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Abstract

Cytotoxic T lymphocyte (CTL) epitopes are potential candidates for subunit vaccine design for various diseases. Most of the existing T
cell epitope prediction methods are indirect methods that predict MHC class I binders instead of CTL epitopes. In this study, a systematic
attempt has been made to develop a direct method for predicting CTL epitopes from an antigenic sequence. This method is based on
quantitative matrix (QM) and machine learning techniques such as Support Vector Machine (SVM) and Artificial Neural Network (ANN).
This method has been trained and tested on non-redundant dataset of T cell epitopes and non-epitopes that includes 1137 experimentally
proven MHC class I restricted T cell epitopes. The accuracy of QM-, ANN- and SVM-based methods was 70.0, 72.2 and 75.2%, respectively.
The performance of these methods has been evaluated through Leave One Out Cross-Validation (LOOCV) at a cutoff score where sensitivity
and specificity was nearly equal. Finally, both machine-learning methods were used for consensus and combined prediction of CTL epitopes.
The performances of these methods were evaluated on blind dataset where machine learning-based methods perform better than QM-based
method. We also demonstrated through subgroup analysis that our methods can discriminate between T-cell epitopes and MHC binders
(non-epitopes). In brief this method allows prediction of CTL epitopes using QM, SVM, ANN approaches. The method also facilitates
prediction of MHC restriction in predicted T cell epitopes. The method is available athttp://www.imtech.res.in/raghava/ctlpred/.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

T cells are a vital component of the machinery of pro-
tective immunity, both directly by recognizing and elimi-
nating the self-altered cells and indirectly by controlling the
production of antibodies by the cells of B lineage[1]. The
former function is controlled by cytotoxic T lymphocytes
(CTL) [2]. The CTL cells recognize proteolysed fragments
of the protein in combination with MHC class I molecules
[3,4]. They recognize short peptides of 8–10 amino acids.
The interaction of T cell receptor (TCR) with MHC peptide
complex can be highly flexible, so that a single TCR can
recognize large number of peptides in the context of single
MHC molecule[5]. Hence, identification of CTL epitopes is
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crucial in understanding the rules of T cell activation and de-
signing of synthetic vaccines[6]. The identification of CTL
epitopes have paved a way towards cancer immunotherapy
and many other infectious diseases.

In the past, a number of methods have been developed
for prediction of T cell epitopes from protein sequences.
These methods can be classified as direct and indirect meth-
ods. In 1980s, direct prediction methods based on structural
and sequential analysis of T cell epitopes were developed
[7–10]. DeLisi and Berzofsky[7] proposed that the critical
requirement of T cell epitopes is its ability to form stable
amphipathic structure. Based on this hypothesis, a program
AMPHI was developed[8,9]. Another algorithm SOHHA
was developed based on the assumption that T cell epitopes
consist of a helix of 3–5 helical turns with a narrow strip
of hydrophobic residues on one side. These approaches
were superseded after analysis of MHC peptide complex
by X-ray crystallography, which demonstrated that pep-
tide bound in MHC groove have extended conformation
[12].

Sequential models for T cell epitope prediction were also
developed, which relies on the occurrence of motifs in the
primary sequence rather than considering the secondary
structure[13–15]. In 1988, Rothbard and Taylor collected
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nearly 57 T cell epitopes and based on the patterns, they
published a list of motifs[14]. The proposed motifs are
3–4 residues consisting of glycine followed by hydrophobic
residues. Further, an algorithm was developed based on as-
sociation of cysteine containing T cell epitopes and certain
other residues. The algorithm searches for triplets including
CAK, CLV, CKL and CGS in the peptide sequence[13].
In 1995, two computational T cell epitope prediction tools
EpiMer and OptiMer were developed based on knowledge
of MHC binding motifs[11]. OptiMer predicts amphipathic
segments of protein with high motif density and EpiMer
locates the segments of protein with high motif density.
These direct prediction methods based on structural or se-
quential models have low accuracy[16]. The main cause of
low accuracy may be insufficient data and less specificity
of T cell receptors (TCRs).

In the last decade, a number of indirect methods have been
developed that predict MHC binders instead of T cell epi-
topes. The currently available indirect methods are based on
structure, binding motifs, matrices or Artificial Neural net-
works (ANNs)[17–24]. Due to more specific interaction of
MHC and peptides, performance of these methods are better
in comparison to direct T cell epitope prediction methods.
The major limitation of these methods is that they cannot
discriminate between T cell epitopes and non-epitope MHC
binders. These methods only predict the MHC binders from
antigenic sequences.

In this study, an attempt has been made to develop a
direct method for prediction of CTL epitopes. The data of
CTL epitopes and non-epitopes was obtained from MHCBN
version 1.1, a comprehensive database of MHC binders and
non-binders[25]. The methods based on QM, SVM and
ANN have been developed to discriminate CTL epitope and
non-epitopes.

Fig. 1. The overall architecture of CTLPred showing ANN-, SVM- and QM-based methods. The method is divided in three parts: (1) data extraction
and preprocessing, (2) training and testing of method, (3) consensus and combined prediction approaches. Where E: epitopes, NE: non-epitopes, Nb:
non-binders, LOOCV: Leave One Out Cross-Validation, ANN: Artificial Neural Network, SVM: Support Vector Machine, PE: means predicted epitopes,
PNE: predicted non-epitopes, Cnp: consensus prediction, and Cmp: combined prediction.

The methods based on QM, ANN and SVM achieved an
accuracy of 70.0, 72.2 and 75.5%, respectively, when eval-
uated through Leave One Out Cross-Validation (LOOCV).
The results clearly illustrate that machine-learning tech-
niques are better in comparison to quantitative matri-
ces. The performance of machine learning techniques
was further enhanced by devising consensus and com-
bined approaches based on SVM and ANN. The com-
bined prediction approach achieved a sensitivity of 79.4%,
which is better as compared to any individual meth-
ods. The specificity of consensus approach is 88.4%,
which is better as compared to any other individual
methods.

The methods developed in this study were also evaluated
on a blind dataset that does not contain any pattern used
in training or testing. The performance of these methods
were evaluated on two subgroups: (i) one subgroup having
CTL epitopes and non-epitopes MHC binders, (ii) second
subgroup having CTL epitopes and MHC non-binders.
The performance of all methods was fairly good on both
subgroups as shown inTable 6. This demonstrates that
methods developed in this study are able to discriminate
between CTL epitopes and non-epitopes MHC binders,
which is not possible through MHC binder prediction
methods.

Finally, MHC restriction of predicted CTL epitopes were
examined using quantitative matrices-based MHC binder
prediction method[23]. The quantitative matrices-based
method will determine MHC binding specificity of T
cell epitopes. A schematic view of prediction method
has been shown inFig. 1. In summary, this comprehen-
sive method will speed up the process of vaccine de-
velopment for various dreadful diseases like cancer and
AIDS.
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2. Material and methods

2.1. Datasets

All peptide sequences of the CTL epitopes and
non-epitopes were drawn from MHCBN version 1.1[25].
Initially, 1334 CTL epitopes of 9 amino acids with varying
T cell activity were obtained from the database. All dupli-
cate epitopes and epitopes having unnatural amino acids
were removed. The final dataset consisted of 1137 CTL epi-
topes interacting with nearly 170 MHC class I molecules.
A total of 340 CTL non-epitopes of 9 or more amino acids
were extracted from MHCBN. They were chopped to obtain
overlapping nonamer peptides. All duplicate non-epitopes
and non-epitopes having unnatural amino acids were re-
moved. The dataset finally consisted of 786 non-epitopes
of 9 amino acids. To equalize the number of epitopes and
non-epitopes we added 348 MHC non-binders to the dataset
of non-epitopes. The final dataset consisted of 1137 CTL
epitopes and 1134 non-epitopes. The final ratio of CTL epi-
topes and non-epitopes was kept nearly 1:1 for developing
and evaluating the performance of the method by a single
parameter like accuracy at a cutoff score where the sensitiv-
ity and specificity are nearly equal. This is important as un-
equal ratio of epitope and non-epitopes can mislead the user.

2.2. Blind dataset

The methods developed in this study were evaluated on
a blind dataset to obtain unbiased performance of these
methods. The blind dataset was divided in two subgroups
to analyze whether the prediction method is better at sepa-
rating the T cell epitopes from MHC binders (non-epitopes)
or non-binding peptides. Sixty-three CTL epitopes of var-
ious HIV proteins were collected from HIV database[26].
First subgroup consists of 63 CTL epitopes and equal num-
ber of non-epitope MHC binders randomly extracted from
MHCBN database. Second, subgroup having 63 CTL epi-
topes and 63 MHC non-binders were randomly chosen from
MHCBN. The blind dataset have unique experimentally
proven CTL epitopes, non-epitope MHC class I binders and
MHC non-binders. The MHC class I binders (non-epitopes)
and non-binders were obtained from the MHCBN database.
The peptides of blind dataset had no similarity with T cell
epitopes and non-epitopes used in development of various
prediction methods of this study. The list of CTL epitopes of
blind dataset has been shown in table S1 of supplementary
material.

2.3. Generation of quantitative matrices

To classify the data of CTL epitopes and non-epitopes a
quantitative matrix was generated from the above compiled
dataset. Following equation was used to geneate the quanti-
tative matrix:

QQQ(i,r) = PPP(i,r) − NNN(i,r) (1)

PPPi,r = Ei,r

NAi,r

(2)

NNNi,r = Ai,r

NAi,r

(3)

whereQQQ(i,r) is the weight of residuer at positioni in the
matrix. r can be any natural amino acid and the value ofi
can vary from 1 to 9,PPP(i,r) andNNN(i,r) is the probability of
residuer at position i in CTL epitopes and non-epitopes,
respectively,Ei,r andAi,r is number residuer at positioni in
epitopes and non-epitopes, respectively, andNAi,r is number
of epitopes and non-epitopes having residuer at positioni.

The quantitative matrix geneated by usingEq. (1) has
been shown inTable 1. This matrix is an addition matrix
where the score of a peptide is calculated by summing up
the scores of each residue at specific position along peptide
sequence as

Score=
l∑

i=1

QQQi,r

wherel is the length of the peptide.
For example, the score of peptide “ILKEPVHGV” is cal-

culated as follows

Score= I1 + L2 + K3 + E4 + P5 + V6 + H7 + G8 + V9

(4)

The peptides achieving score more than cutoff score were
considered as CTL epitopes.

2.4. Artificial Neural Network (ANN)

The ANN consists of nodes that receive signals through
interconnecting arcs[27]. ANN was trained by implement-
ing Stuttgart Neural Network Simulator, SNNS version 4.2
[28]. The main feature of this package is that it allows in-
corporation of resulting networks in ANSI C functions for
use in stand-alone code. The number of hidden nodes in the
hidden layer and other learning parameters were optimized
after spending hundreds of hours of computational power.
A feed-forward backpropagation type of ANN with a single
hidden layer (20 nodes), 180 (20×9) input units and 1 output
unit was been used in this study. The input layer consisted
of 180 nodes to represent the peptide of nine amino acids.
Amino acids were represented as binary string of length 20
where 19 “0” and a unique position set to “1” for each amino
acid. The output unit consisted of single binary number 0 or
1, which meant true or false. A linear activation function and
random weights were used for initializing the net. The train-
ing was carried out using error back propagation with Sum
of Squared Error function (SSE). The magnitude of SSE on
training was monitored after each cycle. The ultimate num-
ber of cycles was determined where the network converges,
means the value of error is minimum. The value of the linear
parameter was set to 0.01. The training was carried out for
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Table 1
Example of quantitative matrix for classifying CTL epitopes and non-epitopes

Amino acids Amino acid positions within the peptide

P1 P2 P3 P4 P5 P6 P7 P8 P9

A 0.28 0.32 −0.13 −0.22 −0.04 0.01 0.03 0.21 −0.23
C −0.08 −0.47 −0.20 0.06 −0.09 0.13 0.04 −0.07 −0.23
D −0.06 −0.64 0.01 0.25 −0.29 −0.33 −0.10 −0.18 −0.90
E −0.07 −0.06 −0.29 −0.05 −0.23 −0.18 −0.21 0.33 −0.95
F 0.42 −0.16 −0.07 −0.14 0.29 0.18 0.13 −0.08 0.20
G −0.14 −0.39 −0.15 0.09 −0.14 −0.33 −0.56 −0.33 −0.75
H 0.22 −0.74 0.22 0.43 −0.38 −0.33 0.16 −0.02 −0.68
I 0.02 0.04 −0.05 0.10 0.06 0.20 0.08 0.09 0.05
K 0.03 −0.52 0.01 −0.22 0.15 −0.43 −0.26 −0.17 0.19
L −0.40 0.04 0.00 −0.16 −0.19 −0.04 −0.11 −0.05 0.35
M −0.04 −0.01 −0.09 −0.29 −0.13 0.30 0.31 0.09 0.25
N −0.03 −0.20 0.21 −0.07 0.34 −0.14 0.14 0.14 −0.85
P −0.66 −0.09 0.09 0.10 −0.20 −0.09 0.07 −0.52 −0.92
Q −0.24 −0.22 −0.33 0.31 −0.21 −0.18 −0.02 −0.15 −0.85
R 0.36 0.41 0.16 0.00 0.26 0.04 0.22 0.09 0.28
S 0.17 −0.12 −0.17 −0.16 0.00 0.16 −0.15 −0.06 −0.85
T 0.09 −0.09 −0.10 −0.29 −0.10 −0.18 0.15 0.24 −0.64
V −0.22 0.15 −0.08 −0.30 0.07 0.17 0.11 0.00 0.06
W 0.11 −0.69 −0.08 0.30 −0.09 0.12 0.32 −0.03 0.24
Y 0.03 0.18 0.39 −0.11 −0.07 0.48 0.22 0.14 −0.07

Each residue at each position in a 9 mer is assigned a weight which is used to calculate the score. The matrix is able to discriminate between CTL
epitopes and non-epitopes with 70% accuracy.

400 epochs and the learning was terminated when the error
reached a stable value. The stable error meant very small
decrease in the error in the subsequent cycles of learning.

2.5. Support Vector Machine

The SVM implementation is achieved by using the pack-
age SVMLIGHT [29,30]. The SVM map the inputs into a
higher dimensional feature space that separates a given set
of binary training data with an optimal hyperplane. The op-
timal hyperplane found by SVM is one at which the maxi-
mum separation between the CTL epitope and non-epitope
data is obtained.

A training set consists ofN samples or input vec-
tors {x1, x2, x3, . . . , xi, . . . , xN} with known class labels
{y1, y2, y3, . . . , yi · yN}, yi ∈ {+1, −1}. The x corre-
sponds to the amino acid sequence of CTL epitopes and
non-epitopes andyi represents epitope or non-epitope. A
new valuexxx is assigned to each example by the SVM.

∫
(xxx) = sign

(
N∑

i=1

yiαi, k(xi, x) + b

)

where k is kernel function that define the feature space;
b is the bias value,αi is the number obtained by solving
the a quadratic programming (QP) problem that gives the
maximum margin hyper plane.The aim is to maximizeαi

0 ≤ αi ≤ C

whereC is controlling the trade off between the margin and
training error. This is a kernel function that determine the
feature space which means that different kernels represent
the input vectors in different ways[31].

The choice of the proper kernel function is an important is-
sue for SVM training because the power of SVM comes from
the kernel representation that allows the non-linear mapping
of input space to a higher dimensional feature space. The
use of appropriate decision function can give better classi-
fication. The experiments were conducted by using every
type of kernel dot, RBF and polynomial to achieve better
results. The results were evaluated in terms of accuracy at
a cutoff score where sensitivity and specificity were nearly
equal. The best results were obtained by using the polyno-
mial kernel where the sensitivity, specificity and accuracy
obtained were much better as compared to the other ker-
nels. The value of the kernel function d was optimized to
2.0. After choosing a particular type of kernel, the value of
the regularization parameterC needs to be tuned. The value
of theC parameter was optimized to 0.01. The value of the
different functions were optimized by looking at the accu-
racy of the prediction method at the cutoff score where the
sensitivity and specificity were nearly equal.

2.5.1. Input for SVM
Same data were used for training and testing of the SVM

as used in case of ANN. Each amino acid of 9 mer peptide
was represented by a 20-dimensional vector. The CTL epi-
tope was represented by the+1 and CTL non-epitope by
−1.



M. Bhasin, G.P.S. Raghava / Vaccine 22 (2004) 3195–3204 3199

2.6. Combined and consensus prediction

The machine learning-based methods were used to per-
form consensus and combine prediction of CTL epitopes. In
consensus prediction, epitopes predicted by both methods
were considered as epitopes, otherwise they were consid-
ered as non-epitopes. Incombined prediction, epitope pre-
dicted by either of methods were considered as epitopes.
We investigated a variety of techniques and generated var-
ious models for consensus and combined prediction using
SVM and ANN. In the first model, SVM was used as a
base method (at default cutoff) and ANN was used at var-
ious cutoff scores. In the second model, ANN was used as
the base method whereas SVM was used at various cutoff
scores. The performance of combined and consensus pre-
diction were computed for both models.

2.7. Quantitative matrices for MHC restriction prediction

The quantitative matrices for determining the MHC re-
striction of T cell epitopes were obtained from ProPred1
server[23]. These matrices were originally obtained from
BIMAS server and literature[20]. These quantitative matri-
ces for 46 MHC alleles are available athttp://www.imtech.
res.in/raghava/propred1/matrix.html. The matrices are either
multiplication or addition matrices. In multiplication matri-
ces, score of the peptide is obtained by multiplying scores of
each amino acid. In addition matrices, score of the peptide
is obtained by summing up the scores of individual residue.
The prediction method for testing the MHC restriction of
T cell epitope was developed by implementing these matri-
ces. The prediction for MHC restriction of CTL epitope has
been performed at default threshold.

2.8. Evaluation of methods

The LOOCV procedure was employed to estimate the
performance of the prediction methods. The LOOCV proce-
dure involves removing one peptide from the training data;
training is done on the basis of remaining data and then
testing was done on this removed peptide. In this manner,
if the training data consisted of 100 peptides, then 100 net-
works were produced by using each of the peptide as test set
while using the other peptides as the training data. This is
the most extreme test of the cross validation. It is the most
accurate way to estimate the performance of method when
the training data is small. The performance of methods was
computed using following measures,

Senstivity or recall= TP

TP+ FN
× 100 (5)

Specificity= TN

TN + FP
× 100 (6)

Precision or PPV= TP

TP+ FP
(7)

Accuracy= TP+ TN

TP+ FP+ TN + FN
(8)

where TP and TN are correctly predicted CTL epitopes and
non-epitopes, respectively. FP and FN are wrongly predicted
epitopes and non-epitopes, respectively.

3. Results

3.1. Quantitative matrices

In case of QM, the contribution of each residue for each
position of peptide in T cell activity was quantified. A ma-
trix with weights for each amino acid residue in every po-
sition of peptide was generated usingEq. (1). The QM is
shown inTable 1. The effect of each residue on T cell ac-
tivity of peptide could be easily estimated. The QM-based
method was able to classify the data with 70.0% accuracy at
default threshold where sensitivity and specificity of predic-
tion was nearly equal. The performance of the QM at dif-
ferent thresholds is shown inTable 2. At default threshold
(0.0), the sensitivity, specificity and accuracy of prediction
are 65.2, 74.9 and 70.0%, respectively. As shown inTable 2,
the sensitivity of method is directly proportional and speci-
ficity is inverse proportional to the threshold. The stringency
of prediction varies with the thresholds so the selection of
threshold is very crucial. The performance of quantitative
matrix-based method was evaluated using LOOCV test.

3.2. Machine learning approaches

The elegant machine learning approaches, SVM and ANN
were applied for CTL epitope prediction. These approaches
could handle the non-linearity of data. The performance of
these methods was evaluated through LOOCV test.

3.3. ANN

Artificial Neural Network was trained with single se-
quence encoded in the binary bits with a window size of

Table 2
The performance of QM-based method at various cutoff scores or thresh-
olds

Threshold Sensitivity Specificity Precision Accuracy

−2.5 99.9 1.06 50.3 50.6
−2.0 99.8 4.3 51.1 52.1
−1.5 99.4 12.3 53.2 55.9
−1.0 96.0 28.1 57.2 62.0
−0.5 85.9 51.4 63.9 68.7

0.0 65.2 74.9 72.2 70.0
0.5 39.0 89.2 78.4 64.1
1.0 25.2 95.8 85.7 60.5
1.5 14.0 97.7 86.0 55.8
2.0 3.7 99.2 82.4 51.4

Bold values show sensitivity, specificity, precision and accuracy at default
cutoff score.

http://www.imtech.res.in/raghava/propred1/matrix.html
http://www.imtech.res.in/raghava/propred1/matrix.html
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Table 3
Summary of variation in predictive measures of ANN-based prediction
method

Cutoff score Sensitivity Specificity Precision Accuracy

0.01 98.2 17.1 54.3 57.7
0.11 92.4 43.0 61.9 67.8
0.21 89.2 52.0 65.1 70.6
0.31 83.9 58.9 67.2 71.4
0.41 79.1 65.7 69.8 72.4
0.51 73.2 71.2 71.8 72.2
0.61 67.2 75.7 73.5 71.4
0.81 48.2 87.1 79.0 67.6
0.96 17.9 97.8 89.1 57.8

Bold values show sensitivity, specificity, precision and accuracy at default
cutoff score.

nine. The performance of ANN-based method was measured
at different thresholds (Table 3). As shown inTable 3pre-
diction accuracy varied from 57.7 to 72.4%. The best per-
formance of the method was obtained at threshold 0.51 (de-
fault threshold) where sensitivity and specificity were nearly
equal. At default threshold, sensitivity, specificity, precision
and accuracy of method was 73.2, 71.2, 71.8 and 72.2%,
respectively. The user can choose low threshold value to
increase the sensitivity (percent coverage). For example, at
threshold “0.11” one may achieve 92.4, 43.0 and 68.7% sen-
sitivity, specificity and accuracy, respectively (seeTable 3).
Similarly one may select higher threshold to achieve higher
specificity at the cost of sensitivity. The performance of the
method is slightly better than QM-based method.

3.4. SVM

Support Vector Machine was also applied on the same
training data to develop a method for discriminating CTL
epitopes and non-epitopes. The best results were obtained
by using the polynomial kernel where the sensitivity, speci-
ficity, accuracy obtained was much better as compared to
the other kernels. In case of the polynomial kernel, the value
of kernel parameter (d) was optimized to 2 and value of the
regularization parameterC optimized to 0.01. The values of
the different functions optimized to achieve high prediction
accuracy at default cutoff score. The sensitivity, specificity,
precision and accuracy of the optimized SVM model at dif-
ferent cutoff scores are shown inTable 4. The SVM was able
to achieve an accuracy of 75.2% at a default cutoff score
whereas the sensitivity, specificity and precision were 73.8,
77.0 and 76.3%, respectively. The SVM-based method was
able to classify the data with∼3 and∼5% more accuracy as
compared to ANN- and QM-based methods. These results
indicate that SVM is better than ANN and QM in discrimi-
nating CTL epitopes and non-epitopes.

3.5. Combined and consensus prediction

In order to improve the accuracy of prediction, the pos-
itive qualities of both techniques SVM and ANN were uti-

Table 4
Summary of predictive measures for SVM-based prediction method at
various cutoff scores

Cutoff score Sensitivity Specificity Precision Accuracy

0.01 84.5 60.4 68.2 72.5
0.11 81.9 65.9 70.6 73.9
0.21 78.6 70.6 72.9 74.6
0.36 73.8 77.0 76.3 75.4
0.51 65.6 82.5 79.0 74.1
0.61 60.7 85.5 85.5 73.1
0.81 48.9 89.8 82.7 69.3
0.96 37.7 92.2 82.8 64.9

Bold values show sensitivity, specificity, precision and accuracy at default
cutoff score.

lized. This is important to study both methods in depth oth-
erwise combination of two may be counter predictive to
each other. In this study, two models were investigated. In
the first model, SVM was kept as the base method (at de-
fault cutoff score) and ANN was utilized at various cutoff
scores. In the second model, ANN was kept as base method
(at default cutoff score) and SVM was applied at different
cutoff scores. The consensus and combined prediction were
performed for both type of models. The values of sensitivity
and specificity in combined and consensus prediction using
first model are shown in plots A and B ofFig. 2. The speci-
ficity of consensus prediction approach is nearly 7% higher
as compared to the specificity of ANN and SVM at a cutoff
score where sensitivity and specificity are nearly equal, as
shown in plot A ofFig. 2. In consensus prediction, the accu-
racy of prediction was 77.6%, which is nearly 4% more than
ANN and∼2% higher than SVM. In case of combined pre-
diction the sensitivity (79.7%) of the prediction method was
much higher as compared to individual prediction methods.
In case of the combined method, the accuracy of prediction
is nearly∼3% higher than ANN prediction and marginally
greater than SVM-based prediction. The plots C and D of
Fig. 2 depicts the sensitivity and specificity of consensus
and combined prediction using second model. The results
indicate that first model is better in comparison to second
model. The best results of the consensus and combined pre-
diction are shown inTable 5.

3.6. Performance of methods on blind dataset

In the past, it has been observed that cross-validation is
not an unbiased test to evaluate the performance of method
[24]. Thus, it is important to evaluate newly developed

Table 5
The best values of sensitivity, specificity, precision and accuracy obtained
through consensus and combined prediction based on SVM and ANN

Prediction approach Sensitivity Specificity Precision Accuracy

Consensus prediction 66.9 88.4 85.2 77.6
Combined prediction 79.7 71.9 74.0 75.8
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Fig. 2. The consensus and combined prediction on ANN- and SVM-based methods using various models. The plots A and B depict consensus and
combined prediction using the first model. In first model SVM at default cutoff score [base method] is utilized with ANN-based methods at different
cutoff scores. The plots depict the variation in sensitivity and specificity at various cutoff scores of ANN-based methods. The plots C and D represent
the combined and consensus prediction second model. The second model was developed method developed by using ANN at default cutoff score with
various cutoff scores of SVM. The specificity line is marked with (�) and sensitivity line is marked by (�).

methods on blind or independent datasets that are not used
in the method for training or testing. Firstly, all the methods
were tested on a dataset of 63 CTL epitopes at default cutoff
score. The percent coverage of different methods was mea-
sured. Nonetheless, the percent coverage is a useful measure
to evaluate the ability of methods for identification of CTL
epitopes, but it does not provide any information specificity
or accuracy of prediction methods. This cannot be a rig-
orous test to estimate the performance of newly developed
method because the dataset do not consist of non-epitopes.
In order to evaluate methods rigorously, two subgroups of
blind dataset were created; first subgroup having CTL epi-
topes and non-epitope MHC binders and second subgroup
having CTL epitopes and MHC non-binders.

The performance of the three methods is evaluated on
first subgroup to assess the ability of these methods in
separating T cell epitopes from non-epitope MHC binders.
The prediction accuracy is 64.3, 69.0 and 62.0% for SVM,
ANN and QM methods, respectively (Table 6). As shown
in Table 6, the sensitivity and specificity varies significantly
with respect to threshold of these methods. The analysis of
results illustrated that methods developed in this study are
able to discriminate between CTL epitopes and non-epitopes
with fair accuracy. This is the unique feature of these
prediction methods, which is not possible with indirect
method of T cell epitope prediction (MHC binder prediction
methods).

Similarly, we examined the performance of methods on
second subgroup in order to access the ability of methods in
separating CTL epitopes from MHC non-binders (Table 6).
This analysis is important because antigenic sequences
consist of large number of MHC non-binders in compari-
son to MHC binders. The accuracies of SVM-, ANN- and
QM-based methods on second subgroup are 69.1, 65.1
and 60.3%, respectively. This clearly indicates that these
methods had the capability to predict the CTL epitopes in
antigenic sequences. The overall results of analysis demon-
strated that the methods developed in this study are able to
separate T cell epitopes from MHC binders as well as T
cell epitopes and non-binders.

3.7. MHC restriction of predicted T cell epitopes

Due to MHC polymorphism, the predicted T cell epitopes
may be functional in one population and non-functional in
another population. The functionality of T cell epitopes is
related to MHC molecule, because binding of peptides to
MHC molecules is the bottleneck for functioning as a T
cell epitope. To explore the MHC restriction of particular
T cell epitope, we developed quantitative matrices-based
method. The quantitative matrices were obtained from Pro-
Pred1 server[23]. The cutoff score used for MHC binder
prediction was same as suggested in ProPred1 server. The
method will predict whether predicted CTL epitope bind
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Table 6
The subgroup analysis of SVM, ANN and QM on the blind dataset

QM SVM ANN

Thrs SEN SPEC ACC Thrs SEN SPEC ACC Thrs SEN SPEC ACC

T cell epitopes and MHC binders (non-epitopes)
−1.6 98.4 0.0 49.2 −0.6 100.0 3.2 51.6 0.05 95.2 9.5 52.4
−0.6 93.7 19.0 56.4 −0.3 93.7 9.5 51.6 0.2 92.1 19.1 55.6
−0.5 90.5 22.2 56.4 −0.2 93.7 17.5 55.6 0.3 87.3 25.4 56.4
−0.4 88.9 25.4 57.1 0.1 87.3 30.2 58.7 0.5 82.5 42.9 62.7
−0.1 82.5 34.9 58.7 0.2 84.1 39.7 61.9 0.55 79.4 47.6 63.5

0.1 74.6 44.4 59.5 0.3 79.4 47.6 63.5 0.65 74.6 57.1 65.9
0.3 63.5 58.7 61.1 0.4 74.6 54.0 64.3 0.7 73.0 65.1 69.1
0.4 57.1 66.7 62.0 0.5 60.3 60.3 60.3 0.75 68.3 68.3 68.3
0.7 38.1 88.9 63.5 0.8 41.3 69.8 55.6 0.8 58.7 76.2 67.5
0.8 30.2 90.5 60.3 0.9 25.4 74.6 50.0 0.85 42.9 77.8 60.3
0.9 17.5 90.5 54.0 1.0 17.5 82.5 50.0 0.9 33.3 82.5 57.9
1.1 11.1 95.2 53.2 1.1 6.4 87.3 46.8 0.95 22.2 88.9 55.6
1.3 4.8 98.4 51.6 1.3 3.2 93.7 48.4 1.0 0.0 100.0 50.0

T cell epitopes and MHC non-binders
−1.0 96.8 4.8 50.8 −0.6 100.0 4.8 52.4 0.05 95.2 9.5 52.4
−0.9 96.8 7.9 52.4 −0.3 93.7 25.4 59.5 0.2 92.1 23.8 57.9
−0.5 90.5 15.9 53.2 −0.2 93.7 27.0 60.3 0.25 87.3 27.0 57.1
−0.4 88.9 23.8 56.4 0.1 87.3 47.6 67.5 0.3 87.3 31.8 59.5
−0.3 85.7 25.4 55.6 0.2 84.1 52.4 68.3 0.4 85.7 38.1 61.9
−0.1 82.5 33.3 57.9 0.3 79.4 57.1 68.3 0.5 82.5 49.2 65.9

0.1 74.6 46.0 60.3 0.4 74.6 63.5 69.1 0.55 79.4 50.8 65.0
0.3 63.5 57.1 60.3 0.5 60.3 68.3 64.3 0.7 73.0 57.1 65.0
0.4 57.1 61.9 59.5 0.8 41.3 76.2 58.7 0.75 68.3 60.3 64.3
0.5 49.2 68.3 58.7 0.9 25.4 77.8 51.6 0.8 58.7 68.3 63.5
0.8 30.2 81.0 55.6 1 17.5 77.8 47.6 0.85 42.9 71.4 57.1
0.9 17.5 85.7 51.6 1.1 6.4 84.1 45.2 0.9 33.3 77.8 55.6
1.3 4.8 95.2 50.0 1.3 3.2 95.2 49.2 0.95 22.2 87.3 54.8

The first subgroup has T cell epitopes and MHC binders (which are not T cell epitopes) and seconds subgroup has T cell epitopes and MHC non-binders.
Thrs, SEN, SPEC, ACC means threshold, sensitivity, specificity, accuracy, respectively. The bold values show the performance of different prediction
methods at cutoff score where sensitivity and specificity are nearly equal.

to MHC molecule or not at default threshold. The MHC
restriction study of T cell epitopes will help in choosing
promiscuous CTL epitopes, which binds many MHC alle-
les. The MHC restriction will also help in selecting hetero-
geneous CTL epitopes (having diverse MHC specificity) for
inclusion in synthetic vaccines so that an effective immune
response can be obtained in large population.

3.8. Comparison with other methods

The methods developed in this study were compared with
direct CTL epitope prediction methods. The methods were
not compared with MHC binder prediction methods because
they are allele specific and our method predicts the CTL
epitope irrespective of MHC restriction. We implemented
two popular T cell epitope prediction AMPHI and EpiMer
on our dataset[11,15]. The prediction accuracy of AMPHI
method was 53% at default threshold. The prime cause of
low accuracy may be a significant increase in the number
of T cell epitopes since the advent of the AMPHI. The
EpiMer located the regions of protein having high MHC
motif density. The EpiMer was also able to classify the data
with 62% of accuracy at default threshold. The restricted

length of peptides may be responsible for low accuracy of
method on our dataset. The dataset consisted of peptides of
nine amino acids. This clearly demonstrated that our pre-
diction method was superior to existing methods. So our
method will complement all existing T cell epitope predic-
tion methods. This high accuracy of our method may be due
to (i) large dataset of epitopes and non-epitopes, as accu-
racy of knowledge-based methods is directly proportional to
the quality and quantity of data; (ii) use of elegant artificial
intelligence techniques which can classify the data more ac-
curately by handling the non-linearity in data as compared
to motif or quantitative matrix-based methods.

3.9. Description of CTLPred server

The method was developed and implemented on Sun
Microsystems SPARC 420R under the Solaris environ-
ment. The method CTLPred is available for public from
web site http://www.imtech.res.in/raghava/ctlpred/and
http://bioinformatics.uams.edu/mirror/ctlpred/. The server
can read input protein sequence in any of the standard for-
mats as it uses the ReadSeq (developed by Dr. Don Gilbert).
The server allows the prediction by using ANN, QM or

http://www.imtech.res.in/raghava/ctlpred/
http://bioinformatics.uams.edu/mirror/ctlpred/
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SVM. The server also provides a number of options in-
cluding selection of threshold for QM, ANN and SVM and
various output formats for displaying results. The server
further allows consensus and combined prediction using
SVM- and ANN-based methods.

4. Discussion and conclusions

It was observed in mid 1990s that the performance of all
the previously published T cell epitope prediction methods
was quite poor[16]. The performance of these methods
were not even significantly better than random prediction.
The lack of sufficient amount of data about T cell epitopes
may be the prime cause of poor performance[16]. The
success of a prediction method depends on the quality and
quantity of data. To predict T cell epitopes with fair accu-
racy, a large number of MHC binders prediction methods
were developed during last decade[23,24,32,33]. These
methods were successful in predicting MHC binders due
to more specific binding of MHC and peptides[19]. These
methods could help the immunologist in searching potential
T cell epitopes because T cell epitopes formed a subset of
MHC binders. These methods were specifically developed
for individual MHC allele having sufficient amount of data.
These methods could predict the MHC binders with fair
accuracy but it was not necessary that all the MHC bind-
ing peptides would stimulate T cells[34]. To the authors
knowledge, no direct T cell epitopes prediction method has
been developed during last one decade.

In the last 10 years, the data on MHC binders/non-binders
and T cell epitopes has increased tremendously[25]. Thus,
in this report, a systematic attempt has been made to de-
velop direct methods for predicting CTL epitopes. We re-
strict our study on CTL epitopes (MHC class I restricted T
cell epitopes) as they are very important for cancer therapy.
Ideally, one should develop method for predicting MHC
allele restricted T cell epitopes, which is not practically
possible due to lack of sufficient number of CTL epitopes
corresponding to different MHC alleles. Thus, we have
developed a common method for predicting CTL epitopes
irrespective of MHC alleles.

In the past, a number of pattern recognition techniques
were used to develop methods for predicting MHC binding
peptides. These included motif search, quantitative matrix
and machine learning techniques. QM provides a very de-
tailed model in which contribution of each amino acid at
each position is quantified. In the past, a number of pre-
diction methods were developed using machine learning
techniques like ANN and SVM. Though machine-learning
techniques can handle the non-linearity of data, they require
a large amount of data for training. Thus, both machine
learning- and QM-based techniques have their own merits
and demerits.

Here, we have developed methods based on QM, SVM
and ANN, for prediction of CTL epitopes. The performance

of all methods was evaluated through LOOCV. As shown
in Tables 2–4, all methods classified the data with accuracy
more than 70.0% at default cutoff score. The performance
of these methods was better than any direct CTL epitope
prediction methods reported in literature. The consensus and
combined prediction of machine-learning techniques further
improve the performance of method and allow user to predict
with high sensitivity and/or specificity. The combination of
two methods also resulted in improvement of accuracy as
compare to individual method.

The performance of the above-developed methods was
evaluated by applying them on the independent blind
dataset. The testing on blind dataset provides the unbi-
ased performance of the prediction method. All prediction
methods (QM, ANN and SVM) developed in this study
performed significantly on blind dataset. The sensitivity or
percent coverage of methods was more than 75.0% when
applied on 63 CTL epitopes at default cutoff scores (data
not shown). Further analysis on two subgroups of blind
dataset showed that the method can discriminate between
T cell epitopes and non-epitope MHC binders. The sub-
group analysis also illustrated that methods developed in
this study were able to discriminate between T cell epi-
topes and non-binders with good accuracy. It was noticed
that performance of methods on blind dataset was lower
than performance during cross-validation. It may be due to
small size of blind dataset that consisted only 63 epitopes
and 63 non-epitopes. The size of dataset was too small to
fairly evaluate any prediction method. It is also possible
that methods got over trained during development. The au-
thors suggest that users should use all prediction methods
developed in this study to predict CTL epitopes. Hence, it
is of worth to use these prediction methods in speeding up
the process of subunit vaccine development.

This method will help the researchers in finding tumors
antigens to eradicate dreadful diseases like cancer. The ap-
proach has a larger potential for improvement of predic-
tion accuracy, especially in view of highly growing superior
quality CTL epitopes data. The prediction accuracy may be
improved by adding more features to the prediction.

Acknowledgements

The authors are thankful to Sanjoy Paul and Amrita Lama
for carefully reading the manuscript. The authors are thank-
ful to Council of Scientific and Industrial Research (CSIR)
and Department of Biotechnology (DBT), Govt. of India for
financial assistance. Manoj Bhasin is a recipient of a fellow-
ship from CSIR. This report has IMTECH communication
No. 016/2003.

References

[1] De Groot AS, Sbai H, Aubin CS, McMurry J, Martin W.
Immuno-informatics: mining genomes for vaccine components.
Immunol Cell Biol 2002;80:255.



3204 M. Bhasin, G.P.S. Raghava / Vaccine 22 (2004) 3195–3204

[2] Long EO, Jacobson S. Pathways of viral antigen processing and
presentation to CTL: defined by the mode of virus entry? Immunol
Today 1989;10:45.

[3] Hammerling GJ, Vogt AB, Kropshofer H. Antigen processing and
presentation—towards the millennium. Immunol Rev 1999;172:5.

[4] Watts C, Powis S. Pathways of antigen processing and presentation.
Rev Immunogenet 1999;1(60):74.

[5] Buus S. Description and prediction of peptide-MHC binding: the
‘human MHC project’. Curr Opin Immunol 1999;11:209.

[6] Brunak S, Buus S. Identifying cytotoxic T cell epitopes from
genomic and proteomic information: “The human MHC project”.
Rev Immunogenet 2000;2:477.

[7] DeLisi C, Berzofsky JA. T-cell antigenic sites tend to be amphipathic
structures. Proc Natl Acad Sci USA 1985;82:7048.

[8] Cornette JL, Margalit H, DeLisi C, Berzofsky JA. The amphipathic
helix as a structural feature involved in T cell recognition. In: Epand
RM, editor. The amphipathic helix. Boca Raton: CRC Press; 1993.

[9] Spouge JL, Guy HR, Cornette JL, Margalit H, Cease K, Berzofsky JA,
et al. Strong conformational propensities enhance T cell antigenicity.
J Immunol 1987;138:204.

[10] Stille CJ, Thomas LJ, Reyes VE, Humphreys RE. Hydrophobic strip
of helix algorithm for selection of T cell-presented peptides. Mol
Immunol 1987;24:1021.

[11] Meister GE, Roberts CG, Berzofsky JA, De Groot AS. Two novel
T cell epitope prediction algorithms based on MHC-binding motifs;
comparison of predicted and published epitopes fromMycobacterium
tuberculosisand HIV protein sequences. Vaccine 1995;13:581.

[12] Stern LJ, Brown JH, Jardefzky TS, Gogra JC, Urban RG, Strominger
JL, et al. Crystal structure of the human class II MHC protein
HLA-DR1 complexed with an influenza virus peptide. Nature
1994;368:215.

[13] Mouritsen S, Meldal M, Ruud-Hansen J, Werdelin O. T-helper-cell
determinants in protein antigens are preferentially located in
cysteine-rich antigen segments resistant to proteolytic cleavage by
cathepsin BL, D Scand. J Immunol 1991;34:421.

[14] Rothbard JB, Taylor WR. A sequence pattern common to T cell
epitopes. EMBO J 1988;7:93.

[15] Margalit H, Spouge JL, Cornette JL, Cease KB, DeLisi C, Berzofsky
JA. Prediction of immunodominant helper T cell antigenic sites from
the primary sequence. J Immunol 1987;138:2213.

[16] Deavin AJ, Authon TR, Greaney PJ. Statistical comparison of
established T cell epitope predictors against a large database of
human and murine antigens. Mol Immunol 1996;33:145.

[17] Brusic V, Rudy G, Harrison LC. Prediction of MHC binding peptides
by using artificial neural networks. In: Complex mechanism of
adaptation. Amsterdam: IOS Press; 1994. p. 253–60.

[18] Gulukota K, Sidney J, Sette A, DeLisi C. Two complementary
methods for predicting peptides binding major histocompatibility
complex molecules. J Mol Biol 1997;267:1258.

[19] Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide
motifs: first listing. Immunogenetics 41;1995:178 [Review].

[20] Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential
HLA-A2 binding peptides based on independent binding of individual
peptide side-chains. J Immunol 1994;152:163.

[21] Adams HP, Koziol JA. Prediction of binding to MHC class I
molecules. J Immunol Methods 1995;185:181.

[22] Singh H, Raghava GP. ProPred: prediction of HLA-DR binding sites.
Bioinformatics 2001;17:1236.

[23] Singh H, Raghava GPS. ProPred1: prediction of promiscuous MHC
class I binding sites. Bioinformatics 2003;19:1009.

[24] Bhasin M, Raghava GPS. SVM based method for predicting
HLA-DRB1*0401 binding peptides in an antigen sequence.
Bioinformatics 2003;20:421.

[25] Bhasin M, Singh H, Raghava GPS. MHCBN: a comprehensive
database of MHC binding and non-binding peptides. Bioinformatics
2003;19:666.

[26] Korber B, Brander C, Haynes B, Koup R, Kuiken C, Moore J, et al.
HIV monoclonal antibodies. In: HIV molecular immunology 2001.
Los Alamus, New Mexico, USA: Theoretical Biology and Biophysics
Group T-10, Mail Stop K710, Los Alamos National Laboratory;
2001. IV-B-1–278.

[27] Hertz JA, Palmer RG, Krogh AS. Introduction to theory of neural
computation. Redwood City: Addison-Wesley; 1991.

[28] Zell A, Mamier G. Stuttgart Neural Network Simulator version 4.2.
University of Stuttgart; 1997.

[29] Joachims T. Making large-scale SVM learning practical. In:
Scholkopf B, Burges C, Smola A, editors. Advances in kernel me-
thods—support vector learning. Cambridge, MA: MIIT Press; 1999.

[30] Cristianini N, Shawe-Taylor J. Support vector machines and other
kernel-based learning methods. Cambridge, England: Cambridge
University Press, The Edinburg Building; 2000.

[31] Vapnik VN. The nature of statistical learning theory. New York:
Wiley; 1998.

[32] Doytchinova IA, Flower DR. Toward the quantitative prediction
of T-cell epitopes: coMFA and coMSIA studies of peptides with
affinity for the class I MHC molecule HLA-A*0201. J Med Chem
2001;44:3572.

[33] Reche PA, Glutting J, Reinherz EL. Prediction of MHC class I
binding peptides using profile motifs. Human Immunol 2002;63:
701.

[34] Schönbach C, Yu K, Brusic V. Large-scale computational identi-
fication of HIV T-cell epitopes. Immunol Cell Biol 2002;80:300.


	Prediction of CTL epitopes using QM, SVM and ANN techniques
	Introduction
	Material and methods
	Datasets
	Blind dataset
	Generation of quantitative matrices
	Artificial Neural Network (ANN)
	Support Vector Machine
	Input for SVM

	Combined and consensus prediction
	Quantitative matrices for MHC restriction prediction
	Evaluation of methods

	Results
	Quantitative matrices
	Machine learning approaches
	ANN
	SVM
	Combined and consensus prediction
	Performance of methods on blind dataset
	MHC restriction of predicted T cell epitopes
	Comparison with other methods
	Description of CTLPred server

	Discussion and conclusions
	Acknowledgements
	References


