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Abstract. Using a method of expansion similar to Chapman±Enskog expansion, a
new formal perturbation scheme based on high frequency approximation has been
constructed. The scheme leads to an eikonal equation in which the leading order
amplitude appears. The transport equation for the amplitude has been deduced with an
error O��2� where � is the small parameter appearing in the high frequency approxi-
mation. On a length scale over which Choquet±Bruhat's theory is valid, this theory
reduces to the former. The theory is valid on a much larger length scale and the leading
order terms give the weakly nonlinear ray theory (WNLRT) of Prasad, which has been
very successful in giving physically realistic results and also in showing that the
caustic of a linear theory is resolved when nonlinear effects are included. The weak
shock ray theory with infinite system of compatibility conditions also follows from this
theory.
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1. Introduction

A ray theory is a result of a mathematical method of finding an approximate value of

the solution of a hyperbolic system of partial differential equations based on the high

frequency approximation. The high frequency approximation implies that we can formally

distinguish between the amplitude w and a phase function ��x; t� whose level surfaces in

x-space (at a fixed t) define a one parameter family of wavefronts. In a ray theory we

study the successive positions of a given wavefront and also attempt to calculate the

amplitude distribution w on it. The method, when applied to a linear system of equations,

gives rise to linear rays whose equations decouple from the transport equation for the

amplitude. Quite frequently, the linear rays starting from the points of a curved wavefront

envelop a caustic surface on which the linear wavefront has cusp type of singularities

where the assumptions of the ray theory break down. Thus the ray theory applied to a

linear system is valid only over a distance which is small compared to the distance of an

arête (where caustic begins to form) from the initial position of the wavefront. For a linear

wavefront propagating in an uniform isotropic medium at rest, this distance R of arête is

equal to the minimum of the principal radii of curvature.

Experimental results [20] and theoretical investigations [14, 18] have shown that the

amplitude of a wavefront, even when small amplitude assumption is made, has significant

effect on rays and the wavefront geometry. Hence a nonlinear ray theory requires

derivation of two equations, the first one being the eikonal equation

Q�r�; �t; x; t;w�x; t�� � 0; r � �@x1
; . . . ; @xn

� �1:1�
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for the phase function � such that the amplitude w of the wavefront appears in the eikonal

equation itself. The second equation is a transport equation for the amplitude along a

nonlinear ray. The nonlinear rays are curves x � x�t� obtained from the solution of the

characteristic equations or Hamilton's canonical equations of (1.1). Though, ray theories

for the propagation of a nonlinear wavefront were dealt by many [7, 22, 10, 11]; Choquet-

Bruhat [4] presented a systematic formal derivation of it for a general hyperbolic system of

quasilinear partial differential equations. Hunter and his collaborators extended Choquet-

Bruhat's theory to many important situations [5]. The Choquet-Bruhat's perturbation

procedure leads to an eikonal equation which is independent of the amplitude w and

therefore, uses a transport equation for the amplitude along linear rays. Naturally the

theory is valid over a distance over which a linear theory is valid i.e. on a length scale

much smaller than R. Over a number of years, Prasad [12±15] (see also [17, 18]) has

developed a nonlinear ray theory in which the eikonal equation depends also on the

amplitude and the transport equation is along the nonlinear rays. The solution influences

the wavefront geometry in such a way that the radii of curvature has no relevance as a

length scale in the problem. Both experimental [20] and theoretical results [14, 18] show

that for a moderately weak nonlinear wave, the caustic does not appear in the solution. The

wavefront geometry consists of almost plane segments joined by kinks across which the

amplitude and the ray direction suffer jump. On each of these segments the amplitude of

the wave varies slowly. Therefore, in a moderately weak nonlinear ray theory, the problem

is not to find the solution in a caustic region because the caustic itself does not appear but

to find the new geometry of a nonlinear wavefront and the solution on it. It turns out that

except for immediate neighbourhoods of the kinks, the nonlinear ray theory is valid on a

much larger length scale. The structure of the kinks can be studied on a smaller length

scale by two-dimensional Burger's equations (or Zaboltskaya±Khokhlov or Z±K equation)

which have been studied by Hunter and his coworkers [2, 3, 6] and Tabak and Rosales [21].

The aim of this paper is to construct a formal perturbation scheme which leads to an

eikonal equation in which the leading order amplitude w appears and to derive a transport

equation for w along the corresponding nonlinear rays. We have been able to deduce the

transport equation for w with an error of the order of �2. The method of expansion is

similar to the Chapman±Enskog expansion, a discussion of which for a hyperbolic system

is available in an article by Hunter [5]. A careful examination of the various terms in

ray equations and the transport equation show that in practice only a few terms may

be retained and this leads to the nonlinear ray theory of Prasad, which has been very

successful in giving physically realistic results and also in showing that the caustic of a

linear theory is resolved when nonlinear effects are included [18, 9]. These two references

contain extensive numerical results of the approximate equations derived in this paper. So

does the paper of Kevlahan who shows that the shock ray theory derived in the end of the

x 5 gives results which agrees well with experimental results, known expressions for

approximate solutions and numerical solution of full Euler equations. A still better com-

parison with numerical solution of Euler equations is being worked out but this will take

some time and will be reported later.

2. An asymptotic derivation of WNLRT

We consider a hyperbolic system of first order quasilinear partial differential equations

A�u�ut � B����u�ux� � 0 � � 1; 2; . . . ;m: �2:1�
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Here, x 2 Rm are the space variables, u�x; t� 2 Rn are the dependent variables , and A�u�
and B����u�, are smooth n� n matrix-valued functions of u. We use the summation

convention over repeated indices. We only consider smooth solutions, so it is not

necessary to write the system in conservation form.

We look for a generalized asymptotic expansion of solutions of (2.1) of the following

form:

u�x; t; �� � �v x; t;
��x; t; ��

�
; �

� �
; �2:2�

v�x; t; �; �� � v0�x; t; �; �� � �v0�x; t; �; ��; � � �=�: �2:3�
Here � is a small parameter, so this ansatz represents a small amplitude high frequency

solution. The function ��x; t; �� 2 R and the functions v0�x; t; �; �� and v0�x; t; �; �� will be

chosen so that (2.2) gives an asymptotic solution of (2.1) as �! 0. In particular, � is the

phase function associated with the leading order solution u � �v0. When carrying out the

expansion, we assume that the derivatives, �x� , are of order one with respect to �.
This method of expansion is similar to the Chapman±Enskog expansion. For other work

in nonlinear hyperbolic waves using Chapman±Enskog expansions see [5]. The leading

order solution v0 and the correction v0 depend on � explicitly. It is therefore not necessary

to include any higher order terms in the expansion (2.3), since they can be absorbed into

v0. As a result of this explicit � dependence, the solution v can be decomposed into a

leading order approximation, v0 and a perturbation �v0 in different ways, since terms in v0

can be absorbed into v0. One way to specify the decomposition uniquely is to require that

l0 � v0 � 0; �2:4�
where the left null vector l0 is defined below. However, other choices are possible. For

example in gas dynamics we could require that v0 contains no pressure perturbations.

We now derive the asymptotic equations. We will obtain an asymptotic solution which

satisfies (2.1) up to terms of the order �3. Higher order approximations can be derived in a

similar way, although the resulting equations rapidly become very complicated. Use of

(2.2) in (2.1) gives

f�t A��v� � �x�B�����v�gv� � �fA��v�vt � B�����v�vx�g � 0 �2:5�
Here, v� is the partial derivative of v at fixed x; t and vt, vx� are the partial derivatives at

a fixed �.
We note that if v�x; t; �; �� satisfies (2.5) when � � �ÿ1��x; t; �� (rather than for all �, as

is usually assumed in the method of multiple scales), then (2.2) gives a solution of the

original equation (2.1). We are therefore free to regard any coefficient in (2.5) which do

not contain derivatives as functions of x; t with � evaluated at ���x; t; ���=�. Using (2.3) in

(2.5) and Taylor expanding the coefficient matrices, we obtain

f�tA��v0� � �x�B�����v0�gv0� � �f��tA��v0� � �x�B�����v0��v0�
� A��v0�v0t � B�����v0�v0x�g � �2f��t�ruA���v0� � v0

� �x��ruB������v0� � v0�v0� � A��v0�v0t � B�����v0�v0x�g � O��3�: �2:6�
As we remarked above v�x; t; �; �� is only required to satisfy this equation when

� � �=�. We can therefore evaluate all the coefficients at this value of � to obtain the
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equation

��tA0 � �x�B
���
0 �v0� � �f��tA0 � �x�B

���
0 �v0� � A0v0t � B

���
0 v0x�g

� �2�f�t�ruA�0 � v0 � �x��ruB����0 � v0gv0� � A0v0t � B
���
0 v0x� �
� O��3�; �2:7�

where the subscript 0 indicates that the coefficients are evaluated at u � �v0�x; t;
�ÿ1��t; x; ��; �� so that they are functions of x; t and �. For example,

B
���
0 �x; t; �� � B�����v0�x; t; �ÿ1��x; t; ��; ���: �2:8�

The three terms in (2.7) are not completely separated as coefficients of the powers of

�0; � and �2 are also dependent on �. The first term, which is of order 1, vanishes up to this

order and, therefore, we impose that it is exactly zero i.e.

f�tA0 � �x�B
���
0 gv0� � 0: �2:9�

When we choose the leading term v0 in the high frequency asymptotic limit �! 0 to

satisfy this equation, the first term in (2.7) vanishes and we get a relation

f�tA0 � �x�B
���
0 gv0� � A0v0t � B

���
0 v0x�

� �f��t�ruA�0 � v0 � �x��ruB����0 � v0�v0� � A0v0t � B
���
0 v0x�g
� O��2� �2:10�

between v0 and v0 with error of the order �2. To obtain a nontrivial solution for v0, we then

require that � satisfies the eikonal equation

det ��t A0�x; t; �� � �x��x; t; ��B���0 �x; t; ��� � 0: �2:11�
We note that this eikonal equation is associated with the function u � �v0�x; t;

�ÿ1��x; t; ��; �� and thus we are able to incorporate leading order wave amplitude

correction in the eikonal equation itself. We denote left and right null vectors associated

with the phase ��t; x; �� and the perturbed state u � �v0 by l0�x; t; �� and r0�x; t; ��,
respectively, i.e l0 and r0 satisfy

l0:��tA0 � �x�B
���
0 � � 0 �2:12�

and

��t A0 � �x�
B
���
0 �r0 � 0: �2:13�

Here

l0�x; t; �� � l�n�x; t; ��; �v0�; �2:14�
r0�x; t; �� � r�n�x; t; ��; �v0�; �2:15�

where

n�x; t; �� � r�jr�j ; r� � ��x1
; �x2

; . . . ; �xm
�: �2:16�
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Also we normalize l0 so that

l0 A0 r0 � 1: �2:17�
A solution of (2.9) is given by

v0�x; t; �; �� � w�x; t; �; ��r0�x; t; ��; �2:18�
where w is an arbitrary scalar valued amplitude function. Taking the scalar product of

(2.10) with the left null vector l0 we obtain

l0�A0v0t � B
���
0 v0x��

� �l0f��t�ruA�0 � v0 � �x��ruB����0 � v0�v0� � A0v0t � B
���
0 v0x�g
� O��2�: �2:19�

To eliminate v0 from this equation, we solve (2.10) iteratively for v0 in terms of v0. In

order that the eliminant has an error of order �2 consistent with (2.19), we note that we

need to solve v0 with error of order � i.e we consider only the leading order terms in (2.10)

f�t A0 � �x�B
���
0 gv0� � A0v0t � B

���
0 v0x� � O���: �2:20�

We use (2.18) in (2.20). A solution of the resulting equation for v0 is then

v0�x; t; �; �� � bt�x; t; �; ��s00 � bx� �x; t; �; ��s���0 � b�x; t; �; ��s0 � O���;
�2:21�

where b is the scalar amplitude such that

b� � w �2:22�
and the vectors s0�x; t; ��, s00�t; x; �� and s0

����x; t; �� satisfy

��tA0 � �x�B
���
0 �s0 � ÿ�A0 r0t � B

���
0 r0x��

� �l0�A0 r0t � B
���
0 r0x���A0 r0; �2:23a�

��t A0 � �x�B
���
0 �s00 � ÿ�A0 r0� � �l0 A0 r0�A0 r0; �2:23b�

��tA0 � �x�B
���
0 �s�0 � ÿ�B���0 r0� � �l0 B

���
0 r0�A0 r0: �2:24�

These equations do not have a unique solution. This is because there is some arbitrariness

in how v is decomposed into v0 and v0. But if we impose the condition (2.4) on v0, then we

choose the unique solutions of (2.23)±(2.24) such that

l0 s0 � l0 s00 � l0 s0
� � 0: �2:25�

Finally, use of (2.18) and (2.21) in (2.19) gives the following transport equation for w,

wt � ��0
wx� ÿ 
w� �� �ÿtbt � ÿ�bx� � ÿb�w�

�Wbt � V�bx� � D�� � Eb� � O��2�: �2:26�
Note that D�� contains linear terms in the second order derivatives of b as seen below.

The coefficients are functions of �x; t; �� given by

��0
� l0 B

���
0 r0;


 � ÿ�l0 A0 r0t � l0 B
���
0 r0x��;
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ÿ � l0 ��t�ru A�0 � �x��ru B����0� � s0 r0;

ÿt � l0 ��t �ru A�0 � �x� �ru B����0� � s00 r0;

ÿ� � l0 ��t �ru A�0 � �x� �ru B����0� � s���0 r0;

W � l0 �A0 s0 � A0 s00t � B
���
0 s00x�

�;
V� � l0 �B���0 s0 � A0 s

���
0t � B

���
0 s
���
0x�
�;

D�� � l0fA0 s00 btt � A0 s
���
0 bx� t � B

���
0 s00 btx� � B

���
0 s

���
0 bx�x�g;

E � l0�A0 s0t � B
���
0 s0x��: �2:27�

3. Ray formulation of the asymptotic equations

The eikonal equation (2.9) can be equivalently written in the form

Q � �t�l0 A0 r0� � �x��l0 B
���
0 r0� � 0; � � 1; . . . ;m: �3:1�

From the characteristic equations of (3.1) we obtain

dx�

ds
� @Q

@�x�
� l0 B

���
0 r0 � ��0

; �3:2�
dt

ds
� @Q

@�t

� l0 A0r0 � 1; �3:3�
d�x�

ds
� ÿ @Q

@x�
� �t�l0 A0x� r0� � �x
 �l0 B

�
�
0x� r0�; 
 � 1; . . . ;m: �3:4�

Now for a fixed t, ��x; t; �� � 0 represents a wavefront in x-space with unit normal

n � r�jr�j ; r � �@x1
; . . . ; @xm

�:

The differential equation for n is

dn�

ds
� ÿn� l0 ÿc0

@A0

@���
� n


@B


0

@���

 !
r0 � 	�0

; say �3:5�

where

@

@���
� n�

@

@x�
ÿ n�

@

@x�
; � � 1; 2; . . . ;m �3:6�

and

c0 � �t

jr�j : �3:7�

The operator

d

ds
� @

@t
� ��0

@

@x�
�3:8�

appearing on the left hand side of (3.2)±(3.4) and (3.5), and @=@��� defined above are in

direction tangential to a characteristic surface ��x; t� � constant in �x; t� space. In addi-
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tion the derivatives @=@��� are tangential to a wavefront ��x; t� � constant with t �
constant in �x1; . . . ; xm�-space. Because of the choice (2.17), d=ds represents time rate of

change along a ray and may be denoted by the symbol d=dt. The transport equation (2.26)

can then be written as

dw

ds
� 
wÿ ���ÿtbt � ÿ�bx� � ÿb�w� �Wbt � V�bx� � D�� � Eb� � O��2�:

�3:9�
The equations (3.2), (3.5) and (3.9) form a complete set of equations of the nonlinear ray

theory with error O��2�. The amplitude u � �v0 � �wr0 up to first order in � appears in

the bicharacteristic velocity ��0
�x; t; �� and the rate of turning 	�0

of the rays, given in a

complicated way.

The interesting and important point of this weakly nonlinear ray theory (WNLRT) is

that the transport equation (3.9) for w along nonlinear rays is coupled to the ray equations

(3.2) and (3.5), which correspond to the leading order wave amplitude w. Earlier transport

equation, derived by Prasad [12] for a general hyperbolic system�, were along the exact

nonlinear rays corresponding to the exact solution u in the form (2.2). Prasad derived the

transport equation on geometrical consideration by approximating the system (2.1) in the

neighbourhood of the exact characteristic surface in space-time. Proper interpretation of

transport equation along the nonlinear rays corresponding to leading order amplitude w

has lead to physically realistic solutions [19, 13, 14, 18].

To make these equations more tractable, we approximate l0 and r0 defined by (2.12) as

follows. We now define �l and �r as

�l � l�n; 0� �r � r�n; 0�:
Then

l0 � �l� �f�ru l�0 � v0g � O��2�;
� �l� �f�ru l�0 � r0gw� O��2�; �3:10�

where �ru l�0 is the value of �ru l� evaluated at u � 0 keeping n fixed and is a notation

different from that introduced by eq. (2.8) for the use of the subscript 0. Similarly

r0 � �r� �f�ru r�0 � r0gw� O��2�: �3:11�
The vectors �l and �r still depend on the leading order term v0 in the solution and the

nonlinear phase �, through n. Also if

A� � A�u � 0� and B���� � B����u � 0� are constant matrices; �3:12�
then we have

A0 � A� � ��ru A�� � r0 w� O��2� �3:13�
and

B
���
0 � B���� � ��ru B����� � r0 w� O��2�; �3:14�

ÐÐÐÐÐÐ
�This was inspired by the work of K.E. Gubkin in 1958 for gasdynamic equations (see PMM J.
Appl. Math. Mech. 22 787±793)
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where �ru B����� is the value of �ru B���� evaluated at u � 0. The important point in

simplifying the equations now is to realise that a nonlinear wavefront given by the phase

function ��x; t; �� may differ significantly from the corresponding linear wavefront given

by the linear phase function ���x; t�. This can be seen from the large number of results we

have presented in the earlier papers including that by Prasad and Sangeeta [18]. The partial

derivatives �x� of the nonlinear phase and ��x� of the linear phase (i.e the unit normal n of a

nonlinear wavefront and n� of the corresponding linear wavefront) also differ significantly.

One may think that the nonlinear ray theory which is being considered here may be valid

only on the length scale over which the linear theory or Choquet±Bruhat's nonlinear

theory are valid. But this is not so. In the derivation of this theory we have made no

reference to the length scales associated with the linear theory. The numerical results of

Prasad and Sangeeta [18] show that this theory is valid even in a caustic region where the

normal n of a nonlinear wavefront and n� of the corresponding linear wavefront differ

very much. In fact, the theory is valid on much larger length scale than the radii of curva-

ture of the initial wavefront. Therefore, while trying to make further approximation in

some of the terms in (3.2), (3.3), (3.5) and (3.9) we keep n and the operators @=@���
(tangential derivatives on the nonlinear wavefront) unchanged and use Taylor's expansion

with respect to �v0 at 0. Following this we can approximate some of the terms as follows

l0 B
���
0 r0 � �lB���� �r� ���ru l�0 � �rB���� �r��l��ru B����� � �r��r

��lB���� �ru r�0 � �r�w� O��2�; �3:15�
l0 A0 r0t � �lA��rt � ���ru l�0 � �rA��rt ��l��ru A�� � �r��rt ��lA��ru r�0t � �r

��lA��ru r�0 � �rt�w� ��lA��ru r�0 � �rwt � O��2�: �3:16�
and

l0 B0 r0x�
� �lB���� �r� ���ru l�0 � �rB���� �rx���l��ru B����� � �r��rx���lA��ru �r�0x�

��r
��lB���� �ru r�0 � �rx� �w� ��lB���� �ru r�0 � �rwx� � O��2�: �3:17�

Therefore

l0 A0 r0t � l0 B
���
0 r0x� � �lA��rt ��lB���� �rx� � O��� � ÿ�
� O���; �3:18�

where

�
 � ÿ��lA� rt ��lB���� �rx��: �3:19�
Substituting (3.15) to (3.19) in (3.2), (3.5) and (3.9) and retaining terms only up to order �
we get the full set of equations of WNLRT (note d=ds � d=dt)

dx�

dt
� �lB���r� ���ru l�0 � �rB���� �r��l��ru B����� � �r��r
��lB���� �ru r�0�r�w� O��2�; �3:20�

dn�0
dt
� ÿ�n��l ÿ�c�ruA��

@�r

@���
� n
�ruB
��

@�r

@���

( )
w

"

� fÿ�c�ruA���r� n
�ru B
���rg
@w

@���

#
�r� O��2�;

� � 1; 2 . . . ;m �3:21�
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where

�c � c0�n; u � 0�
and we note that  

���
� is zero because A� and B

���
� are constants and

dw

dt
� �
w� ���ru l�0 � �rA��rt ��l��ru A�� � �r��rt ��lA��rur�0 � �rt�w
� ���ru l�0 � �rB���� �rx� ��l��ru B����� � �r��rx� ��lB���� �ru r�0 � �rx� �w
� �f�lA��ru r�0 � �rwt ��lB���� �ru r�0 � �rwx�g
ÿ ���ÿtbt � ÿ�bx� � ÿb�w� �Wbt � V�bx� � D�� � Eb�
� O��2�: �3:22�

If the terms of the order � are also neglected in the ray equations (3.20) and (3.21), these

equations decouple from the transport equation (3.22) and give the linear rays. In order to

retain the nonlinear effects it is necessary to retain in the ray equations, terms atleast up to

order �. The situation for the transport equation (3.22) is different. Exact solution [19] and

numerical results [18] show that inclusion of order � terms in (3.20) and (3.21) changes �

by order 1 in the caustic region leading to order 1 change in the value of w in finite time.

This is in contrast to what we expect in a perturbation method. But it is not surprising

when we note that the neglect of O��� terms (3.20) and (3.21) (i.e. linear theory) changes
�
 from a finite curvature to infinite curvature in the caustic region which is reached in

finite time. It is different with the transport equation (3.22) which with only the first term

on the right hand side always leads to a finite value of w everywhere. During the

competition of convergence of linear rays and opposing effect of nonlinearity, a balance is

reached which leads to a finite change in �
. There is no mathematical proof so far for the

amplitude to be finite due to nonlinearity but extensive numerical computation with small

(but not very small) values of amplitude w leads to this conjecture. In all these cases the

effect of inclusion of the terms of order � in (3.22) will remain small in finite time. As

stated in the abstract and the end of the introduction, we have indeed deduced a weakly

nonlinear theory (i.e. eqs (3.20)±(3.22)) in which w has error O��2� (i.e. the solution u has

error O��3�). However, in the solution of the simpler WNLRT (i.e. eqs (3.20), (3.21) and

(3.23)) the amplitude w has error O���. Thus, to get only the leading order correction to

the amplitude, it is not necessary to retain the last four terms in (3.22) which are multi-

plied by � and then we get

dw

dt
� �
w: �3:23�

This transport equation looks exactly the same as the linear transport equation but it

contains now all leading order nonlinear effects since in it dw=dt represents time rate of

change along the nonlinear rays and n appearing in �
 is the normal of the nonlinear

wavefront. In fact the equation (3.23) along with the equations (3.20) and (3.21) is equi-

valent to the transport equation

wt � f�lB���� �r� ���ru l�0 � �rB���� �r��l��ru B����� � �r��r
��lB���� �ru r�0 � �r�wgwx� � �
w �3:24�

and �
, which contains derivatives of n, remains finite everywhere including the points

on the caustic, where the corresponding value 
� by linear theory tends to infinity. The
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equations (3.20), (3.21) and (3.23) form a coupled system of equations of a nonlinear

ray theory. Retaining the other terms of order � in (3.22) will modify the results only

by effects of order �2 since the neglected terms are actually of order �2 in the original

equation (2.6). Equations (3.20), (3.21) and (3.23) are exactly the same as the equations

obtained for a nonlinear ray theory by Prasad [15] (see also [12, 19, 14]). In these earlier

papers w is of order �, i.e w there is same as �w here.

4. Comparison with other theories

The WNLRT developed in the last two sections is valid over a length scale L over which

the assumptions involved in the derivation of the equations are valid. This length L can be

determined only from the solution of this approximate theory. One exact solution, called

composite simple wave solution in Ravindran and Prasad [19] and Prasad [14], and

extensive numerical solution by Prasad and Sangeeta [18] show that this L is large com-

pared to the length scale R of the order of principal radii of curvature of the initial

wavefront. The Choquet±Bruhat's nonlinear theory is valid over a length scale Lc which is

small compared to R. On this scale Lc, the linear and nonlinear wavefronts are not only

close but have same shape and the amplitude given by the linear theory remains small.

Thus Lc=R� 1� R=L. We shall show that over the length scale Lc, the equation (3.23)

reduces to the leading order equation obtained from Choquet±Bruhat's theory in addition

to some extra terms which can be neglected. We examine the (3.23) over a length scale

Lc. On this length scale, the linear wavefront and the corresponding nonlinear wavefront

originating from a same initial wavefront are close to one another and their unit normals

denoted respectively by n� and n differ by a quantity of order �. We denote the rate of

change along the linear ray by d�=ds� i.e.

d�

ds�
� l�A�� r�

@

@x�
; �x�� � �x0 � t; x1 � x; . . . xm � xm�; �4:1�

where we have not set lAr � 1, and used A0 � A, A� � B��� and

l� � �l�n�; 0�; r� � �r�n�; 0�: �4:2�
The summation convention in this section extends on the range 0; 1; 2; . . . ;m. The rate

of change d=ds along the nonlinear ray (see eqs (3.23) and (3.24) for jnÿ n�j � O���)
can be written as

d

ds
� l�A�� r�

@

@x�
� � �rn

�l�� �
nÿ n�
�

� �� �
A�� r�

n
� l�A�� �rn �r�� �

nÿ n�
�

� �� �o @

@x�
� �w���ru l�� � r��A�� r�

� l���ru A��� � r��r� � l�A�� ��ru r�� � r���
@

@x�
� 0��2�; �4:3�

where rn � @
@n1
; . . . ; @

@nn

� �
. The middle term in the square bracket is important and we

write it along with the first term on the right hand side of (4.3). Thus

d

ds
� d�

ds�
� �fl��ru A���r��r�gw

@

@x�
� �wS�

@

@x�
� �T� @

@x�
� 0��2�; �4:4�

440 Phoolan Prasad



where

S� � ��ru l�� � r��A�� r� � l�A�� ��ru r�� � r�� �4:5�
T� � �rn

�l�� �
nÿ n�
�

� �� �
A�� r� � l�A�� �rn �r�� �

nÿ n�
�

� �� �
: �4:6�

The second term in (4.4) contains in it the nonlinear stretching of the rays as given in

Choquet±Bruhat's theory. In fact, if we make a transformation from �x��-coordinates to

���; y1; . . . ; yn�-coordinates (where �� is the linear phase function)

�� � ���x0; x1; . . . ; xm�; y� � x�; � � 1; 2; . . . n; �4:7�
then

@

@x0
� ��x0

@

@x0
;

@

@x�
� ��x�

@

@��
� @

@y�
; � � 1; 2; . . . ; n �4:8�

so that with �� � ��
� ,

�fl���5u A��� � r��r�gw
@

@x�
� Gw

@

@��
� 0���;

where

G � fl����x��5u A��� � r��r�g �4:9�
since @=@�� � �1=��@=@��. Further

�S�
@

@x�
� f��rul�� � r���A����x�r�� � �l�A����x����rur��r��g

@

@��
� 0���

�4:10�
in which all terms of order one vanish because A�� �

�
x�

r� � 0, and l�A�� �
�
x�
� 0.

On the length scale Lc, nÿ n� � 0���, so that

�T� @

@x�
� T���x�

@

@��
� 0��� �4:11�

and here too all the terms of order one vanish due to the same reason i.e. A���
�
x�

r� � 0 and

l�A���
�
x�
� 0. Thus, to the leading order, the transport equations (3.23) or (3.24) reduces to

the Choquet±Bruhat's transport equation

d�

dt�
w� Gww�� � 
�w � 0 �4:12�

(see [5]). Note that the assumption jnÿ n�j � O��� breaks down as soon the nonlinear

wavefront starts approaching a caustic region of the linear theory.

One of the most interesting outcome of this theory is a derivation of the weak shock ray

theory ([14], p. 95), from the WNLRT consisting of the eqs (3.20), (3.21) and (3.24).

Shock ray theory consists of the shock ray equations, and an infinite system of com-

patibility conditions. Unlike the WNLRT, shock ray theory is exact because � is of the

order of the shock thickness which is zero in the inviscid theory and hence the high

frequency approximation is exactly satisfied. But the shock ray theory is as difficult as the

original problem, in fact more difficult due to horrendously long expressions present even

in the first few (say the second itself) of the infinite number of compatibility conditions

involved in it. Infinite number of equations remain involved even if weak shock
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assumption is made. As mentioned here, the weak shock ray theory can be derived from

the WNLRT of this paper. This derivation is not only simple but also much more trans-

parent for the Euler's equations of gas dynamics, which we shall do in the next section. In

passing, we mention that an attempt has been made in showing such a relation between

WNLRT and shock ray theory by Anile et al [1] pp. 85±87) without making any distinc-

tion between a linear, nonlinear and shock rays.

5. Nonlinear waves in a polytropic gas

Wave propagation in a gas (or in any continuous media) has as its foundation, the three basic

conservation laws of physics: conservation of mass, momentum and energy. These laws of

physics allow us to derive the field equations which for a polytropic gas are expressed in

terms of the fluid velocity q , density � and pressure p. The equations of motion are

�t � hr; �qi � 0; �5:1a�
qt � hq;riq�

1

�
rp � 0 �5:1b�

and

pt � hq;rip� �a2hr; qi � 0; �5:1c�
where a � a��; p� is the local speed of sound. The assumption that the gas is polytropic

leads to the entropic equation of state

p � K�
 �5:2�
in which the coefficient K depends on the entropy and 
 is the ratio of specific heat,

which for air is taken to be 1:4. For such a gas

a2 � 
p

�
: �5:3�

These quasilinear equations form a hyperbolic system and are called Euler's equations.

For some simplicity in the general theory, we took u � 0 to be a basic solution of (2.1)

and hence we write the equations of motion by replacing the density � by �� � �,
(�� � constant), pressure p by p� � p ( p� � constant) and velocity q by q� � q, where

�q� � 0, � � ��, p � p�) represents the medium at rest and in uniform state and the

symbols �, p and q now represent the perturbations. The equations of motion can be

written in the form (2.1) where

u � ��; q1; q2; q3; p�T ; A � I � identity matrix:

and

B���� �

q� ��� � ���1� ��� � ���2� ��� � ���3� 0

0 q� 0 0 1
��
�1�

0 0 q� 0 1
��
�2�

0 0 0 q�
1
��
�3�

0 ��a2
� 1� �

��

� �
ÿ1

�1� ��a2
� 1� �

��

� �
ÿ1

�2� ��a2
� 1� �

��

� �
ÿ1

�3� q�

2666666664

3777777775
;

� � 1; 2; 3 �5:4�
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where �ij is the Kronecker delta, a� is the value of local velocity of sound in the medium

at rest. For the wave corresponding to the eigenvalue q� na the eikonal equation is

Q � �t � a� 1� �

��

� ��
ÿ1�=2

jr�j � hq;r�i � 0; �5:5�

and the corresponding right eigenvector is r � �r1; r2; r3; r4; r5�T where

r1 � ��
a�

1� �

��

� �ÿ�
ÿ3�=2

; r2 � n1; r3 � n2; r4 � n3;

r5 � ��a� 1� �

��

� ��
�1�=2

: �5:6�

In order that lAr � 1 we choose the left eigenvector as

l1 � 0; l2 � 1

2
n1; l3 � 1

2
n2; l4 � 1

2
n3; l5 � 1

2��a�
1� �

��

� �ÿ�
�1�=2

;

�5:7�
where n � �n1; n2; n3� is the unit normal. The ray equations are given by

dx�

dt
� q� � n�a� 1� �

��

� ��
ÿ1�=2

� ��; say �5:8�

and

dn�

dt
� ÿa�L� 1� �

��

� ��
ÿ1�=2

ÿ
X3

��1

n�L�q� � 	�; �5:9�

where

L � �L1; L2;L3� � r ÿ nhn;ri: �5:10�
The expressions (2.18) and (3.15) to (3.19) when evaluated lead to the following set of

equations of WNLRT up to order �

� � � ��
a�

w; q� � �n�w; p � ��� a�w

dx�

dt
� n� a� � � 
 � 1

2
w

� �
�5:11�

dn�

dt
� ÿ� 
 � 1

2
L�w �5:12�

and

dw

dt
� �
w; �5:13�

where

�
 � ÿ 1

2
a�hr; ni �5:14�
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is the mean curvature of the nonlinear wavefront and

d

dt
� @

@t
� a� � � 
 � 1

2
w

� �
hn;ri �5:15�

is the time rate of change along the rays given by (5.11) and (5.12). These are the same

equations as derived in [15] where w is �w in the above equations. Since jnj � 1, only two

of the three equations (5.12) are independent. Therefore, the equations (5.11)±(5.13) form

a system of 6 coupled equations for the determination of successive positions x of a

nonlinear wavefront, the unit normal n and the wavefront intensity w. In the linear theory,

w drops out of the (5.11) and (5.12) so that the ray equations decouple from the amplitude

equation (5.13). In this case the rays and the successive positions of the wavefront can be

constructed without any reference to the amplitude of the wave. This corresponds to the

statement of Huygens' wavefront construction for the propagation of a linear wavefront.

In our weakly nonlinear theory, the amplitude is related to the curvature of the wavefront

(or the ray tube area) by the equation (5.13). The nonlinear rays stretch due to the

presence of w in (5.11) and the wavefront rotates due to a non-uniform distribution of the

amplitude on the wavefront (represented by Lw in (5.12)). Thus the amplitude of the

wave modifies the rays and the wavefront geometry which in turn effects the growth and

decay of the amplitude.

Further we note that only the tangential derivatives, on a wavefront 
t at a time t, of w

and n� appear on the right hand side of the equations of WNLRT. Therefore, given the

initial position 
0 of the wavefront and the distribution of the amplitude on it, all quanti-

ties on the right hand side of the equations (5.11)±(5.13) can be completely determined at

t � 0 as in the case of a non-characteristic Cauchy problem. Hence, the evolution of the

wavefront and the distribution of amplitude on it can be determined from these equations.

This implies that, in the short wave approximation, the nonlinear wavefront is self pro-

pagating. The result is true not only for a compressible medium but for any continuum

medium governed by the hyperbolic system. Huygens' method of wavefront construction

has now been very elegantly extended to the construction of a nonlinear wavefront in the

short wave limit.

As mentioned at the end of the last section, we shall now derive the shock ray theory

for a weak shock from equations (5.11)±(5.15). Consider a weak shock wave propagating

into a polytropic gas at rest ahead of it. Assume the shock also to belong to the charac-

teristic field with eigenvalue q� na, then shock will be followed by a one parameter

family of nonlinear waves governed by the equations (5.11)±(5.13). Each one of these

waves will catch up with the shock, interact with it and then disappear. A nonlinear wave

while interacting with the shock will be instantaneously coincident with it in the short

wave approximation considered in this paper. On the nonlinear wavefront, the transport

equation (5.13) remains valid. Now we use the theorem ([14], p. 74).

Theorem. For a weak shock, the shock ray velocity components are equal to the mean of

the bicharacteristic velocity components just ahead and just behind the shock, provided we

take the wavefront generating the characteristic surface to be instantaneously coincident

with the shock surface. Similarly, the rate of turning of the shock front is equal to the mean

of the rates of turning of such wavefronts just ahead and just behind the shock.

We denote the unit normal to the shock front by N. For the linear wavefront just ahead

of the shock and instantaneously coincident with it (this is actually a linear wavefront
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moving with the ray velocity N multiplied by the local sound velocity a�) w � 0 and the

bicharacteristic velocity is Na�. For the nonlinear wavefront just behind the shock and

instantaneously coincident with it, we denote the amplitude w by �. Then � is the shock

amplitude of the weak shock under consideration. Using the theorem and the results

(5.11) and (5.12) with n � N, we get for a point X on the shock ray

dx

dT
� 1

2
a�N� N a� � � 
 � 1

2
�

� �� �
� N a� � � 
 � 1

4
�

� �
�5:16�

dN

dT
� ÿ 1

2
0� � 
 � 1

2
L�

� �
� ÿ� 
 � 1

4
L�; �5:17�

where T is the time measured while moving along a shock ray. We take w � � and n � N
in (5.13) and write it as

d�

dT
� @

@t
� a� � � 
 � 1

4
�

� �
hN;ri

� �
�

� ÿ 1

2
a�hr;Ni�ÿ � 
 � 1

4
�hN;riw; �5:18�

where we note that since � is defined only on the shock front (and also on instantaneously

coincident nonlinear wavefront behind it but not the other members of the one parameter

family of wavefronts following it), the normal derivative hN;ri� does not make sense

mathematically. We introduce a new variable, defined on the shock

�1 � �hn;riw; on the shock front �5:19�
where � appears to make �1 � O�1� since we wish to consider variation of w on a length

scale over which the fast variable � varies.

Equation (5.18) leads to the first compatibility condition along a shock ray

d�

dT
� �
s�ÿ 
 � 1

4
��1; �5:20�

where

�
s � ÿ 1

2
a�hr;Ni

is the value of �
 for the nonlinear wavefront instantaneously coincident with the shock

from behind.

To find the second compatibility condition along a shock, we differentiate (5.13) in the

direction of n but on the length scale over which � varies. On this length scale, n; �
 are

constants and we get after rearranging some terms

@

@t
� a� � � 
 � 1

4
w

� �
hn;ri

� �
hn;riw � ÿ 1

2
a�hr; nihn;riw

ÿ � 
 � 1

4
whn;ri2wÿ � 
 � 1

4
fhn;riwg2: �5:21�

Writing this equation for the wavefront instantaneously coincident with the shock,

multiplying it by � and introducing a variable �2 by

�2 � �2hn;ri2w; on the shock �5:22�
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we get

d�1

dT
� �
s�1 ÿ 
 � 1

4
�2

1 ÿ

 � 1

4
��2 �5:23�

which is the second compatibility condition along shock rays given by (5.16) and (5.17).

Similarly, higher order compatibility conditions can be derived. Thus, for the Euler's

equations, we have derived the infinite system of compatibility conditions for a weak

shock just from the dominant terms of our WNLRT (see [1], pp. 85±87).

As we have already mentioned, the shock ray theory is an exact theory (weak shock

assumption is another independent assumption) but it is impossible to use it for com-

putation for shock propagation. Prasad and Ravindran proposed a new theory of shock

dynamics (NTSD) in 1990±91 (see [16]) according to which the system of equations

(5.16), (5.17), (5.20) and (5.23) can be closed by dropping the term containing �2 from

the equations (5.23). The NTSD has been found to be computationally very efficient and

gives results which agree well with theoretical results (whatever available), experiment

results and results obtained from computation of full gas-dynamics equations ([8] and a

number of papers from Prasad, Ravindran and their collaborators). This new theory of

shock dynamics forms the basis of extensive numerical computation by Monica and

Prasad [9] to find the nonlinear effects in the linear caustic region.
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