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Abstract. Quaternion measurable processes are introduced and the Dirac equation is derived
from the Langevin equation associated with a two-valued process.

1. Introduction

The object of this contribution is to show that the relativistic equation for spin-1
2 particles

can be obtained by an enlargement of the theory of stochastic processes one step beyond
the theory of complex measures. In the conventional formulation of the Schrödinger and
the Dirac equations the evolution is in terms of wavefunctions which themselves do not
have a probabilistic interpretation. It is indeed possible to dispense with such a starting
point and, instead, formulate the problem in terms of a complex (vector) measure. In an
earlier contribution [1], we have provided a new derivation of the Schrödinger equation by
identifying it as the Fokker–Plank equation corresponding to a complex measurable Markov
process. We now generalize the field to quaternions and consider quaternion measurable
processes.

2. Quaternion measures and Pauli systems

The quaternion measure is introduced in exactly the same way as the complex measures; a
quaternion measureλ for any setA ∈ B by

λ(A) = λ0(A)+ îλ1(A)− ĵλ2(A)+ k̂λ3(A) (1)

whereλ0, λ1, λ2, λ3 are complex measures (see, for example, [2]) defined on the measurable
space (�,B) and î, ĵ , k̂ are the hypercomplex numbers introduced by Hamilton (see [3]).
Clearly such a quaternion measure may be seen as a member of the wider class of vector
measures dealt with in classical analysis.

A quaternion measurable process is an indexed family of such measures. We can proceed
to introduce, systematically, random variables and random processes in the manner outlined
by Pitt [4]. The concepts of conditional probabilities can be introduced in exactly the same
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way as was done for complex measures [1]; we can define Markov processes and derive
the Chapman–Kolmogorov relation.

Within such a framework of quaternion measurable processes, we now consider the
Langevin equation

dxi = vj exp(iπz(t)) dt j = 1, 2, 3 (2)

wheret is the time parameter andz(t) is a two-valued process on 0, 1. We further constrain
z(t) to be a Markov chain with ratesλ± of transition.

Before we proceed to deal with quaternion measurable processes, we note that the very
introduction of complex measures has some implications:

(i) a real valued random variable has a complex valued expectation in general;
(ii) if a, the complex expectation value, is the result of a particular choice of a

distribution, then there is a minimum value for the spread of a random variableX where
for arbitraryε > 0 spread ofX is defined by (see [1])

spread ofX = |Pr{|X − E[X]| > ε}|.
Thus if we introduce a quaternion measure, then the expected value of a real valued

random variable is also a quaternion. We illustrate this for the simple case of a random walk
problem dealt with earlier [1], which is now in the framework of quaternion measurable
processes (QMP). Assume that in the random walk in discrete steps, the steps are given by

1r = ±1 in to thex-direction with (quaternion) probabilityp1± + σ1q1

= ±1 in to they-direction with probabilityp2± + σ2q2

= ±1 in to thez-direction with probabilityp3± + σ3q3

= 0 with probability−2σq (3)

with the constraint

p1+ + p1− + p2+ + p2− + p3+ + p3− = 1. (4)

Next if we choose step sizesδx, δy, δz instead of±1 with the constraint

lim
(δx)2

δt
= D1 lim

(δy)2

δt
= D2 lim

(δz)2

δt
= D3 (5)

then we obtain
∂π

∂t
= 1

2
D1[2σ1q1 + p1+ + p1− − (p1+ − p1−)2]

∂2π

∂x2

+1

2
D2[2σ2q2 + p2+ + p2− − (p2+ − p2−)2]

∂2π

∂y2

+1

2
D3[2σ3q3 + p3+ + p3− − (p3+ − p3−)2]

∂2π

∂z2
(6)

where it is tacitly assumed thatπ , which is a quaternion measure, is expressed in terms of
σ matrices and the unit matrix. Ifπ is post multiplied by an arbitrary spinor, we obtain a
generalized version of the Pauli equation.

Instead of the random walk model, we can use as the starting point the Langevin equation

dxi = vidω(t)+ 1
2v

j δj v
idω2(t) (7)

whereω(t) is a Wiener process in the QMP framework andvi is a function ofx. If we let

E[dxi ] = E[1xi ] = D 1
2V

jδjVi (8)

E[1xi1xj ] = DV iV j (9)
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then we arrive at the Fokker–Plank equation

∂π(x, t)

∂t
= −δi( 1

2DV
jδjV

iπ)+ 1
2δiδj (DV

iV jπ). (10)

If we choose

V i = σ iβ(x) (scalar) (11)

or V i = σ iσ jβj (x) (vector) (12)

we obtain a generalized Pauli equation whereπ is a quaternion measure density and has
the usual 2× 2 matrix representation. Multiplication by an arbitrary spinor will lead to the
familiar spinoral representation.

3. Dirac equation

Now we are well placed to deal with the process leading to the Dirac equation. Within
the framework of QMP, we consider a Markov processX(t) that satisfies the Langevin
equation (see (2))

dxj = vj exp[iπz(t)] dt (13)

wherevj as before is a function ofx andz(t) is a two-valued Markov process on 0, 1 with
transition ratesλ+ (0 → 1) andλ− (1 → 0) per unit time. Thus the processz(t) represents
the transition from one to the other of the two helicity states. We assumez(t) is independent
of the processx(t), the expectation values themselves being specified by

E[dxj |z(t) = 0] = E[vj (x)] dt + o(dt) (14)

E[dxj |z(t) = 1] = −E[vj (x)] dt + o(dt). (15)

Next we choose

E[vj ] = cσ j (16)

and adapt the Fokker–Plank method to yield

∂π+(x, t)
∂t

= −cσ∇π+ − (λ+π+ − λ−π−) (17)

whereπ+(x, t)dx(π−(x, t)dx) represents quaternion measure thatx(t) lies in (x, x + dx)
andz(t) = 0 (z(t) = 1). In a similar way we obtain

∂π−(x, t)
∂t

= +cσ∇π− − (λ−π− − λ+π+). (18)

At this stage we postmultiplyπ± by an arbitrary 2-spinorχ± to yield two-component objects
(2-spinors) and we use the misnotationπ± to denote the resulting 2-spinors.

If we now choose

λ± = −i
mc2

h
(19)

and set

ψ =
(
π+
π−

)
e−imc2t/h (20)

we finally obtain the Dirac equation in 4-component form in the Weyl representation:

ih
∂ψ

∂t
= mc2

(
0 1
1 0

)
ψ + hc

i

(
σ̂ 0
0 −σ̂

)
∇ψ. (21)
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It is worth noting that the plane wave solutions of the form

ψ = u exp

(
− i

h
(Et − p̂x̂)

)
(22)

leads to (
π+
π−

)
= u

(
exp− i

h
([E −mc2] − p̂x̂

)
(23)

a form which shows that the stationary state in the strict probabilistic sense is obtained if
E = mc2, in conformity with a similar result that can be obtained in the case of a free
harmonic oscillator modelled in a complex measure theoretic framework. In this case the
conditional measure densityf2(x, ε|x0, t0) satisfies

∂f2(x, t |x0, t0)

∂t
= ∂

∂x
(iωxf2)+ ih

2m

∂2f2

∂x2
. (24)

The solution off2 discussed in [5] is connected to theψ-function in a conventional wave
mechanical treatment by

f2(x, t |x0t0)e
(mω/2h)(x2−x2

0)−(iωT/2) = ψ(x, t |x0, t0) =
∞∑
n=0

e−iEn(T /h)φn(x)φ
∗
n(x0) (25)

whereT = t − t0. It is pertinent to note thatEn = (n+ 1
2)hω and this leads us to conclude

that the energy in complex measure theory framework (CMTF) is now corresponding to
the nth state and that the ground state is the only stationary state in the strict probabilistic
sense. Moreover, we have

lim
T→∞

f2 = φ0(x)φ
∗
0(x0) exp

[
−mω

2h
(x2 − x2

0)

]
=

(
mω

πh

)1/2

exp

(
−mωx

2

h

)
. (26)

All other states (n 6= 0) are to be interpreted as quasistationary states with the use of the
usual deviceEn → En − iε. Now it is indeed possible to interpret the plane-wave-type
solution from (21) analogously. Thus the only stationary state in the strict probabilistic
sense is obtained whenE = mc2.

We next note that if the processz(t) is replaced by a Poisson processN(t), then

dxj = vjeπ iN(t)dt (27)

provided we take the parameterλ of the Poisson process to be the same asλ+ or λ−; the
original formulation is more general sinceλ+ andλ− can be distinct. Thus we can conclude
that the Langevin equation description of the internal motion given by (11) or (20) together
with the constraint thatz(t) is a Markov process (orN(t) is a Poisson process) enable us
to view the Dirac equation as a Markov process together with the stochastic flipping of the
helicity. The internal motion with theσ matrix connection is essentially provided by the
quaternion measure; the Poisson processN(t) or the two-valued processz(t) provides an
easy interpretation of the change in the helicity due to internal motion. It is possible to
introduce the potentials by the introduction of appropriate additional force terms in (20) or
(11) as the case may be.

The choice of (11) or (20) rules out second/higher-order derivatives in as much as
E[(1x)] is of order smaller than1t , which is not the case in Langevin equations leading
to Schr̈odinger/Pauli type of equations. Thus the Langevin equation (11) or (20) treats
space and time on an equal footing, which is a mandatory requirement to obtain relativistic
structures like the Dirac equation. Thus it is very likely that all spacetime symmetric
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physical structures have imbedded in them a universal Poisson process while non-relativistic
structures have a universal Wiener process imbedded.

To introduce potentials we only need to modify (20) by

dxj = vjeπN(t)dt +
∞∑
1

(dN(t))m

m!
(g∇̂)m−1gj (28)

where the special form involving powers of dN(t) is motivated by considerations of
stochastic stability calculus (see [6, 7]). If we now proceed on lines exactly similar to
the derivation of (15) and (16), we obtain

∂π±(x, t)
∂t

= ∓c(σ∇)π± − λ(π± − π∓ + λ(∇π±)Ĝ (29)

where

Gn =
∑

1

1

m!
(g∇)m−1gi. (30)

With π± reinterpreted as before, and on substitution of (18), we obtain

ih
∂ψ

∂t
= mc2

(
0 1
1 0

)
ψ + c

(
σ̂ 0
0 −σ̂

)
h

c
∇ψ + ih∇ψ · G. (31)

Using the identity

∇ψ · G = −ψ∇ · G + ∇(ψG) (32)

and integrating over all space, we observe that the term does not contribute provided proper
boundary conditions are applied. Thus (31) can be regarded as a general form of Dirac
equation with potentials.

4. Summary and conclusion

Since diffusion in the classical context is a non-relativistic way of describing motions, we
have resorted to a spacetime symmetric mechanism. This simple modification described
above leads to the Dirac equation in its simplest form. On the other hand, a quaternionic
version of a generalized random walk leads to a generalized Pauli system.

It is pertinent to point out that an attempt to derive the Dirac equation was made by
Gaveauet al [8]. Their main concern was to relate the Dirac equation to the Telegrapher’s
equation by an analytic continuation. However, our considerations establish that we have
to go beyond the framework of complex measures to provide a satisfactory derivation of
the Dirac equation from a probabilistic view point.

The use of 2×2 matrices iσ together with unity, which form the algebra of quaternions,
may suggest some relationship to the generalization of quantum mechanics over the field
of quaternions [9]. However, the matrices here are Dirac algebra generators and they are
connected with spin and Lorentz transformations. Therefore the similarity is only superficial.
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