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Measuring Size Distribution in Highly Heterogeneous Systems
with Fluorescence Correlation Spectroscopy
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ABSTRACT Fluorescence correlation spectroscopy (FCS) is a sensitive and widely used technique for measuring diffusion.
FCS data are conventionally modeled with a finite number of diffusing components and fit with a least-square fitting algorithm.
This approach is inadequate for analyzing data obtained from highly heterogeneous systems. We introduce a Maximum
Entropy Method based fitting routine (MEMFCS) that analyzes FCS data in terms of a quasicontinuous distribution of diffusing
components, and also guarantees a maximally wide distribution that is consistent with the data. We verify that for a
homogeneous specimen (green fluorescent protein in dilute aqueous solution), both MEMFCS and conventional fitting yield
similar results. Further, we incorporate an appropriate goodness of fit criterion in MEMFCS. We show that for errors estimated
from a large number of repeated measurements, the reduced x2 value in MEMFCS analysis does approach unity. We find that
the theoretical prediction for errors in FCS experiments overestimates the actual error, but can be empirically modified to serve
as a guide for estimating the goodness of the fit where reliable error estimates are unavailable. Finally, we compare the
performance of MEMFCS with that of a conventional fitting routine for analyzing simulated data describing a highly
heterogeneous distribution containing 41 diffusing species. Both methods fit the data well. However, the conventional fit fails to
reproduce the essential features of the input distribution, whereas MEMFCS yields a distribution close to the actual input.

INTRODUCTION

Fluorescence correlation spectroscopy (FCS) is one of the

most powerful and sensitive techniques for measuring

diffusion constants (and therefore the size) of particles in

solution (Magde et al., 1972; Elson and Magde, 1974;

Thompson, 1991; Eigen and Rigler, 1994; Maiti et al., 1997).

It tracks spontaneous concentration fluctuations occurring

in a small open volume of a dilute solution using sensitive

fluorescence detection. The temporal autocorrelation of these

fluctuations can be interpreted in terms of the diffusion con-

stants of the particles and chemical kinetic rate constants of

interconversion between them. FCS has been the method of

choice for a variety of experimental problems, such as, for

measuring diffusion and binding of small fluorescent

molecules to larger substrates (Schwille et al., 1996), for

investigating the spontaneous chemical kinetics of protein

molecules (Haupts et al., 1998; Kummer et al., 2000), and for

obtaining the intracellular viscosity of live cells (Berland

et al., 1995; Schwille et al., 1999).

Parameters such as diffusion constants are obtained from

FCS data by fitting it to an appropriate model. The typically

used conventional models assume a small number of discrete

diffusing species and are adequate for describing simple

systems with limited heterogeneity. However, FCS is being

increasingly used to measure dynamics in highly heteroge-

neous biological systems, e.g., to follow the functionally

important oligomerization of receptors on cell membranes

(Olsson et al., 2001) and to examine aggregation of prionlike

proteins implicated in physiological disorders (Post et al.,

1998; Tjernberg et al., 1999; Sengupta et al., 2002). The con-

ventional model is inadequate for describing such situa-

tions. Even if the data can be adequately fit by a small number

of diffusing components, this may lead to an unphysical

description of the real system under study.

An additional problem with FCS data analysis is the lack

of a convenient way to estimate the goodness of a fit. Typical

FCS data processing hardware modules do not preserve the

raw data (photon counts with time), but only provide the

autocorrelation averaged over time, without any quantitative

information on the noise. Because relative errors of data

points remain unknown, they are all given equal weights, and

a measure of the goodness of fit such as the reduced x2

becomes meaningless. It has recently been shown that for

repeated averaged autocorrelation measurements the stan-

dard error of the mean does provide a good description of the

error (Wohland et al., 2001). However, in most practical

situations, such large number of repeats is not practicable

and an analytical method for estimating the relative errors of

data points is necessary. Koppel provided such a formulation

under certain assumptions (Koppel, 1974), and it has been

shown that a modified version of Koppel’s analytical

derivation does provide a reasonable description of the

errors, but only at short enough timescales (Wohland et al.,

2001). It is desirable that any fitting routine for FCS takes

into account errors of individual points, whether actually

measured or analytically estimated, and yields a value for the

reduced x2 that can serve as a meaningful measure for the

goodness of fit.

Here we present a data-fitting algorithm for FCS based

on the Maximum Entropy Method (henceforth called

MEMFCS). The Maximum Entropy Method was first
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proposed for the reconstruction of astronomical images and

has the virtue of preserving the maximum uncertainty in the

estimation of parameters that is consistent with the data

(Skilling and Bryan, 1984). In our implementation in the

context of FCS, it provides a bias-free fitting of the data with

a quasicontinuous distribution of a large number of diffusing

components.

We test this algorithm with data obtained from experi-

mental FCS measurements of diffusion in a simple well-

characterized system, viz. a dilute aqueous solution of green

fluorescent protein (EGFP mutant). The conventional fitting

routine incorporating a single diffusing component (with

diffusion time tD) provides a reliable description of this

system, and thus it presents an opportunity to verify the

MEMFCS method. Subsequently we address the goodness

of fit issue by taking into account the uncertainties associated

with individual points. This is done with errors estimated in

three different ways: i), from multiple repeats of the same

experiment, ii), from an analytical computation of errors, and

iii), by ascribing equal errors to all the points. We test the

efficacy of the reduced x2 estimation of the goodness of fit in
each of the cases by obtaining data from a dilute solution of

rhodamine B molecules. We finally apply this algorithm

to data that simulate a highly heterogeneous specimen

containing a large number of diffusing species. We compare

the performance of MEMFCS versus that of a conventional

fitting routine with a small number of diffusing components

in the analysis of this simulated data.

THEORY

Modeling diffusion in FCS

The autocorrelation function G(t) of the concentration C(t) of solute

molecules in a small open volume of a dilute solution is defined as

GðtÞ ¼ hdCðtÞdCðt þ tÞi
hCðtÞi2 ; (1)

where angular brackets denote average over time t, and dC(t) ¼ C(t) �
hC(t)i. In most FCS experiments the probe volume is approximately

described as a three-dimensional Gaussian function with half axes r and l. It

can be shown that for such a volume (Eigen and Rigler, 1994),

GðtÞ ¼ 1
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where N is the number of particles in the volume (where the volume is

defined in the sense of Mertz et al., 1995) and tD ¼ r2/4D is the time taken to

diffuse through a distance r in two dimensions by a molecule with diffusion

constant D. For a solution with n noninteracting fluorescent species with

diffusion times tDi, G(t) can be modeled as

GðtÞ ¼ +
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where bi are the relative amplitudes of the components. This amplitude is not

simply proportional to the relative concentration of the individual species,

but is also related to its relative brightness (Maiti et al., 1997). We note that

Eq. 3 is valid under the assumption that the contribution of chemical kinetic

processes (e.g., triplet state formation or protonation) can be neglected. In

biological diffusion studies, the contribution of such processes can usually

be either minimized or separated out in time, and thus this assumption is not

too restrictive in practice.

MEM analysis of FCS data

In the model with a continuous distribution of diffusion times, modifying

Eq. 3, G(t) can be formally related to the diffusion time tD by the following

relationship:

GðtÞ ¼
ðtUD
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dtD: (4)

In Eq. 4, the diffusion time tD is considered to be a variable and a(tD) is

the amplitude associated with tD. tD
L and tD

U are the lower and upper limits

for diffusion times appropriate for the sample. The above equation for G(t)

is consistent with the usual definition of G(t) for discrete tD values by

defining G(0) as in Eq. 5.

Gð0Þ ¼
ð
aðtDÞdtD: (5)

The upper and lower limits of tD and quantitative implementation of the

integral would depend upon prior knowledge of the sample. For example, if

the range of tD values is approximately known, then a narrow linear

distribution of tD may be preferred for fitting. However, in multi component

samples it is reasonable to expect that the upper and lower limits of tD may

differ by several orders of magnitude. Then it is desirable for computational

purposes that Eq. 4 is considered as an integral over tD in logarithmic space.

That is,

aðtDÞdtD ¼ aðtDÞdðln tDÞ; (6)

where a(tD) ¼ tDa(tD).

The distribution of diffusion times (a(tD) vs. tD) is obtained by the

Maximum EntropyMethod. The method is based on the algorithm described

by Skilling and Bryan (1984). The algorithm has been used to obtain

a distribution of fluorescence lifetimes that fits the fluorescence decay data

(Livesey and Brochon, 1987; Swaminathan and Periasamy, 1996) and

a distribution of diffusion coefficients that fits fluorescence recovery after

photobleaching data (Periasamy and Verkman, 1998). For computational

purposes, the integral equation (Eq. 4) is written as a sum:

GðtÞ ¼ +
n
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The tDi in Eq. 7 are logarithmically spaced and not varied. The amplitude

ai have to satisfy the condition that the experimental data G(t) is correctly

fitted, i.e., the value of Gc(ti) calculated using Eq. 7 and the experimental

value Ge(ti) are in agreement for all data. Because the experimental data are

noisy, standard methods for evaluating the goodness of fit are preferred.

One of the standard methods is to calculate the weighted residual for each

data and examine the residuals (ri) qualitatively and quantitatively.

ri ¼ GcðtiÞ � GeðtiÞ
si

(8)
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si is the inverse of weight for the ith data. Qualitatively, a random

distribution of residuals about the mean value of zero is a useful criterion of

good fit even if the weights are not properly estimated. When weights are

properly known then the quantitative parameter x2 is useful, where

x2 ¼ 1

M
+
M

i¼1
r2i : (9)

In Eq. 9, M is the number of FCS data points. For a good fit, x2 is

approximately equal to unity when M is sufficiently large.

It is often possible that the good fit criterion is satisfied for many different

distributions of ai, especially when the data is noisy. Such distributions may

also include solutions for specific models, such as, one or more fixed value

for tD. The experimental data is then consistent with any of these

distributions and thus any model that predicts such a distribution is

acceptable. According to the maximum entropy principle, the acceptable

distribution is the one for which the value of entropy S is maximum. S is

defined as

S ¼ �+ pi ln pi; (10)

where pi ¼ ai/+ai. According to this principle, a discrete solution for tD is

the least acceptable solution for noisy data because S is the lowest for such

a distribution. The widely used MEM algorithm (Skilling and Bryan, 1984)

seeks a distribution for which S is maximum and x2 is minimum. The

important features of the algorithm used in this paper for MEM analysis of

FCS data are as follows.

The analysis begins with equal values for all ai at all tDi. The distribution

is improved in successive iterations: ai(new) ¼ ai(old) þ xDai. The

correction factor Dai (an n-dimensional vector, see Eq. 7) is determined by

the optimization procedure that uses three search directions constructed

using the derivatives, =x2, =S and ==x2. The procedure ensures that x2 is

minimized in successive iterations and S is maximum for that x2. The

multiplication factor x is determined by the �a-chop and p-chop� technique
(Skilling and Bryan, 1984) to achieve an aimed value of x2. Care is taken to

avoid negative value for ai, by using only a fraction of x and by equating

negative values to zero. Successive iterations give distributions with reduced

x2. The analysis is terminated when x2 does not change in successive

iterations.

It has been shown (Narayan and Nityananda, 1986) that the Maximum

Entropy Method works equally well for other definitions (Eqs. 11 and 12) of

entropy, which are called regularization functions.

S1 ¼ �+ ln pi (11)

S2 ¼ �+ ffiffiffiffi
pi

p
(12)

Maximizing these functions have the same effect as maximizing S as

defined by Eq. 10. The usefulness of the above regularizing functions was

also examined for FCS data analysis.

MATERIALS AND METHODS

The instrument

FCS measurements are performed with both single photon and two photon

excitation. For single photon FCS, a green He:Ne laser (wavelength 543.5

nm, Jain Lasertech, Mumbai, India) is used as the light source. The laser

beam is focused on the sample contained in a coverslip-bottomed petri dish

using a high numerical aperture (NA), oil immersion microscope objective

lens (1.3 NA, Carl Zeiss, Jena, Germany). The fluorescence from the sample

is collected using the same objective lens and is separated from the excitation

laser light using a dichroic mirror (560DCLP, Chroma Tech. Corp.,

Brattleboro, VT). This signal is then filtered with a band-pass filter

(575DF30, Omega Optical, Brattleboro, VT) and focused onto a multimode

fiber (50-mm core diameter from Newport, Irvine, CA) using a 15-cm

achromat lens (Newport, Irvine, CA). The fiber is coupled to a single photon

counting module (SPCM-AQ-140, EG&G, Vaudreuil, Canada), which

detects the signal. The detector output is analyzed by a digital signal

processing autocorrelator card (ALV5000e, ALV Laser GmbH, Langen,

Germany) in a personal computer. For two photon FCSmeasurements, a Nd-

vanadate (VERDI V10, Coherent, Santa Clara, CA) pumped femtosecond,

tunable Ti:Sapphire laser (MIRA900, Coherent) is used as the light source.

An inverted fluorescence microscope (TE300, Nikon, Tokyo, Japan) is

modified to accommodate an external detector (PMT). The laser beam (893

nm, ;100-fs pulse width) is focused into the sample using a 603 water

immersion microscope objective lens (1.2 NA, Nikon, Tokyo, Japan). The

sample is kept in coverslip-bottomed petri dishes on the microscope sample

stage. The fluorescence signal is collected by the same objective lens and

EGFP fluorescence is selected using a dichroic mirror (535DCLP, Chroma

Tech. Corp.) and a band-pass filter (500DF30, Omega Optical). A saturated

CuSO4 solution filter is used in front of the photomultiplier tube detector

(Electron Tubes Ltd. Middlesex, UK) to block the infrared laser light. The

data analysis is performed as before.

Materials

EGFP is purchased from Clontech, Palo Alto, CA. A 20-nM solution made

in 20-mM phosphate buffer, pH 7.4, is used for the experiment. Buffer salts

(from SD Fine Chemicals, Mumbai, India) are recrystallized twice to make

them free of fluorescent impurities. Rhodamine B is purchased from Sigma-

Aldrich Corp., St. Louis, MO. HPLC grade water (from E. Merck (India)

Ltd., Mumbai, India) is used after distilling it twice for preparation of all

solutions.

RESULTS

Verification of MEMFCS for a single
diffusing species

Two-photon FCS experiments are performed with dilute

solutions of EGFP in aqueous buffer. There is no photo-

bleaching evident in the fluorescence intensity traces (data not

shown). Two different sets of FCS datawith different signal to

noise (S/N) ratios are analyzed, with all data points assigned
equal weights. For the data set with better S/N ratio (Fig. 1 a,
open circles), a single component fit (Fig. 1 a, solid line) using
a conventional fitting routine yields a value of 0.113 (60.002)
ms for the diffusion time tD (Fig. 1 a inset, black solid line;
the width of the bar indicates the uncertainty). The data set is

also fit with MEMFCS (not shown) using 101 components,

logarithmically spaced between 10�3 ms to 100 ms, with 20
components per decade of time. The peak of the resulting

distribution is at 0.117 ms (Fig. 1 a inset, black dashed line).
The full width at half maximum (FWHM) of this distribution

spans a range of 0.06–0.18 ms. When MEMFCS is used to fit

the same data set with 101 components distributed linearly in

the range of 0.09–0.15ms (not shown), it produces a narrower

distribution of tDi with a peak at 0.117ms (Fig. 1 a inset, gray
shaded region) and with a FWHM of 0.002 ms (range 0.116–

0.118 ms). The residuals obtained for these three fits are

shown in Fig. 1, b–d, respectively.
For the poor S/N data (Fig. 1 e, open circles), the

conventional fit incorporating one component (Fig. 1 e, solid
line) yields a peak at 0.112 ms and an uncertainty of60.004
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ms (Fig. 1 e inset, solid line shows the distribution).

MEMFCS fit with a logarithmic distribution (Fig. 1 e inset,
dashed line) of tDi yields a distribution with a peak at 0.109
ms and a FWHM 0.144 ms. Corresponding residuals are

shown in Fig. 1, f and g, respectively.

Estimating the goodness of fit in MEMFCS

Thirty separate FCS measurements are performed on a dilute

aqueous solution (;4 nM) of rhodamine B with one photon

excitation at 543 nm. Each measurement is an average of

two autocorrelation traces, individually collected for 45 s.

The normalized mean autocorrelation trace (Fig. 2 a, open
circles) is fit as above, but the error information is now

incorporated in the analysis. The weights (1/si) (as defined in
Eq. 8) are put into the data analysis in two different ways: i)

si are taken as the standard error of the mean calculated from
the thirty individual measurements (Fig. 3, filled circles); and
ii) si set to a constant for all the data points. In the second
case, any arbitrary value of si could have been chosen. We

choose the average error of G(t) at long t as constant si. The
x2 values obtained using these two types of error information
are 0.92 and 10.2, respectively. In both cases, the FCS data

fit well (Fig. 2 a, solid line and dashed line, respectively) and
the distributions of tDi are nearly identical (curves not

shown). However, it is observed that the residuals are more

uniformly distributed in the former case (Fig. 2 b). In the

latter case, absolute values for the residuals are larger at short

t compared to the values at long t (Fig. 2 c).
Next, we attempt to estimate the goodness of fit for data

obtained from single autocorrelation measurements. One set

of data from the above mentioned 30 data sets (Fig. 3 a, open
circles) is fit using MEMFCS. To estimate si, we use the
Koppel error expression as modified by Wohland et al.

(2001) (Fig. 4, dashed line). We further modify it by

FIGURE 1 Comparison of MEMFCS and

conventional fitting for a single component

system. (a) Autocorrelation data obtained from

EGFP in pH 7.4 buffer (open circles) with

a good S/N and conventional fit with one

diffusion time tD (solid line). Fit with

MEMFCS with a logarithmic distribution of

the tDi (not shown) and fit with MEMFCS with

a narrow, linear distribution of the tDi (not

shown) overlap with the conventional fit (solid

line) except for initial values of delay time t.

Inset of (a) shows the distributions of tDi
obtained with the three fitting methods: with

single component conventional fit (black solid

line), with MEMFCS with a logarithmic distri-

bution of the tDi (black dashed line), and fit

with MEMFCS with a narrow, linear distribu-

tion of the tDi (gray shaded region). For the

single component conventional fit (black solid

line), distribution width depicts the uncertainty

of the determined value. (b), (c), and (d ) show

the residuals for the fits, respectively. (e) Data

(open circles) with a lower S/N ratio and

conventional fit to the data with one component

(solid line). A MEMFCS fit with a logarithmic distribution of tDi overlaps this fit (not shown). Inset of (e) shows the distribution of tDi obtained with the two

methods: single component conventional fit (solid line) andMEMFCS fit (dashed line). ( f ) and (g) show the residuals for the conventional fit of lower S/N data

with one tD and MEMFCS fit with a logarithmic distribution of tDi, respectively.

FIGURE 2 Estimating errors using multiple measurements. (a) Normal-

ized mean autocorrelation function obtained from 30 repeated measurements

of rhodamine B in water (open circles), MEMFCS fit using error estimated

from the standard error of the mean (solid line), and MEMFCS fit assuming

equal error (13 10�4) at all delay points (dashed line). (b) and (c) show the

residuals for these two fits respectively.
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neglecting the predicted rise in error at long delay times t,
holding errors to a constant value once it reaches a minimum

(Fig. 4, solid line). The error measured from multiple data

sets (Fig. 4, filled circles) fail to show the rise in errors at long

delay times predicted by Koppel. For comparison, we also fit

the data set with si set to a constant. The FCS data are fit well
by both measures of si (solid and dashed line, respectively in
Fig. 3 a) with near-identical distributions of tDi (data not

shown). The residuals for these fits are shown in Fig. 3, b and
c. The distribution of the residuals is more uniform in the

former case. The x2 values obtained using these two types of
error information are 0.23 and 11.2, respectively.

Comparison of results with different
entropy definitions

We have analyzed the autocorrelation of rhodamine B in

water (single measurement) using three different definitions

of the entropy S (Eqs. 10–12). All other parameters are held

constant for the analysis and si estimated from modified

Koppel’s equation are used as the weights. The distributions

obtained for all cases have nearly identical peak positions

(Fig. 5). The distributions obtained with definition of S as in

Eq. 11 (Fig. 5, dotted line) and Eq. 12 (Fig. 5, dashed line)
tend to have sharper cutoff at either end of the peak, where-

as that obtained with definition of S as in Eq. 10 (Fig. 5, solid
line) has a rather smooth, Gaussianlike appearance. The

weighted residuals (Fig. 5 inset, a–c, respectively) look

nearly identical. The x2 values vary marginally.

Analysis of diffusion data from a simulated
heterogeneous system

We simulate FCS data for a highly heterogeneous system

diffusing in two dimensions (Fig. 6 a, open circles). The data
is generated using the functional form:

FIGURE 3 Error estimation for a single measurement. (a) Autocorrelation

measured from rhodamine B in water (open circles), MEMFCS fit

incorporating noise calculated from Koppel’s equation modified as

described in the text (solid line), and MEMFCS fit with equal noise (1 3
10�4) at all points (dashed line). (b) and (c) show the residuals for these two

cases, respectively.

FIGURE 4 Experimental and analytical estimates of errors. Standard error

of the mean calculated from 30 repeated measurements (filled circles),

normalized error calculated from Koppel’s equation (dashed line),

normalized Koppel’s error modified at longer delay times (solid line).

Dashed and solid lines, by definition, overlap until the error reaches its

minimum value.

FIGURE 5 Comparison of different definitions of entropy S used for

fitting the autocorrelation data obtained from 4 nM rhodamine B in water.

Fits using S¼ � S pi ln pi (solid line), S¼ �S (pi)
1/2 (dashed line), and S¼

�S ln pi (dotted line). The insets (a), (b), and (c) show the MEMFCS fit

residuals obtained from these fits respectively.
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GsimðtÞ ¼ GtheoreticalðtÞ þ GnoiseðtÞ

¼ +
41

i¼1
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tDi

0
B@

1
CAþ GnoiseðtÞ (13)

with a total of 41 tDi components logarithmically spaced

from 1–5000 ms and ai are chosen from the following

distribution:

aiðtDi
Þ ¼ A1 exp � ln tDi

� ln t1
s1

� �2
 !

þ A2 exp � ln tDi
� ln t2
s2

� �2
 !

(14)

with A1 ¼ 0.02, A2 ¼ 0.01, s1 ¼ s2 ¼ 1.0, t1 ¼ 10 ms, and

t2 ¼400 ms.
Gnoise(t) is calculated at each t by generating a random

number from a Gaussian distribution with its mean equal to

Gtheoretical(t) and standard deviation (SD) proportional to
the modified Koppel error value. The magnitude of SD at

t ¼ 0 is set at a fraction f of Gtheoretical at time 0, i.e.,

SDðt ¼ 0Þ ¼ f 3Gtheoreticalð0Þ ¼ f 3 +
41

i¼1
ai: (15)

For this simulation f ¼ 0.04. Gsim(t) (Fig. 6 a, open
circles) is then analyzed with MEMFCS, using 101 diffusing

components with tDi distributed logarithmically between 0.1
ms and 10 s (a rather different distribution from the input tDi
of Eq. 13) and ai set to a constant value for all tDi initially.
The fit is shown in Fig. 6 a (solid line). The input (open
circles) and the obtained distribution (solid line) are shown
in Fig. 6 d. A conventional fit with four components also

provides an excellent fit to the data (fit not shown), with

component values (Fig. 6 d, filled circles with error bars)
near the two peaks of the input distribution. The residuals

obtained with MEMFCS fit and the conventional fit with four

components are shown in Fig. 6, b and c, respectively. A
conventional fit with six components forces two components

to converge with very large values of uncertainty. (Best fit

parameters obtained with a conventional fit incorporating six

components: tD1 ¼ 1129 6 196 ms, A1 ¼ 0.019 6 0.007;

tD2 ¼ 3306 63 ms, A2 ¼ 0.0536 0.004; tD3 ¼ 1.176 1.1

ms, A3 ¼ 0.006 6 0.01; tD4 ¼ 29 6 20 ms, A4 ¼ 0.05 6
0.05; tD5 ¼ 76 2084 ms, A5 ¼ 0.056 358; and tD6 ¼ 76
2087 ms, A6 ¼ 0.05 6 358). These values are inconsistent

with the input distribution profile and crowd near the peaks

of the input distribution.

DISCUSSION

The conventional fitting routine with a single diffusing

component and MEMFCS fitting with 101 components yield

very similar diffusion times (considering the peak values) for

EGFP in dilute solution. This verifies that in the limit where

a conventional single component fit is expected to provide

a correct description, the MEMFCS fitting routine agrees

with it. Although the width of the MEMFCS distribution and

the uncertainty in tD from a conventional single component

fit are not exactly equivalent quantities, it is interesting to

compare the two. For MEMFCS to provide an unbiased

analysis, the width of the obtained distribution must be

ultimately dictated by the inherent noise in the data. An

essential feature of MEMFCS is that the user at the initiation

of the program fixes the value of the component tDi and only
the amplitude ai can vary. Consequently, for a wide range

of input distribution spanning several decades, adequate

density of components may not be available at the precise

value of tD that corresponds to the actual diffusion constant

of the diffusing species. This is the case for the logarithmic

distribution of tDi initially used to fit the data (Fig. 1 a inset,
black dashed line). This fit, thus, yields a wide distribution

FIGURE 6 Comparison of MEMFCS and

conventional fitting for simulated data repre-

senting a highly heterogeneous system. (a)

Simulated data for a 41-component system

(open circles) and MEMFCS fit (solid line) to

this data. A conventional fit with four compo-

nents overlaps this fit (not shown). (b) and (c)

show the residuals for MEMFCS fit and

conventional fit with four components, re-

spectively. (d ) The distributions of tDi: the

input distribution used for simulation (open

circles), distribution obtained from MEMFCS

analysis (solid line), and parameters obtained

from a four-component conventional fit (filled

circles) with error bars.

1982 Sengupta et al.

Biophysical Journal 84(3) 1977–1984



of tDi. However, when there exists a priori knowledge that

there is a single component, as in the present case, MEMFCS

can be used in a second set of iterations with a linear dis-

tribution of tDi closely spaced around the peak value of the
distribution. This yields a narrow distribution (Fig. 1 a in-
set, gray shaded region) whose width is comparable to the
uncertainty (shown as the width of the black bar in Fig. 1 a
inset) of the conventional single component fit.
However, when the data has poor S/N, MEMFCS yields

a much wider distribution (in this case, because the spacing

between the components is already small compared to the

overall width of the distribution, MEMFCS fit with a linearly

spaced tDi was not attempted). This width is inherent in the
data due to the noise present in it. At this stage, the sums of

square deviations of the two fits from the data are nearly

identical (4.81 3 10�3 for the single component conven-

tional fit and 4.84 3 10�3 for MEMFCS). This implies that

both the descriptions fit the data equally well. This indicates

that although a priori knowledge of the solution may imply

a single peak, the noisy data is only good enough to limit

inference to the width obtained. This provides a safe limit for

interpreting data from specimens about which such a priori

knowledge may not exist.

To have a check on the goodness of fit, it is desirable

to compute the reduced x2 value for the fit. We have

obtained an experimental measure of the weight by

repeating the FCS measurement 30 times on a dilute

aqueous solution of rhodamine B and taking the standard

error of the mean (following Wohland et al. (2001)) of

these measurements, for each time point. The reduced x2

value calculated from the fit is close to unity (0.92),

indicating that the obtained distribution does provide

a good description of the data.

For estimating errors in single data sets, we have used the

analytical formulation of errors provided by Koppel and

modified by us as described in this paper (Fig. 4, solid line).
Uniform distribution of weighted residuals for all the data

points suggests that this approach gives an acceptable

estimate of relative errors for all delay times. However, a low

value of reduced x2 (x2 ¼ 0.23) indicates that the error is still

overestimated by a factor of ;2. On the other hand,

providing equal weights to all points yields a nonuniform

distribution of residuals. A satisfactory analysis of data must

yield uniformly distributed weighted residuals and hence we

recommend Koppel’s equation, truncated at its minimum

value and then held constant for longer t values, as the best
option to assign weights to the data points for single FCS

data sets.

We have compared the effect of using different definitions

of entropy S in MEMFCS fitting. All the three definitions

used yield very similar fits and residuals (Fig. 5 inset, a–c),
and any of them can be used in practice. However, the

definition provided by Eq. 10 yields a distribution that is

smooth throughout (Fig. 5, solid line), and we prefer to use
this definition.

The critical test of the usefulness of the MEMFCS routine

comes from an analysis of the simulated data that represents

a highly heterogeneous system. Such results are expected

while investigating membrane protein diffusion or aggre-

gating protein solutions. For the simulated data, both

MEMFCS and a conventional fitting routine incorporating

four diffusing species fit the data well. The x2 values of the
fits are nearly identical at this stage (1.24 for four component

conventional fit and 1.27 for MEMFCS). The fit parameters

obtained with the conventional fit with four components,

however, do not represent the input distribution well. Even

an increase in the number of components to six in the

conventional fitting routine does not yield a better distribu-

tion. An attempt to fit the data with six components merges

two components near the primary peak of the distribution,

and results in extremely large uncertainties for the two extra

components. On the other hand, the entropy maximization

inherent in MEMFCS ensures that the wide input distribution

of tDi is well-represented by this analysis.
It is evident that a conventional fit with a small number of

components does not yield a reliable description of a highly

heterogeneous system. MEMFCS on the other hand repre-

sents components with awide range of amplitudes rather well.

Thus, if there are reasons to believe that the specimen under

investigation contains a distribution of different species, it is

essential to use an analysis algorithm, such asMEMFCS, that

can not only represent a continuous distribution of species, but

also avoids an unnecessarily narrow interpretation of the data.
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