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ABSTRACT Fluorescence recovery after photobleaching (FRAP) is widely used to measure fluorophore diffusion in artificial
solutions and cellular compartments. Two new strategies to analyze FRAP data were investigated theoretically and applied
to complex systems with anomalous diffusion or multiple diffusing species: 1) continuous distributions of diffusion coeffi-
cients, �(D), and 2) time-dependent diffusion coefficients, D(t). A regression procedure utilizing the maximum entropy method
was developed to resolve �(D) from fluorescence recovery curves, F(t). The recovery of multi-component �(D) from simulated
F(t) with random noise was demonstrated and limitations of the method were defined. Single narrow Gaussian �(D) were
recovered for FRAP measurements of thin films of fluorescein and size-fractionated FITC-dextrans and Ficolls, and multi-
component �(D) were recovered for defined fluorophore mixtures. Single Gaussian �(D) were also recovered for solute
diffusion in viscous media containing high dextran concentrations. To identify anomalous diffusion from FRAP data, a theory
was developed to compute F(t) and �(D) for anomalous diffusion models defined by arbitrary nonlinear mean-squared
displacement �x2� versus time relations. Several characteristic �(D) profiles for anomalous diffusion were found, including
broad �(D) for subdiffusion, and �(D) with negative amplitudes for superdiffusion. A method to deduce apparent D(t) from F(t)
was also developed and shown to provide useful complementary information to �(D). �(D) and D(t) were determined from
photobleaching measurements of systems with apparent anomalous subdiffusion (nonuniform solution layer) and superdif-
fusion (moving fluid layer). The results establish a practical strategy to characterize complex diffusive phenomena from
photobleaching recovery measurements.

INTRODUCTION

Fluorescence recovery after photobleaching (FRAP) has
been used extensively to study fluorophore diffusion in
artificial solutions containing solutes and polymers, and in
cellular membrane and aqueous compartments. In spot pho-
tobleaching, fluorophores in a defined volume are irrevers-
ibly bleached by a brief intense laser beam; the subsequent
kinetics of fluorescence recovery in the bleached region
provides a quantitative measure of fluorophore translational
diffusion. For spot photobleaching in two dimensions (as in
lipid membranes), computational methods have been re-
ported to deduce fluorophore diffusion coefficient (D) from
bleach spot profile and fluorescence recovery curve shape,
F(t) (Axelrod et al., 1976; Barisas and Leuther, 1979;
Yguerabide et al., 1982; Van Zoelen et al., 1983; Soumpa-
sis, 1983). However, it is often invalid to apply exact
theories to determine D because of nonidealities in laser
beam profile, fluorophore diffusion during the bleach time,
and other complexities such as noncylindrical beam z-pro-
file in three-dimensional aqueous compartments. For quan-

titative determination of fluorophore D in the aqueous phase
of cell cytoplasm, we introduced a calibration procedure
where the half-time (t1/2) for fluorescence recovery in cells
is compared to t1/2 measured in thin layers of fluorophores
dissolved in artificial solutions of known viscosity (Kao et
al., 1993; Seksek et al., 1997). These analytical and empir-
ical methods are useful for determination of single, time-
independent diffusion coefficients, but are not easily
adapted to complex diffusive phenomena such as anoma-
lous diffusion or diffusion of multiple species with different
diffusion coefficients.
Solute diffusion is described as “normal” or “simple” in

a homogeneous medium such as a liquid solvent, in which
case solute transport is described adequately by a single
diffusion coefficient. There are many environments and
situations in which solute diffusion cannot be described in
terms of a single diffusion coefficient. One example is
anomalous diffusion. The diffusion of a solute is said to be
anomalous if the mean-squared displacement (�x2�, see The-
ory section) varies with time in a nonlinear manner. In such
systems the diffusion coefficient is not constant, but time-
and/or space-dependent. A number of different physical
mechanisms giving anomalous diffusion have been de-
scribed (Bouchaud and Georges, 1990; Drake and Klafter,
1990; Klafter et al., 1996; Artuso, 1997) (see Discussion).
Saxton has addressed several potential mechanisms of
anomalous diffusion that are relevant to solute transport in
cell membranes involving binding and collisional interac-
tions with mobile and immobile obstacles (Saxton, 1990,
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1993, 1994a, b, 1996). Another example of nonsimple dif-
fusion is the presence of two or more diffusing species, each
of which is described by a single diffusion coefficient.
Without prior knowledge of the presence of multiple dif-
fusing species, as is the case in cellular environments where
heterogeneous binding can occur, the data can be wrongly
interpreted as anomalous diffusion. Recently, anomalous
diffusion of fluorophores in planar membranes and polymer
networks has been found (Feder et al., 1996; Schutz et al.,
1997; Starchev et al., 1997).
Photobleaching data in cell membrane and aqueous com-

partments have generally been analyzed in terms of a single
diffusing component with or without an immobile fraction.
In one study the possibility of two distinct diffusing species
was considered (Gordon et al., 1995). The potential pitfalls
in the assumption of simple diffusion and the significance of
long tail kinetics in diffusive phenomena have been recog-
nized (Nagle, 1992), and recent papers have begun to con-
sider how to interpret photobleaching data in systems with
complex or anomalous diffusion (Feder et al., 1996; Coelho
et al., 1997; Ölveczky and Verkman, 1998). In this study we
introduce the idea that fluorescence recovery data, F(t), can
be resolved in terms of a continuous distribution of diffu-
sion coefficients, �(D). An effective regression method to
recover �(D) from F(t) was developed, validated, and ap-
plied to experimental photobleaching measurements on de-
fined fluorophore mixtures. �(D) curve shape was then
related to specific models of anomalous diffusion, and ex-
perimental examples are presented of anomalous subdiffu-
sion and superdiffusion. An independent method to analyze
F(t) for anomalous diffusive processes in terms of time-
dependent diffusion coefficients, D(t), was also developed
and validated experimentally. The results indicate that de-
termination of �(D) and D(t) from photobleaching data
provides a systematic approach to identify and quantify
simple and anomalous diffusive phenomena.

THEORY

Multicomponent and anomalous diffusion

Solute diffusion is described by the Smoluchowski equation,

�C�r, t�/�t� D�2C�r, t� (1)

where D is the diffusion coefficient, C(r, t) is the space- and
time-dependent solute concentration, and �2 is the Lapla-
cian operator. The time course of fluorescence recovery
after photobleaching, F(t), is obtained by solving Eq. 1 with
appropriate initial and boundary conditions. The general
form of F(t) for spot photobleaching (circle of radius w) in
two dimensions is (Axelrod et al., 1976),

F�t� � f �K, t/�D� (2)

where K is the bleach depth and �D � w2/4D is the “char-
acteristic” diffusion time in two dimensions. Equation 2 is
valid for FRAP experiments in planar membranes and in
thin films of liquids. For fixed K and w, F(t) is a function of

[Dt] so that the curve shape of f(Dt) is identical for any
fluorophore in any liquid. We define f(Dt) as the basis
recovery curve shape for simple diffusion of a single species
(see below). A single parameter (for example, the recovery
half-time, t1/2) is thus sufficient to determine the diffusion
coefficient of a single diffusing species. When there is more
than one fluorophore in the sample, each with a different
diffusion coefficient Di, F(t) becomes,

F�t� � �
i

ai f �Dit� (3)

where ai is the fractional bleach depth of fluorophore i.
Anomalous diffusion of a solute is distinguished from

simple (also called normal) diffusion by the time-depen-
dence of the mean-squared displacement �x2� in single par-
ticle analysis. For simple diffusion in n dimensions, �x2� �
2nDt. For anomalous diffusion �x2� does not increase lin-
early with time. The exact time-dependence of �x2� for
anomalous diffusion depends on the physical structure (bar-
riers, channels, etc.) of the medium in which the solute
diffuses (see Discussion). Various mathematical forms for
�x2� have been described, such as �x2� � t�, where � 	 1
(Bouchaud and Georges, 1988). Anomalous diffusion is
classified as subdiffusive (� 
 1), superdiffusive (� � 1),
or transiently anomalous (� 	 1 for t1 
 t 
 t2). �x2� can in
general be written,

�x2� � 4tD�t� � 4tDog�t/�� (4)

where Do is a constant (unit cm2/s), and � is a characteristic
time constant for anomalous diffusion (to make t/� dimen-
sionless). If Eq. 1 is valid for an anomalous diffusive
process with D replaced by D(t) (see below for a case when
this is not true), then time can be parametrized in �,

�C/�� � Do�2C; � � �g�t/��dt (5)

The spatial concentration profile of the solute obtained in
anomalous diffusion at scaled time � is thus identical to that
obtained for simple diffusion at time t. In the context of
photobleaching experiments, the scaled variable [Do�] cor-
responds to [Dt] for simple diffusion. Thus, the fluorescence
recovery curve shape is f(Dt) for simple diffusion (see Eq.
2) and f (Do�) for anomalous diffusion.
One example of anomalous superdiffusion is simple dif-

fusion coupled with directional solute transport, such as
fluid flow with a velocity of v cm/s. The mean-squared
displacement increases nonlinearly with time,

�x2� � 4Dt� v2t2 (6)

The time-dependent diffusion coefficient in this case is
D(t) � Do(1 � v2t/4D). However, Eq. 1 is no longer valid
unless an additional transport term is included (Axelrod et
al., 1976). In this case the fluorescence recovery curve
shape cannot be rigorously determined by time-scaling the
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recovery curve shape f (Dt) obtained in the absence of
transport.

Strategies for analysis of F(t)

Two independent formalisms are described for the analysis
of FRAP data in a model-independent manner. In the first
case, experimental F(t) is fitted to a continuous distribution
of diffusion coefficients, �(D). For multiple diffusing spe-
cies each undergoing simple diffusion, �(D) rigorously de-
scribes the contribution of each species to the recovery. As
demonstrated in Results, �(D) is also useful for identifica-
tion of anomalous subdiffusive and superdiffusive pro-
cesses. In the second case, F(t) is directly converted to D(t).
As shown in Results, D(t) is useful for identification of
simple and complex diffusive phenomena. For simple dif-
fusion D(t) is constant; for anomalous diffusion of a single
diffusing species, D(t) formally defines the diffusive pro-
cess and can permit computation of �x2� versus time.

COMPUTATIONS

Distribution of diffusion coefficients

Fluorophore diffusion is described by a distribution of dif-
fusion coefficients, �(D),

F�t� � ���D�f �Dt�dD (7)

where f(Dt) is the basis function defined above. The maxi-
mum entropy method (MEM) is used here for determination
of �(D) from F(t). Explained briefly, let �(D) be the con-
tinuous distribution function with D in the range of Dmin to
Dmax (typically 109 to 104 cm2/s here). For numerical
computation, �(D) is discretized at equal intervals in log(D)
space,

F�t� � �
i�1

m

�i f �Dit� (8)

where m is the number of discrete components, and �i is the
amplitude corresponding to the ith diffusion coefficient Di.
The MEM analysis gives a distribution �(D) that minimizes
�2 and maximizes entropy S,

�2 � �
i

ri2 � �
i

�F�ti� 	 Fc�ti��2/
i2 (9)

S� 	 �
i

�i log �i (10)

where ri is the residual, Fc(ti) the computed time course, and

i is the variance of the experimental data. Maximization of
S assures that the distribution is as wide as allowed by the
information content in the data (Swaminathan and Peria-
samy, 1996) so that a structured �(D) is obtained only if
warranted by the data. The analysis of F(t) begins by

specifying an initial distribution for m (50 or 100) diffusion
coefficients equally spaced in log(D) space. Without prior
information about the distribution, a flat distribution of
equal amplitude (�i � 1/m) is assumed. F(t) is calculated
using Eq. 8, followed by the calculation of ri (for �2 com-
putation) and appropriate partial derivatives (Skilling and
Bryan, 1984). The distribution is modified using an m-
dimensional correction vector generated to decrease �2 and
increase S (Skilling and Bryan, 1984). An option to retain
negative �i values (or set them to zero) is exercised before
the next iteration. The process is continued iteratively until
the residuals are acceptably random or �2 does not decrease
further. For each F(t) the MEM analysis is repeated 10 times
with different amplitudes for initial flat distributions to
ensure robustness of the fitted �(D).
Applications of MEM to various types of experimental

data, including biological systems, have been reviewed (La-
valette et al., 1991; Brochon, 1994). The MEM algorithm
used here is similar to that described to obtain a distribution
of lifetimes from fluorescence decay data (Swaminathan et
al., 1994; Swaminathan and Periasamy, 1996). The basis
function for lifetime analysis is an exponential exp(t/�),
whereas the basis function for analysis of FRAP data is
f (Dt).

Experimental determination of basis
function f (Dt)

Fluorescein in PBS (D � 2.6 � 106 cm2/s) was used for
generation of the basis function f (Dt). F(t) (0–200 ms) with
bleach depth �20% was obtained as the average of 100
measurements using a sample of thickness 5 �m. The basis
function was found to be independent of bleach depth for
depth 
30%, and independent of sample thickness for
thickness 
8 �m. F(t) was empirically fitted to a triple
exponential function and the resultant smooth curve was
converted to basis function f(Dt) by multiplying t by 2.6 �
106.

D(t) computation

As described above, the basis function f (y) for simple
diffusion (y � Dt) is equivalent to that for anomalous
diffusion with y � Do�. D(t) � dy/dt was computed from
experimental F(t) as follows: a smooth curve representation
of y was obtained by cubic spline interpolation using
Fc(ti) � f (yi), where Fc(ti) is the smooth fitted datum for
experimental F(ti). D(ti) � (yi�1  yi1)/(ti�1  ti1) was
then computed.

F(t) simulations

F(t) for specified �(D) was computed using Eq. 8 with cubic
spline interpolation as necessary. Random noise was added
to each data point, F(ti) � qzi, where q is an amplitude
factor related to signal-to-noise (S/N) ratio, and zi is a
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Gaussian-distributed random number with zero mean and
unit variance (generated as described by Press et al., 1988).

EXPERIMENTAL METHODS

Fluorescence recovery after photobleaching

The FRAP apparatus for these studies was described in detail previously
(Kao and Verkman, 1996; Seksek et al., 1997). The output of an argon ion
laser (488 nm, Innova 70-4, Coherent Inc., Santa Clara, CA) was modu-
lated by serial acousto-optic modulators (response time 
2 �s) and di-
rected onto the stage of an inverted epifluorescence microscope. The beam
was reflected by a dichroic mirror (510 nm) onto the sample through an
objective lens (Nikon 20� dry, numerical aperture 0.75). For most exper-
iments, the laser beam power was set to 50–100 mW and the attenuation
ratio (the ratio of bleach to probe beam intensity) was set to 5000–15000.
Sample fluorescence was filtered by serial barrier (Schott glass OG515)
and interference (530 � 15 nm) filters and detected by a gated photomul-
tiplier (9828A; Thorn EMI) whose gain was decreased transiently during
the bleach period. Photomultiplier signals were amplified and digitized at
1 MHz using a 14-bit analog-to-digital converter. Beam modulation, pho-
tomultiplier gating, and data collection were software controlled. Signals
were sampled before the bleach (generally 103 data points in 100 ms), then
at high resolution (1 MHz sampling rate) over 10–100 ms, followed by low
resolution (generally 104 points) over 0.1 to �10 s.

Sample preparation and
photobleaching procedures

Specified microliter solution volumes were “sandwiched” between two
glass coverslips to produce aqueous layers of uniform thickness �5 �m.
Doubly size-fractionated FITC-dextrans and Ficolls with narrow size dis-

tributions were prepared as described previously (Seksek et al., 1997).
Aqueous samples consisted of fluorescein, FITC-dextrans, and FITC-
Ficolls, individually or in combinations, in phosphate-buffered saline
(PBS). In some experiments, up to 45% nonfluorescent dextran (40 kDa,
Pharmacia) was added to the saline. In an experiment to simulate subdif-
fusion, a PBS solution of fluorescein of nonuniform thickness in triangular
trough channel (interferometry calibration standard described in Farinas
and Verkman, 1996) was photobleached. In an experiment to simulate
superdiffusion, the microscope stage was translated linearly at specified
velocity during the bleach and probe periods. In all experiments beam
intensity and attenuation ratio were adjusted to produce 
30% bleaching
and to avoid photobleaching by the probe beam. Measurements were done
at 23°C in a temperature-controlled darkroom. Generally, data from 5 to 20
individual FRAP experiments were averaged for each stored recovery
curve, except for the experiment simulating superdiffusion where no av-
eraging was done.

RESULTS

Fig. 1 shows fluorescence photobleaching recovery curves
F(t) for single fluorophores in PBS: fluorescein (A), two
FITC-Ficoll size fractions (B and C), and 70 kDa FITC-
dextran (D). Using the MEM fitting procedure, �(D) with
single peaks were obtained at 2.7 � 106 cm2/s (fluores-
cein), 3.5 � 107 cm2/s (FITC-Ficoll, fractions 30–33),
8.7� 108 cm2/s (FITC-Ficoll, fractions 10–13), and 2.3�
107 cm2/s (FITC-dextran, 70 kD). The �(D) produced
good fits to F(t) (smooth curves, top panels) with random
distributions of residuals, �F(t). The �(D) distributions had
narrow width except those for the large FITC-Ficoll (frac-

FIGURE 1 Fluorescence recovery data and fitted diffusion coefficient distributions for single fluorophores in PBS. (A) Fluorescein (50 �M), (B)
FITC-Ficoll (fractions 30–33, 4 mg/ml), (C) FITC-Ficoll (fractions 10–13, 4 mg/ml), (D) FITC-dextran (70 kD, 4 mg/ml). Top panels: Experimental F(t)
data and fitted curve (smooth line) obtained by MEM analysis. Second panels: Residuals �F(t) of the fit. Residuals are shown on contiguous linear time
scales as acquired experimentally (see Experimental Method). Third panels: Fitted distributions of diffusion coefficients �(D) by MEM analysis. Bottom
panels: Time-dependent diffusion coefficient D(t) determined from F(t) (see Computations section).
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tions 10–13). A narrow distribution indicates that the infor-
mation content in the F(t) data is excellent at the level of
experimental noise (computed signal-to-noise ratio �40).
The wider distribution for the large FITC-Ficoll is attribut-
able to polydispersity in FITC-Ficoll size, and/or decreased
data quality (see below). Computed D(t) (bottom panels)
were essentially constant in A, B, and D. The decreasing
D(t) in C is consistent with the possible polydispersity in
FITC-Ficoll size mentioned above. These results establish
the utility of the basis function approach, and indicate that
recovery curve shape is invariant for simple diffusion of a
single species.
Simulations of F(t) were done to test the ability of the

MEM analysis to recover �(D) distributions for nonsimple
diffusion. Fig. 2 A shows five �(D): (a) single fluorophore
undergoing simple diffusion; (b) two fluorophores with
different diffusion coefficients, each undergoing simple dif-
fusion; (c) Gaussian distribution; (d) asymmetric Gaussian
distribution; (e) exponential distribution. Fig. 2 B shows
simulated F(t). The parameters for each �(D) (see Fig. 2
legend) were chosen to give identical recovery t1/2 as seen
by the common intersection point at t1/2 � 40 ms. The F(t)
curve shapes for the different �(D) distributions were qual-
itatively similar but had subtle quantitative differences. A
magnified view of the differences in curve shape is provided
in Fig. 2 C, showing the difference between each curve and
curve a, [Fx(t)  Fa(t)]. The maximum deviation (0.005–
0.015) of any curve from Fa(t) is comparable in magnitude

to the random noise [�F(t) in Fig. 1] in typical experimental
photobleaching data.
MEM analysis was used to recover �(D) from F(t).

Gaussian random noise (0.005, S/N � 40) was added to the
simulated F(t) in Fig. 2 B to give S/N comparable to typical
experimental data. Simulated F(t) with this level of noise for
the two-component system (case b) is shown in Fig. 3 A
(middle panel). The �(D) distributions fitted to the F(t) data
with added noise are shown in Fig. 2 D, a–e. For one and
two component systems, narrow, single and double-peaked
distributions were recovered. The peak positions of �(D) are
in good agreement with simulated parameters (see figure
legend): D � 3 � 107 cm2/s for single diffusion (a), and
1.0 � 107 and 9.7 � 107 cm2/s for two-component
diffusion (b). For Gaussian and skewed Gaussian simula-
tions, the �(D) recovered by MEM analysis was broad and
the shape of the distribution was similar to �(D) used for
F(t) simulation. The peak positions were close to those used
for simulation: 4.3 � 107 cm2/s (Gaussian, c) and 5.3 �
107 cm2/s (skewed Gaussian, D). However, �(D) recov-
ered for case e (peak at 5.3 � 107 cm2/s) did not have the
sharp rising edge of the exponential distribution. The results
indicate limitations for quantitative recovery of �(D) that
result from one or more of the following causes: poor
signal-to-noise ratio, incomplete or truncated recovery
curve, and insufficient or poor discretization of log(D)
space.

FIGURE 2 Simulated F(t) and fit-
ted �(D) for five diffusion coefficient
distributions. (A) The five distribu-
tions (a–e) used for the F(t) simula-
tion are shown: (a) single diffusion
coefficient, D � 3.2 � 107 cm2/s;
(b) two diffusion coefficients, D1 �
106 cm2/s and D2 � 1.1 � 107

cm2/s with fractional amplitudes 0.5;
(c) Gaussian distribution, Dmax �
3.3 � 107 cm2/s and width � 0.5 in
log(D) space; (d) skewed Gaussian
distribution, Dmax � 5.9 � 107

cm2/s, and widths 0.5 (left side) and
0.1 (right side) units in log(D) space;
(e) exponential distribution, Dmax �
7.2 � 107 cm2/s and “decay” con-
stant 0.5 units in log(D) space. D val-
ues and distribution widths were cho-
sen to give identical t1/2 for
fluorescence recovery of 40 ms. (B)
F(t) simulated for the distributions
(shown without added random noise).
(C) Difference between curve Fa(t)
(single diffusion coefficient) and each
of the other curves Fx(t) shown on an
expanded scale. (D) Random noise
(S/N � 40) were added to simulated
F(t) in A and �(D) determined by
MEM analysis.
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The effect of signal-to-noise ratio in F(t) was examined
by the ability of MEM to resolve two diffusion coefficients
(D1 � 106 and D2 � 1.1 � 107 cm2/s, fractional ampli-
tudes 0.5). Fig. 3 A shows simulated F(t) with added noise
giving indicated S/N. Recovered �(D) are shown in Fig. 3 B
with corresponding fitted F(t) as the smooth curves in Fig.
3 A. Up to a noise level of S/N � 20, the two diffusing
species could be resolved as narrow peaks in �(D). How-
ever, the accuracy of D value recovery was lessened with
lowered S/N; in this example the position of one peak was
shifted to lower D. The accuracy of the recovered diffusion
coefficients was also tested in simulated F(t) with S/N of 40
for different D1/D2 and fractional amplitudes. For fractional
amplitudes of 0.5, a bimodal �(D) with two distinct diffu-
sion coefficients could be obtained when D1 and D2 differed
down to a factor of 3 (not shown). For D1/D2 � 9, two
diffusion coefficients could be obtained when fractional
amplitudes differed by up to a factor of 10. Where the �(D)
fits were inadequate, unimodal broad distributions were
recovered with peak positions located between the correct D
values. Truncation of F(t) tended to broaden �(D) distribu-
tions. For example, F(t) in Fig. 3 A (curve b) was analyzed
from zero time to times corresponding to F(t)� 0.90–0.99.
Increasingly broad bimodal �(D) were obtained for 0.99–

0.94, whereas unimodal broad �(D) were recovered with
earlier truncation. Discretization of log(D) space also mildly
affected �(D) width; empirically, use of 10–20 intervals in
log(D) per decade was found to be optimal for the F(t) curve
fitting done in this study.
The MEM analysis was next tested on experimental F(t)

for two-component and three-component fluorophore mix-
tures consisting of combinations of fluorescein, FITC-Ficoll
(fractions 30–33), and FITC-Ficoll (fractions 10–13) (see
Fig. 1 for data on each individual component). For the
two-component mixtures (Fig. 4, A and B), �(D) gave two
peaks with D values (1.5 � 106 and 2.8 � 107 cm2/s in
A; 1.9 � 107 and 6.3 � 108 cm2/s in B) in agreement to
within a factor of 2 with those measured for the individual
fluorophores (2.7 � 106 cm2/s, Fig. 1 A; 3.5 � 107

cm2/s, Fig. 1 B; 8.7 � 108 cm2/s, Fig. 1 C). For the
three-component system (Fig. 4 C), �(D) showed three
peaks (1.8 � 106, 1.9 � 107, and 2 � 108 cm2/s) in
reasonable agreement with peak positions for the faster two
of the three diffusing species. These results demonstrate the
ability of MEM analysis to resolve the presence of multiple
diffusing species, with typical accuracy for determination of
individual D values to within a factor of 2.
Experimental F(t) for fluorescein in complex heteroge-

neous media were obtained for analysis of �(D) and D(t).
The samples consisted of fluorescein in viscous dextran
solutions (Fig. 5, A and B), fluorescein in a PBS layer of
nonuniform thickness (trough channel simulating anoma-
lous subdiffusion, Fig. 5 C) and fluorescein in a glycerol
solution in which the solution layer was translated at con-
stant velocity (simulating directed transport giving anoma-
lous superdiffusion, Fig. 5 D). �(D) obtained by MEM
analysis is shown for each case together with D(t) computed
from F(t). In viscous dextran solutions (30 and 45% dextran
with relative viscosities of �6 and 30, respectively) �(D)
was a narrow unimodal distribution and D(t) is nearly
constant, indicating simple diffusion. For photobleaching in
the trough solution geometry, where fluorescence recovery
requires diffusion from a thin to a thick region of the same,
�(D) was broad and a peak at low D was seen, and D(t)
decreased with time. For anomalous superdiffusion in Fig. 5
D, F(t) could not be fitted by MEM (dashed curve in top
panel) with the constraint that all �i are equal to or greater
than zero, as was imposed in the previous analyses. How-
ever, F(t) could be fitted reasonably well if the positive
value constraint was omitted. The mathematical basis for
negative �i values in superdiffusion is described in the
Discussion, where it is concluded that the need to include
negative �i is a useful signature for anomalous superdiffu-
sion. D(t) in Fig. 5 D increased with time, as expected for
anomalous superdiffusion due to the moving liquid layer.
The results above indicate that simple diffusion can be

confirmed by a single-peaked �(D) and constant D(t). Other
forms of �(D) and D(t) indicate nonsimple diffusion. Sim-
ulations were done to show qualitative shapes of �(D) and
D(t) for several types of anomalous diffusion. In Fig. 6, F(t)
was simulated for diffusion models defined by the mean-

FIGURE 3 Resolution of diffusion coefficients in a two component
system as a function of signal-to-noise ratio (S/N). (A) Simulated F(t) for
two diffusion coefficients (106 and 1.1� 107 cm2/s, fractional amplitudes
0.5) with added Gaussian random noise to give indicated S/N. (B) Fitted
�(D) by MEM analysis.
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squared displacement �x2� versus time relations, �x2� � (a)
4Dt (simple diffusion); (b) 4Dt[a � (1  a)exp(t/�)]
(anomalous subdiffusion type I); (c) 4Dtm, m 
 1 (anoma-
lous subdiffusion, type II); (d) 4Dtm, m � 1 (anomalous
superdiffusion). Fig. 6 A shows �x2� versus time plots with
the corresponding D(t) shown in Fig. 6 B as D/Do vs. log(t).
After inclusion of typical experimental noise (S/N � 40)
into F(t) (Fig. 6 C), �(D) were determined by MEM anal-
ysis (Fig. 6 D). Compared to �(D) for simple diffusion of a
single species (model a), which is a narrow Gaussian, �(D)
for anomalous subdiffusion was either unimodal with broad
and asymmetric distribution (model b) or multimodal (mod-
el c). For superdiffusion (model d), F(t) could not be fitted
with the constraint that all �i � 0. �(D) required inclusion
of negative �i (d in Fig. 6 D) (see Discussion).

DISCUSSION

The purpose of this study was to develop and evaluate
procedures to analyze fluorescence photobleaching recov-
ery experiments on systems having complex diffusive prop-
erties. This study was motivated by the substantial body of
photobleaching data on cell membranes and cytoplasm in-
dicating that diffusion in biological systems is not simple
and cannot be adequately described by a single invariant
diffusion coefficient. Fluorophore diffusion in biological
systems is often complex because of binding interactions
that may produce apparent heterogeneity in diffusion coef-
ficients or physical constraints that produce anomalous dif-
fusive phenomena such as percolation, convection, and

sieving (Aon and Cortassa, 1994; Kopf et al., 1996; Licinio
and Teixeira, 1997). As discussed in the Introduction, little
attention has been given to the analysis of photobleaching
recovery measurements in terms of complex diffusive phe-
nomena. Although the task of deducing physical diffusion
mechanisms from photobleaching data is in general not a
rigorously solvable problem having a unique solution, we
demonstrated that considerable insight into diffusion mech-
anisms can emerge from analysis of the full fluorescence
recovery curve shape.
Based on the results here, practical guidelines are pro-

posed for the acquisition and analysis of photobleaching
experiments in complex systems. The ability to resolve
complex diffusive processes requires data over extended
times (generally �10–100 recovery half-times) with good
signal-to-noise ratio (generally �20:1). High-quality basis
recovery curves for an appropriate sample (with simple
diffusion) should be acquired for every set of photobleach-
ing experiments to match optical and other instrumental
parameters. It is also useful to measure the recovery of a
second fluorophore with simple diffusion to confirm the
accuracy of the basis curve. Because of the sensitivity of the
�(D) and D(t) analyses to nonrandom deviations, systematic
errors in data acquisition should be avoided such as bleach-
ing by the probe beam and drift in probe intensity or optical
alignment. Another potentially serious systematic artifact
can be the presence of recovery processes that are unrelated
to solute diffusion, such as reversible photobleaching result-
ing from triplet state population and recovery. Finally, the
acquisition of multiple F(t) data sets with appropriate bleach

FIGURE 4 Resolution of multiple diffusing species for fluorophore mixtures in PBS. (A) Mixture of fluorescein and FITC-Ficoll (fractions 30–33). (B)
FITC-Ficolls (fractions 10–13 and 30–33). (C) Mixture of fluorescein and FITC-Ficolls (fractions 10–13 and 30–33). Experimental F(t) and the fitted
curves shown in top panel, residuals �F(t) in middle panel, and fitted �(D) in bottom panel.
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depths (generally 
30%) is indicated to test the robustness
of the fitted results.
For the analysis of F(t) curves, we propose that both the

complementary distribution �(D) and time-dependent D(t)
analyses be carried out. It is recognized that �(D) formally
describes the contributions of multiple diffusing species
with differing D, and that D(t) describes anomalous diffu-
sion of a single diffusing species. However, there is gener-
ally little a priori knowledge about the nature of a complex
diffusive process in a biological system. For example, the
diffusion of a labeled membrane protein in the plane of a
membrane might be affected by binding to other proteins or
skeletal elements resulting in heterogeneity in diffusion
coefficients; the complex membrane structure might pro-
duce anomalous subdiffusion, or energy-dependent trans-
port or convective processes might produce anomalous su-
perdiffusion. The complementary information afforded by
determination of �(D) and D(t) can be useful in defining the

diffusion mechanism. A single narrow �(D) and constant
D(t) provides strong evidence for simple diffusion of a
single species. The presence of a small number of distinct
diffusing species produces narrow symmetric peaks in the
�(D) analysis. Superdiffusion requires the inclusion of neg-
ative amplitudes in the �(D) analysis and produces an
increase in diffusion coefficient over time. Anomalous sub-
diffusion produces a decrease in diffusion coefficient over
time and a complex �(D) with positive amplitudes and
broad peaks. There are likely to be cases that do not easily
fit in the above categories where more than one complexity
exists. Experimental maneuvers to distinguish among vari-
ous possibilities are helpful in such situations, such as
cellular energy depletion, use of different fluorophores, or
biochemical modification of cell structure or metabolic sta-
tus. In addition, single particle tracking could provide
unique information about complexities and heterogeneity in
D(t) that cannot be deduced from ensemble-averaged pho-

FIGURE 5 Photobleaching recoveries for fluorescein in different environments and analysis by �(D) and D(t) methods. (A and B) Fluorescein (50 �M)
in PBS containing indicated percentages of 40 kDa (nonfluorescent) dextran. (C) Fluorescein in PBS in a narrow triangular trough (simulating anomalous
subdiffusion). A spot at the center of the trough was bleached where solution thickness was maximal. (D) Fluorescein in PBS containing 60% glycerol in
which the microscope stage was linearly translated at velocity �50 �m/s (simulating anomalous superdiffusion). The upper three panels show the
experimental F(t) and fitted curve, residuals �F(t) and fitted �(D). Single narrow peaks in �(D) with positive amplitudes were found for (A) and (B), and
a broad peak with bimodal distribution for (C). For sample (D), �(D) regression required positive and negative amplitudes (see text). The bottommost panel
shows fitted D(t). D(t) is approximately constant for (A) and (B), decreases for (C), and increases for (D).
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tobleaching measurements. Single particle tracking has
been used in many studies of two-dimensional diffusion of
bead-labeled, membrane-associated components (Qian et
al., 1991; Feder et al., 1996; Saxton and Jacobson, 1997,
and references therein); our laboratory developed an ap-
proach utilizing astigmatic optics to carry out single particle
tracking in three dimensions (Kao and Verkman, 1994).
As discussed above, �(D) can be interpreted directly for

multiple species with different diffusion coefficients under-
going simple diffusion. Although �(D) for anomalous dif-
fusion cannot be simply interpreted in terms of heterogene-
ity in diffusive properties, there exists a mathematical
rationale for its determination. In anomalous subdiffusion
where D(t) decreases monotonically with time, F(t) is de-
rived from basis function f (Dt) by progressive time-stretch-
ing so that the second time derivative of F(t) is negative at
all times; therefore, a unique �(D) exists in which the �i are
positive. In anomalous superdiffusion where D(t) increases
with time, the inflection in F(t) curvature produces both
positive and negative d2F(t)/dt2. �(D) with only positive �i
cannot be fitted, but a unique �(D) with positive and neg-
ative amplitudes exists. Mathematically, if f (Dt) is a single
exponential function [1  exp(kt)], then Eq. 7 formally
defines F(t) in terms of the Laplace transform of �(D); for
experimental F(t) with dF(t)/dt � 0, it is possible to write
[1  F(t)] as the ratio of two polynomials, which by the
Heaviside theorem indicates the existence of a unique in-

verse Laplace transform (Pipes and Harvil, 1970). This
argument is valid for arbitrary f (Dt) that can be expanded as
a sum of exponential functions. Our experience with many
examples of simulated subdiffusion and superdiffusion (as
in Fig. 6) supports the contention that an �(D) always exists
with positive �i for subdiffusion, and with positive and nega-
tive �i for diffusion having a component of superdiffusion.
A key feature of the analysis procedures developed here

was the use of a “basis function” f (Dt) that describes the
fluorescence recovery curve shape for simple diffusion of a
single species. The basis function approach was validated
by demonstrating accurate �(D) recovery for single and
multi-component fluorophore mixtures. An experimentally
derived basis function has important advantages over ana-
lytically derived recovery curves that require specification
of laser beam profile and other details of the optics. The
f (Dt) used here is measured on “reference” samples under
conditions identical to those used for the “test” samples. It
is noted that the determination of accurate f (Dt) is essential
for the analysis. There are some restrictions on the use of an
experimentally derived basis function. The basis function is
formally defined in Eq. 2 for constant K, so that analysis of
data with large bleach depths (generally �30%) should not
be done using basis functions generated for small bleach
depths. The requirement of identical beam geometry for
reference and test samples generally restricts sample geom-
etry to a thin layer, where beam width is constant. The basis

FIGURE 6 F(t) and �(D) for sim-
ulated anomalous diffusion models.
Model a: D(t) � 3.2 � 107 cm2/s
(simple diffusion); model b: D(t) �
3.3 � 107 [0.848 � 0.152 exp(t/
0.2)] (anomalous subdiffusion, type
I); model c: D(t) � 2.17 � 107

(t/0.1)0.2 (anomalous subdiffusion,
type II); model d: D(t)� 4.17� 107

(t/0.1)0.2 (anomalous super diffusion).
(A) mean-squared displacement (for
single particle analysis) �x2� � 4tD(t)
vs. t; curves b–d are nonlinear. (B)
D(t) plotted as D/Do vs. t (Do is the
value of D at t � 0.001 s). (C) Sim-
ulated F(t) with noise (S/N� 40) and
smooth fitted curve obtained by
MEM analysis. (D) �(D) determined
by MEM analysis.
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function determined for a thin fluid layer is then applicable
for analysis of thin fluid layer test samples, which in cells
would include plasma membranes, cytoplasm, and nucleo-
plasm. Analysis of photobleaching data in cellular or-
ganelles may require an analytical approach where the dif-
fusion equation is solved directly (Partikian et al., 1998) or
by a Monte Carlo computation (Ölveczky and Verkman,
1998) for specified organelle geometry.
The focus of the analysis here was on relating photo-

bleaching recovery data to nonsimple diffusive phenomena
as defined by �(D) and D(t) functions. The specification of
physical mechanisms that produce various forms of non-
simple diffusion is an important related issue that is not
experimentally addressed in this study. The details of the
physical structure of the environment in which a solute
diffuses is the principal factor that determines the time and
length scales in which the diffusion is simple versus anom-
alous. In pure liquids, diffusion of a solute is anomalous at
extremely short and extremely long time and length scales
(Chandrasekhar, 1943; Ovchinnikov et al., 1989; Bhatta-
charya and Bagchi, 1997). In liquids containing macromo-
lecular solutes or other obstacles, solute diffusion may be-
come nonsimple or anomalous in microseconds to minutes.
Monte Carlo simulations of the diffusion of small solutes
have been done as a function of the mobility and concen-
tration of macromolecular obstacles (Saxton, 1990; 1994a).
In the presence of immobile obstacles, a small solute dif-
fuses through continuous aqueous channels surrounding the
obstacles. When obstacle concentration exceeds the “perco-
lation threshold” (Cp), continuous channels do not exist and
diffusion becomes anomalous at all time and length scales.
For C 
 Cp, solute diffusion is transiently anomalous at
short times, in agreement with theoretical results based on
percolation theory (Havlin and Ben-Avreham, 1987). Ac-
cording to percolation cluster theory, the dimensionality of
the percolation channel is fractal when C � Cp; for C 
 Cp
the dimensionality is fractal for short length scale and
normal at large length scale. If the obstacles are mobile,
there is no percolation threshold at any obstacle concentra-
tion, but solute diffusion may be transiently anomalous.
Another important cause of anomalous diffusion in cell

systems is binding of solutes to mobile and/or immobile
obstacles. In a simple case, solute binding to a macromol-
ecule is defined by a single equilibrium constant with a
unique free energy of binding and mean residence time for
the bound solute. In complex biological systems consisting
of several types of macromolecules and binding sites, the
binding energy and mean residence time may be quite
heterogeneous. Solute diffusion under such conditions has
been recognized to be important in biophysical phenomena
(Nagle, 1992). Monte Carlo simulation of single particle
diffusion for various binding models (obstruction/binding,
distribution of binding/barrier energies) has revealed the
interesting result that anomalous diffusion is sensitive to the
initial condition of diffusing solute (Saxton, 1996).
The anomalous diffusion mechanisms referred to above

are subdiffusive. Various physical mechanisms for anoma-

lous superdiffusion have been discussed (Klafter et al.,
1996, and references therein). Probability distributions with
infinite variances (in contrast to finite variances in normal
and anomalous subdiffusion) become important in nonlin-
ear, fractal, chaotic, and turbulent systems. Such unusual
probability distributions can produce so-called Levy flights
and consequent anomalous superdiffusion. Superdiffusion
of this kind has been observed experimentally in turbulent
fluid flow (Solomon et al., 1993). Evidence for superdiffu-
sion by the Levy flight mechanism has also been reported in
a photobleaching study of the diffusion of dye bound to
cylindrical micelles (Ott et al., 1990).
The physical mechanisms of nonsimple or anomalous

diffusion discussed above are applicable to systems in ther-
mal equilibrium where solute transport is mediated by ran-
dom collisions. Living cells are thermodynamically open
systems in which solutes and energy are continuously ex-
changed with the surroundings. Therefore, solute transport
by mechanisms other than diffusion with random collisions
is possible, such as directed transport of solutes (e.g., move-
ment along microtubules) and fluid convection. Both pro-
cesses can produce anomalous superdiffusion. Similarly,
nonuniform distributions of solute or solvent can produce
anomalous subdiffusion or superdiffusion, depending on the
location of the bleach spot; the experimental examples of
anomalous subdiffusion (Fig. 5 C) and superdiffusion (Fig.
5 D) belong to this category. The analysis methods intro-
duced in this study should be particularly useful in photo-
bleaching studies of living biological systems having one or
more mechanisms of nonsimple diffusion.
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