conservation laws in the ray coordinate system

(g sin θ)t + (m cos θ)ξ = 0, (6.13)

(g cos θ)t − (m sin θ)ξ = 0, (6.14)

where g is a function of m, m being the Mach number of the wavefront, g the metric
along it and θ the angle which the rays make with the x-axis. The shapes of the
converging nonlinear wavefronts and initially sinusoidal or periodic wavefronts are
almost the same as those obtained in this paper. Looking at these shapes alone,
(and also those obtained by Kevlahan 1996), it is not possible to say more about
the ultimate results as t → ∞. The values of m and θ approach the mean values
of their distributions on the initial wavefronts. The computation also shows that in
the periodic case, not only does limt→∞(mmax

ξ∈R
(t)− mmin

ξ∈R
(t)) tend to zero, as seen here,

but also that mmax(t) and mmin(t) both approach constant values greater than 1. Thus
for a periodic wavefront, m approaches a constant value uniformly as t → ∞. The
work of Glimm & Lax (1970) shows that this asymptotic value is reached as 1/t. The
numerical results in this paper show that the Mach number M always decays to 1
(for N > 1) and Θ tends to a constant as t → ∞. For an initially periodic shock,
Θ tends to zero (i.e. the shock front tends to become plane) and in the case of an
initially concave shock front, Θ tends to zero on the central disc and a constant value
on the wings. This implies that on a fixed ray (ξ = constant), for large t, we may set
Θξ = 0 in (3.7) and (3.8). This gives

Mt +N(M − 1) = 0 (6.15)

and

Nt + 2N2 = 0. (6.16)

Solving these two equations, we get the usual law of decay of shocks in the one-
dimensional Burgers equation

M − 1 =
M∗ − 1

(2N∗(t− t∗) + 1)1/2
, N =

N∗

2N∗(t− t∗) + 1
, (6.17)

where M∗ and N∗ are the values of M and N at t = t∗ and it is assumed that this
ray does not pass through a kink during the time interval (t, t∗). This shows that the
shock strength M − 1 tends to zero as O(t−1/2) and N tends to zero as O(t−1). This is
a major difference from the results of WNLRT. A comparison of the results obtained
from NTSD and WNLRT is presented in figures 14 and 15.
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positions of the shock fronts and nonlinear wavefronts starting with the same initial front: y2 = 8x,
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Figure 15. Comparison of the Mach number distribution on the fronts (at times 0, 2, 4, . . . , 20) with
the same amplitude (excess density µ) distribution on the initial front for the case represented in
figure 14 with (a) NTSD, (b) Whitham’s theory, (c) WNLRT. The Mach number at the centre of
the fronts rises considerably in all the cases but it becomes constant on the central disc for the
Whitham’s shock front and nonlinear wavefront. As seen in all previous cases with N0 > 0, the
Mach number (and hence the wave amplitude) decreases with time on all parts of the shock front
by NTSD.

6.4. Comparison with Whitham’s theory

As mentioned in the introduction, Whitham (1957, 1959) proposed a theory of shock
dynamics, which is very simple from the point of view of applications. Even though
the theory does not properly take into account the interaction of the shock with the
flow behind it, it has given good results for the successive positions of a shock and the
kinks in some cases (Henshaw, Smyth & Schwendeman 1986; Schwendeman 1989)
especially for strong shocks. For a weak shock, the equations of Whitham’s shock
dynamics expressed in terms of the Mach number of the shock, are exactly the same
as the differential form of the equations of nonlinear ray theory (Prasad 1993; Prasad
& Sangeeta 1999), but the relation of the Mach number M of a shock front and m of
a nonlinear wavefront to the perturbation w of WNLRT (or the corresponding value
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µ in this paper) is different. We first note that µ and non-dimensional w are related

w|shock = µ. (6.18)

The relations between M, m and w (or µ) are

M = 1 + ε
γ + 1

4
µ, m = 1 + ε

γ + 1

2
w. (6.19)

For comparison of our results in this paper with Whitham’s shock dynamics and
WNLRT, we have taken a few cases of a converging shock and prescribed the same
value of w (or µ) on the initial wavefront in all three cases. In addition, we shall have
to prescribe N for the NTSD used in this paper. The use of our conservation form
of the equations makes calculation by Whitham’s theory very simple.

The results show that in early stages, the nonlinear wavefront by WNLRT is a
little ahead of the shock front by NTSD and Whitham’s theory, but all three differ
considerably as t increases. The nonlinear wavefront has moved so far away from
the other two that it has not been shown after t = 20 in figure 14. It is true that
qualitatively the geometry of the fronts is similar but Whitham’s theory gives a bigger
shock disc. However, the most striking result seen from figure 15, is that the shock
strength by Whitham’s theory attains a constant value on the disc and the wings,
whereas that obtained by the NTSD decreases with time. This causes the former to
move ahead of the latter, and the separation between the kinks keeps on increasing
with time. This, of course, is expected as Whitham’s theory does not properly take
into account the interaction of the shock with the nonlinear waves which catch up
with it from behind.

Figure 14 shows that at time t = 30 the central disc of Whitham’s shock has
moved about 10% ahead of the distance travelled by the shock calculated by NTSD.
Figure 15 shows that the Mach number at the centre of the fronts rises considerably
in all three cases but it becomes constant on the central disc of Whitham’s shock
front and another much higher constant on the nonlinear wavefront. As seen in all
the previous cases with N0 > 0, the Mach number (and hence the wave amplitude)
decreases with time on all shock rays of NTSD. At t = 20 the wave amplitude in
terms of M−1 on the shock disc by NTSD has become less than half of the maximum
value 1.166 attained at the centre of the shock by Whitham’s theory. The shock disc
in Whitham’s shock increases in size much faster.

6.5. Corrugational stability and persistence of a kink

Corrugational stability, by which we mean that a plane shock is stable, seems to
have been discussed first by Gardner & Kruskal (1964) in the case of a magneto-
hydrodynamic shock. Though Whitham (1974) uses his theory of shock dynamics to
discuss this problem qualitatively, he deduces important results that (i) a perturbation
like a single bulge or dent will decay as t−1/2 and (ii) a perturbation like sinusoidal
shape will decay as t−1. Anile & Russo obtained an exact stability criterion in 1986
(see Anile et al. 1993 for corrugational stability). The WNLRT and the NTSD are
ideally suited to discuss the corrugational stability of a nonlinear wavefront and a
shock front respectively. In the case of a perturbation of a plane front into a periodic
front (like the one discussed in § 5.2), we can use results like those available in Glimm
& Lax (1970) to prove rigorously that the front tends to be plane as t−1. However,
the Glimm–Lax assumption that ‘interaction of two shocks of the same family always
produces a shock of the same family plus a rarefaction wave of the opposite family’
is not satisfied even in the simpler system of the pair of conservation laws of the
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WNLRT (a detailed discussion of this will appear in a future publication by Baskar
& Prasad). In spite of this, extensive numerical computation by Prasad & Sangeeta
(1999) with WNLRT shows that a plane nonlinear wavefront is stable. Computations
in this paper indicate corrugational stability of a plane shock front. Here we have
some additional results with dents and bulges on plane shock fronts – all these results
point to the corrugational stability.

The corrugational stability is a result of genuine nonlinearity in the characteristic
fields with characteristic velocities ±√(M − 1)/2G2 of the system (3.6)–(3.8). The
shocks in the (ξ, t)-plane, which are mapped into kinks, seem to cause dissipation of
the kinetic energy. Further mathematical investigation in this dissipation is required.
The equations of WNLRT are homogeneous but one of the equations of the NTSD –
namely equation (3.16) has a source term. For N > 0, as seen from (6.17), this
additional term causes the shock amplitude M− 1 to tend to zero. This is typical of a
plane shock in gas dynamics (as can be seen from the model equation ut+( 1

2
u2)x = 0).

Combining both these features, we interpret our results as the genuine nonlinearities
in the two characteristic fields cause decay of the shock amplitude and perturbation in
its geometrical shape leading to corrugational stability of a shock but in addition to this
the non-homogeneous term in the equation (3.16) causes the shock strength to tend to
zero when N > 0. When both these effects are included, the law of decay as pointed
out by Whitham may have to be modified. We need further investigation on this.

The persistence of kinks is an interesting phenomenon, which we observe from the
long time computation. As we have seen in all the cases considered by us, a kink
may appear on an initially smooth shock front, but once it is formed it persists till
it meets another kink. The persistence of a kink follows from the similar property
of a shock in a genuinely nonlinear characteristic field: a shock, once formed cannot
terminate at a finite distance in the (ξ, t)-plane. A proof of this statement is available
in Prasad (1993, § 1.5). We further notice that interaction of a pair of shocks (whether
the shocks belong to the same characteristic field or different characteristic fields)
always produces another pair of shocks (Baskar & Prasad – under preparation). Thus
the number of kinks on the shock front always remains the same after some time
when no new kinks are produced.

The authors express sincere thanks to Dr K. S. Ravichandran for valuable help in
directing us towards the appropriate numerical methods for the solution of full gas
dynamic equations leading to figure 13. We would also like to thank S. Baskar for
providing figure 1 and for the precious time he spent in improving this paper.
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