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                      Abstract 

   A method of estimation of the derivatives of a probability density 

using wavelet systems is proposed. Precise order for the integrated mean 

square of the proposed estimator is obtained.
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1. Introduction 

   Methods of nonparametric estimation of density function and regression function 
are widely discussed in the literature (cf. Prakasa Rao (1993)). Rosenblatt (1991) gives 
a short review of stochastic curve estimation. It is known that the estimation of the 
derivative of a density as well as that of the regression function are of importance and 
interest to detect possible bumps in the case of the density and to detect concavity 
or convexity properties of the regression function if any. Asymptotic properties of the 
kernel type estimators for the derivatives of density have been investigated earlier (cf. 
Prakasa Rao (1983), p. 237). 

   Here we discuss the estimation of the derivatives of a density using the method 
of wavelets. Antoniadis and Carmona (1991), Antoniadis et al. (1994) and Masry 

(1994) discuss the estimation of density and regression function by using the method of 
wavelets. Masry (1994) obtained the exact orders for the integrated mean square error 

(IMSE) of density estimator using a wavelet basis. All the earlier results on IMSE give 
a bound only on the IMSE for estimators of kernel type or other estimators derived by 
the method of orthogonal series. We generalize the result of Masry (1994) to estimators 

of the derivatives of a density. For an overview of recent advances in nonparametric 
functional estimation, see Prakasa Rao (1996).

2. Introduction to Wavelets 

   A wavelet system is an infinite collection of translated and scaled versions of func
tions 0 and i called the scaling function and the primary wavelet function respectively.
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The function 0(x) is a solution of the equation 

0(x) _ E Ck 0(2x — k)(2.1) 
k=—oo 

with 

f0f 0(x)dx = 1(2.2) 

and the function (x) is defined by 

0(x) = E (1)kC-k+1 0(2x — k).(2.3) 
k=—oo 

Note that the choice of the sequence {Ck } determines the wavelet system. It is easy to 
see that 

                                                 00 

E Ck=2.(2.4) 
                                          k=—oo 

Define 
(jk(x) =23120(23x — k), —oo < j, k < oo(2.5) 

and 
'03k(x) = 23/2 1/'(2-ix — k), —oo < j, k < oo. (2.6) 

Suppose the coefficients {Ck} satisfy the condition 

                                        00 

ECkCk+2e = 2 if = 0 
k=—oo 

                    = 0 if £0 0.(2.7) 

It is known that, under some additional condition on 0, the collection {03k, —oo < 
j, k < oo} is an orthonormal basis for L2(R) and {0ik, —oo < k < oo} is an orthonormal 
system in L2(R) for each —oo < j < oo (cf. Daubechies (1990)). 

    DEFINITION 2.1. A scaling function 0 E C(r) is said to be rregular for an integer 
r > 1 if for every nonnegative integer £ < r and for any integer k, 

(x)I < ck(1 + , —oo < x < oo(2.8) 

for some ck > 0 depending only on k where 0(t)(•) denotes the e-th derivative of ¢. 

    DEFINITION 2.2. A multiresolution analysis of L2(R) consists of an increasing se
quences of closed subspaces {V3} of L2(R) such that 

  (i) n _ 
j=
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   (ii)  U  173 = L2 (R); 
=00 

   (iii) there is a scaling function E V° such that 

{0(x — k), —oo < k < oo} 

is an orthonormal basis for 170; and for all h E L2 (R), 

   (iv) for all —oo < k < oo, h(x) E V° = h(x — k) E 170; 
(v) h(x) E V3 = h(2x) E Vi+1. 

   Mallat (1989) has shown that given any multiresolution analysis, it is possible 
to derive a function (primary wavelet function) such that for any fixed j,—oo < 
j < oo, the family opik, —co < k < oo} is an orthonormal basis of the orthogonal 
complement Wi of V3 in V3+1 so that {ojk, -00 < j, k < oo} is an orthonormal basis 
of L2(R). Conversely, given any compactly supported wavelet system, it gives rise to a 
multiresolution analysis of L2(R) (cf. Daubechies (1990)). When the scaling function 0 
is rregular, the corresponding multiresolution analysis is said to be rregular. 

   Let H2 denote the space of all functions g(•) in L2(R) whose first (s —1) derivatives 
are absolutely continuous and define the norm 

001/2 

II9II112 = E f Ig(')(t)I2dt 
7=0 —oo 

    LEMMA 2.3. (Mallat (1989)). Let a multiresolution analysis be rregular. Then, 

for every 0 < s < r, any function g E L2(R) belongs to H2 if 

Eeee2st < oo(2.9) 
f=-00 

where ee = IIg — gt1I2 and ge is the orthogonal projection of g on Vt. 

    REMARK. The above introduction is based on Antoniades et al. (1994). For a 
detailed introduction to wavelets, see Chui (1992) or Daubechies (1992). For a brief 
survey, see Strang (1989).

3. Estimation of the d-th derivative f(d) of the density f 

    Suppose X1, X2, ..., Xn are i.i.d. (independent and identically distributed) random 
variables with density f and f is d-times differentiable, d > 0. We interpret f(°) as f . 
The problem of interest is the estimation of f(d). 

   Assume that f(d) E L2(R) and there exist D3 > 0, 13 > 0 such that 

If(3)(x)I < DiIx1-13) for Ix' > 1, 0 < j < d(3.1)
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where  ,30 > 4d + 1. 
   Consider a multiresolution as discussed in Section 2. Let 0 be the corresponding 

scaling function. Suppose that the multiresolution is rregular for some r > d. Then, 
by definition, 0 E C(r), 0 and its derivative 0(3) up to order r are rapidly decreasing i.e., 
for every integer m > 1, there exists a constant Am > 0 such that 

10(3) (x) I <,0 < j<r.(3.2)                       (1 +II)m 

Let 
~ek(x) = 2e120(2ex — k), —oo < k, t < oo.(3.3) 

Then 
0(t3/),(x) = 2(el2)+ei 0(i) (2ex — k), 0 < j < r (3.4) 

and 
            (~)2(Am                               e12)+e' 

              

IOW(x)I < (1 + IxI)m0 < j < r.(3.5) 

If d > 1, then it is clear that 

lim 0(e~k(x) f(d—-1)(x) = 0, 0 < j < d — 1 (3.6) 
IxI— 00' 

for any fixed £ and k. Let fed be the orthogonal projection of f (d) on Ve. Note that 

00 

fed(x) = E 0e3(x)(3.7) 
3=-00 

where 

CO 

ae3 = f f (d) (n) Oes3 (u)du 
CO 

(-1)d f f(u) ¢ed3(u)du (3.8) 

by (3.6) for d > 1. Clearly the equation (3.8) holds for d = 0. Hence, for all d > 0, 

ae3 = (-1)dE [(x)} .(3.9) 
Let 

               ae, _(-1)d0,(Xi)(3.10) 

n 

                                                   i=1 

be an estimator of ae3 based on the i.i.d. sample X1, ..., Xn. Estimate f(d) by 

km 

fnd(x) = E ae„,3 ¢en,a(x).(3.11) 
                                            j=—k„
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Let 
                                     k 

 fe,k,d  (x) = >2 at,j 0e,3 (x) . 
3=—k 

The problem is to estimate 

EII f(d) — fndl i2.(3.12) 

Note that 

II/(d) — fndll2 = IIf(d) — fe,kn,dll2 + II fe,kn,d —fndll2(3.13) 

and hence 

       E2n=Ell f(d) — fnd= Il f(d) — fen,kn,dll2+ EII fen,kn,d — fndll2 

         — 

               ll2 
                        = 11/(d) — fendll2 + II fen ,d — fen,kn,dll2 

+ Ell fin ,kn,d — fndll2 
                    = eln + Q2 + Jn, (say).(3.14) 

Suppose that 

f (d) E HI.(3.15) 

It follows that 

ee = 0(e-2se)(3.16) 

by Lemma 2.1. Note that 

                         Qn = II fen,d — fen,kn,dll2 

I aen ,3 I2 .(3.17) 
li l>kn 

But 

aei = (-1)d f f (u)(11 (u)du 
—oo 

                                                       00 

              = (1)d2e(2+d) f (d)( u — j)f (u)du 
—m 

              = (1)d2ed—(e12) f 0(d)(v) f CI 2e' dv.(3.18) 

Hence 

  

I ae3 I < 2ed—(e/2) f C6(d) (Of CI 2e dv + f 0(d) (v)f v 2e dv 
           lvl<5lvl>lal   a2
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                                                                 00       < 2ed—(e/2) sup  v +1 f I0(d) (v) I dv 
          Li~ii/00 

00 

+ sup 10(d) (v) f ff v ±i) dv 
M>1.7I/22e 

—oo 

      < 2ed—(e/2) 2t+1 Qo 110(d)111 + 1 +A,,2 m2e 
       < 2ed-(e/2) Do II i(d) II 12(e+1)13o 2e+m               1

./113°+ Ii Im------Am(3.19) 

Hence 

(72n 22end—en+1 {DId)II7 2213o(en+1) 1  
                                          Ii I> Kn                                  I~I2Qo 

            + 22(en+mti)A2N--' --------} 
                            I.7I >>KnI~ I2m 

           < 22end—en+1 DdII0(' )II7 220o(en+1) + A?  22(en+m) 3.20 
                        (2,30  1)1-C7.2,130-1(2m  1) Knm----------1() 

from (3.17) and (3.19) for any integer m > 1. Let m > 00. Then 

      Q2 < 2 DdIIod)II7 2en(2d1)+2,Qo(en+1)+A2 22(en+m)+en(2d-1)       n(20 0  1)4'3'1(2,30 — 1)1a ,13° —1 
2en{(2d1)+2Qo} 22Q0+1/ <

Kn3°-1 (200 —------------1)DdII0(d)II7(1 + O(22en(1—Qo))) 
2en{(2d1)+20o} 2200+1 

             KnpO_1----------------- (2~0 —---------1)Dd II~(d)I17(1 + 0(1))(3.21) 

since /30 > 1 and in -* oo. If 

Kn  2{(2d1)+20o+2s}(en/(20o-1)) log n,(3.22) 

then 
2en {(2d-1)+20011 

                  1(72,°°-1 (log n)2Qo-1 22sen-^ 0 as n -4 oo (3.23) 

since 00 > 1 and in --> oo and in fact 

(22n 0(2-2sen ).(3.24) 

Note that 

            Bn2=-:IIf(d) —fen,kn,dII2 =Qn+ lip) — fen,dll2 
                   = 0(2-28en) + 0(e-2sen )
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by Lemma 2.1 (cf. Mallat (1989) and hence 

 Bn = 0(2-2sen)(3.25) 

Let us now compute 

J72., = Ellfen,kn,d — fndll2 
Kn 

2 

.7=—Kn 

Kn 

= E Var(aen,i ) 
7-Kn 

Kn 

= — E Var[0(ed); (Xi )](3.26) 
3=—Kn 

and hence 

Kn 

2enJn 2en>. Var[¢ed.); (Xi )l 
j=—Kn 

['du_{'2 
        Kn1

e~()duu 
j=—Kn —00—00 

00 

             2en J `Yed); (n)f (U)du 
-00 —oo 

                                               00 

1f 

             2en0"ed1(u)f (u)du 
iii>Kn —00 

               1         —_E 
2en{(-1)daen2  , } 

      = 5i + 82 + 83 (say).(3.27) 

Suppose that f is of bounded variation on (—oo, oo). Note that 

        Si=2en (1+2d)J/~~2()1 00f(u+j)}                          du 
          2en()2en2endu 

                                    —00=—O0 

0000 

         = 22end f o(d)2 (u) 1 f (u2)du 
                24.en 
—00j=—C° 

          0000 

             = 22en d f o(d)2 (u)                         ff(u)du +O(2-in) du 
— 00 —00
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               (by Lemma A.1 of Masry (1994)) 
                                         00 

 =  224,d f  (d)2(V)dV (1 + O(2—en)).(3.28) 

Furthermore 
                       1 S2 = 2en E E [(x))] •(3.29) 

IiI>Kn 

But 

00 

    E[0(td)(X)] = f 0Qa?; (u)f (u)du 
—00 

00 

               = 2en(2d+1) f (d)2(2tu — j)f (2G)d21 
—00 

                                              00 

              22end f 0(d)2 (u)f (u;du 
                                                    —00 

                                                             2 

                 < 22end
j                           21-+1r°110(d)2        1---------------Q°Am                                  II0(d)2II1 +1 +•22m2en                   (111)(1+I~I/) 

                < 22end {DoIId2Ili2t--13o + 2en+2mAL  
 IjIao 1..712"1(3.30) 

by methods similar to those used to derive (3.20). Hence 

1S21<2end Dolk95(d)2Ih12Qo(en+1)+2en+2mAm---------------}                    2en
1(13o — 1)KR0-1(2m — 1)4'1DoIIY'(d)2Iii 2Qo(en+1)2end—in 

 _ (/30-1) KQ0-1 
                            A2m 2en+2m2end—en                 + 

                       (200 — 1)2Kn13°-1 2en(13o2d-1)2f0 {Dohid2hii + 0(2en(1-00) 
                 WO — 1)Ka0-1 (Po — 1) 

                     (2-en(00-2d-1)               = O  
10,°-1(3.31) 

for m > ao > 1 as tn —* oo from (3.29) and (3.30). Furthermore 

00 

1S31  <_ 2---fE4n ,,<—en11f(d)fl. (3.32) 
j=-00 

We now state and prove the main theorem.
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 THEOREM  3.1. Suppose that f (d) E L2 (R) f1 H2 where 0 < s < r, f E BV(—oo, oo), 

the class of functions which are of bounded variation on R and that the condition (3.1) 
holds. Suppose that in —4 oo and Kn is as defined by (3.22) viz 

K = 2{(2d1)+0o+2s}(in/20o-1)) log n. (3.33) 

Then 
                                                   CO 

                 Zin (1+2d)-----------En—> f 0(d)2 (v)dv as n--> oo (3.34) 
where 62n = EII f(d) — fn,dfl• 

    PROOF. Note that 

            2i.6n= (Ell f(d)fn,dl12) zen 
0(e-2slnn2—in) + 0(22s/nn2—in 

CO 

+22ind{ f 0(d)2 (v)dv}{1 + 0(24' )} 
—oo 

                              2in (Op —2d-1) ) 
+O ----------

Kg,"+ 0(2-4').(3.35) 

Furthermore tn —* oo and 

2in(004d1)/KQ0-1 -* 0 as n — 00 (3.36) 

from the choice of Kn. Hence 

00 

                 Zin( +2d)------------en—>f 0(d)2(v)dv as n—>oo (3.37) 

   REMARK. If d = 0, relation (3.37) reduces to Theorem 3.2 in Masry (1994). If 
fn = n1 /(2s+1) then it follows that 

00 

n223-------+1 En -~ f 0(d)2 (v)dv as n ---> oo(3.38) 
—00 

which shows that the IMSE for the wavelet based estimator is of the same order as for 
the best kernel type estimator for the d-th derivative of a density (cf. Muller and Gasser 

(1979)).
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