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Abstract

We report a measurement of the top quark mass using six candidate events

for the process pp → tt+X → ℓ+νbℓ−νb+X, observed in the DØ experiment

at the Fermilab pp collider. Using maximum likelihood fits to the dynamics of

the decays, we measure a mass for the top quark of mt = 168.4±12.3 (stat)±
3.6 (syst) GeV. We combine this result with our previous measurement in

the tt → ℓ + jets channel to obtain mt = 172.1± 7.1 GeV as the best value of

the mass of the top quark measured by DØ.
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I. INTRODUCTION

The mass of the top quark is a free parameter in the standard model of the electroweak
interactions [1]. It arises from the Yukawa coupling of the top quark to the Higgs field,
which is not constrained by the model. Through radiative corrections, the value of the top
quark mass affects predictions of the standard model for many processes. For example, the
prediction for the mass of the W boson varies by approximately 7 MeV1 for every 1 GeV
change in the mass of the top quark [2]. Precise measurements of the masses of the top quark
and the W boson constrain the mass of the Higgs boson. This dependence can be turned
around and the top quark mass predicted from measurements of electroweak processes within
the framework of the standard model. Such an analysis gives 158+14

−11 GeV for the top quark
mass [3]. In this sense, a measurement of the top quark mass constitutes a consistency test
of the standard model prediction.

The top quark is the only fermion with a mass close to the vacuum expectation value of
the Higgs field, or equivalently, with a Yukawa coupling close to unity. It is therefore possible
that by studying the properties of the top quark we can learn more about electroweak
symmetry breaking.

The Fermilab Tevatron produces top quarks in collisions of protons and antiprotons at√
s = 1.8 TeV. The Tevatron provided the first experimental confirmation of the existence

of the top quark [4]. In pp collisions top quarks are produced predominantly in tt pairs. The
standard model predicts the top quark primarily (> 99%) to decay to Wb. The decay modes
of the W boson then define the signatures of tt decays. If both W bosons decay leptonically
the signature contains two charged leptons with high pT . We call this the dilepton channel.
Events in which one of the W bosons decays leptonically and the other into jets contain one
high pT charged lepton and high pT hadron jets. We call this the lepton+jets channel. In
the all-jets channel both W bosons decay into jets.

The DØ collaboration was first to measure the mass of the top quark in the dilepton
channel [5,6]. In this article we present a more detailed account of this analysis. The
most precise measurements of the top quark mass have been obtained using the lepton+jets
channel [7,8]. Table I lists previously published measurements of the top quark mass.

The measurement described in this paper is based on an integrated luminosity of approx-
imately 125 pb−1, recorded by the DØ detector during the 1992–1996 collider runs. We first
give a brief description of the experimental setup (Sect. II), data reconstruction (Sect. III)
and calibration procedures (Sect. IV). We then describe the selection of the event sample
(Sect. V), the mass analysis of the selected events (Sect. VI), the maximum likelihood
fit to the data (Sect. VII), and the systematic uncertainties associated with the fit (Sect.
VIII). Finally we summarize the results and combine them with the measurement in the
lepton+jets channel (Sect. IX).

1We use natural units with ~ = c = 1.



8

TABLE I. Published measurements of the top quark mass. The first uncertainty is statistical,

the second systematic.

Experiment Channel Mass

DØ [7] lepton+jets 173.3± 5.6± 5.5 GeV

DØ [5] dilepton 168.4±12.3± 3.6 GeV

CDF [8] lepton+jets 175.9± 4.8± 4.9 GeV

CDF [9] dilepton 161 ±17 ±10 GeV

CDF [10] all-jets 186 ±10 ±12 GeV

II. DETECTOR

DØ is a multipurpose detector designed to study pp collisions at high energies. The
detector was commissioned at the Fermilab Tevatron during the summer of 1992. A full
description of the detector can be found in Ref. [11]. Here, we describe only briefly the
properties of the detector that are relevant for the mass measurement in the dilepton channel.

We specify detector coordinates in a system with its origin defined by the center of the
detector and the z-axis defined by the proton beam. The x-axis points out of the Tevatron
ring and the y-axis up. We use φ to denote the azimuthal coordinate and θ for the polar
angle. Rather than θ, we often use the pseudorapidity η = tanh−1(cos θ).

The detector consists of three primary systems: central tracking, calorimeter, and muon
spectrometer. A cut away view of the detector is shown in Fig. 1.

The nonmagnetic central tracking system consists of four subdetectors that measure the
trajectories of charged particles: a vertex drift chamber, a transition radiation detector, a
central drift chamber, and two forward drift chambers. These chambers also measure ioniza-
tion to identify tracks from single charged particles and e+e− pairs from photon conversions.
The central tracking system covers the region |η| < 3.2.

The uranium-liquid argon calorimeter is divided into three parts, the central calorimeter
and the two end calorimeters, and covers the pseudorapidity range |η| < 4.2. Longitudinally,
the calorimeter is segmented into an electromagnetic (EM) section with fine sampling and
a hadronic section with coarser sampling. The calorimeter is segmented transversely into
quasiprojective towers with ∆η × ∆φ = 0.1 × 0.1. The third layer of the electromagnetic
calorimeter, where EM showers are expected to peak, is segmented twice as finely in each
direction. The hadronic calorimeter modules back up any cracks in the coverage of the EM
calorimeter modules such that there are no projective cracks in the calorimeter, ensuring
good resolution for the measurement of transverse momentum balance.

Since muons from top quark decays predominantly populate the central region, we use
only the central portion of the muon system, which covers |η| < 1.7. This system consists of
four planes of proportional drift tubes in front of magnetized iron toroids with a magnetic
field of 1.9 T and two groups of three planes of proportional drift tubes behind the toroids.
The magnetic field lines and the wires in the drift tubes are oriented transversely to the beam
direction. The momentum is obtained from the deflection of the muon in the magnetic field
of the toroid.
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D0 Detector
FIG. 1. Cut away isometric view of the DØ detector.
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III. PARTICLE IDENTIFICATION

The particle identification algorithms used for electrons, muons, and jets are the same
as in previously published analyses [12]. We summarize them in the following sections.

A. Electrons

Electron candidates are first identified by finding isolated clusters of energy in the EM
calorimeter along with a matching track in the central detector. We accept electron candi-
dates with |η| ≤ 2.5. Final identification is based on a likelihood test on the following five
variables:

• The agreement of the shower shape with the expected shape of an electromagnetic
shower, computed using the full covariance matrix of the energy depositions in the
cells of the electromagnetic calorimeter.

• The electromagnetic energy fraction, defined as the ratio of the shower energy found
in the electromagnetic calorimeter to the total shower energy.

• A measure of the distance between the track and the cluster centroid.

• The ionization dE/dx along the track.

• A variable characterizing the energy deposited in the transition radiation detector.

To a good approximation, these five variables are independent of each other for electron
showers.

Electrons from W boson decay tend to be isolated. Thus, we make the additional cut

Etot(0.4) − EEM(0.2)

EEM(0.2)
< 0.1, (1)

where Etot(0.4) is the energy within ∆R < 0.4 of the cluster centroid and EEM(0.2) is the
energy in the EM calorimeter within ∆R < 0.2. ∆R is defined as

√
∆η2 + ∆φ2.

B. Muons

Two types of muon selection are used in this analysis. The first is used to identify
isolated muons from W → µν decay. The second type of muon selection is used to tag
b-jets by identifying muons consistent with originating from b → µ + X decay. We accept
muons with |η| < 1.7. Besides cuts on the muon track quality, both selections require that
the energy deposited in the calorimeter along a muon track be at least that expected from
a minimum ionizing particle. For isolated muons, such as those from W boson decays, we
require ∆Rµ,j > 0.5 for the distance ∆Rµ,j in the η − φ plane between the muon and any
jet. For soft muons in jets, such as those from b→ µ+X decay, we require pT ≥ 4 GeV and
∆Rµ,j < 0.5. The efficiency×acceptance for either muon selection with these cuts is about
64%.
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C. Jets

Jets are reconstructed in the calorimeter using a fixed-size cone algorithm. We use a cone
size of ∆R = 0.5. See Ref. [13] for a detailed description of the jet reconstruction algorithm.

D. Missing Transverse Momentum

The missing transverse momentum, /~pT , is the momentum required to balance the mea-
sured momenta in the event (

∑
~pT + /~pT = 0). In the calorimeter, we calculate /~pT as

/~pT
cal = −

∑

i

Ei sin θi

(
cosφi

sinφi

)
, (2)

where i runs over all calorimeter cells, Ei is the energy deposited in the ith cell, and φi is
the azimuthal and θi the polar angle of the ith cell. When there are muons present in the
event we refine the calculation

/~pT = /~pT
cal −

∑

k

~pµk

T , (3)

where ~pµ
T is the transverse momentum of the muon as measured by the muon system.

IV. ENERGY SCALE CALIBRATION

A. Electron Energy Scale

The measurement of the energy E of electromagnetic showers in the calorimeter is cali-
brated using Z → ee, J/ψ → ee, and π0 → γγ decays to a precision of 0.08% at E = MZ/2
and to 0.6% at E = 20 GeV [14]. The electron energy scale calibration therefore does not
give rise to any significant uncertainty in the top quark mass measurement.

B. Muon Momentum Scale

The muon momentum scale, calibrated using J/ψ → µµ and Z → µµ candidates, has an
uncertainty of 2.5%. Its effect on our measurement of the top quark mass was determined
by varying the muon momentum scale in Monte Carlo samples of tt̄ events with mt = 170
GeV. The tests indicate that the relation between muon scale and top quark mass error is
given by

δmt = 12 GeV
δpµ

T

pµ
T

. (4)

Hence, the 2.5% uncertainty in muon momentum scale leads to a systematic uncertainty
of 0.3 GeV in our measurement of the top quark mass. This uncertainty is completely
negligible compared to the effect of the jet energy scale.
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C. Jet Energy Scale

The jet energy scale is calibrated relative to the electromagnetic energy scale by balancing
the transverse momentum in events with jets and electromagnetic showers [15]. The exercise
is carried out separately and symmetrically for both data and Monte Carlo.

In addition to the corrections in Ref. [15] we apply an η-dependent correction derived
from a comparison between γ+jet events in data and Monte Carlo events created using
the herwig [16] event generator and a geant [17] based detector simulation. We also
correct jets that contain a muon, indicative of a semileptonic b quark decay, to compensate
on average for the energy carried away by the undetected neutrino. These corrections are
identical to those used and detailed in the mass analysis based on the lepton+jets final
states [7] with the exception that no attempt is made to account for gluon radiation outside
of the jet cone. Rather, the procedure in the dilepton analysis is to explicitly account for
additional reconstructed jets, as described in Sect. VIC.

We estimate the degree of possible residual discrepancy between the jet energy response
of the detector and the Monte Carlo simulation from the energy balance between elec-
tromagnetic energy clusters and jets from collider data, compared to photon+jets Monte
Carlo, as a function of photon pT . The data constrain the possible mismatch to less than
±(2.5%+0.5 GeV) in the jet energy [7]. This uncertainty gives rise to a significant systematic
uncertainty in our top quark mass measurement (see Sect. VIIIB).

V. EVENT SELECTION

A. Basic Event Selection Criteria

The event selection for the dilepton mass analysis is almost identical to that used for the
measurement of the cross section [12]. We require two charged leptons (e, µ) and at least
two jets in the events. In addition we cut on global event quantities like /pT and HT . The
basic kinematic selection criteria are summarized in Table II. The variable HT is defined as

HT =






∑
pj

T + pe1

T for the ee and eµ channels;
∑
pj

T for the µµ channel,
(5)

where e1 is the leading electron in ee events. The sum is over all jets with pT> 15 GeV
and |η| < 2.5. Muons are not included in the sum because their momenta are measured less
precisely. HT gives good rejection against background processes, which typically have less
jet activity along with the dilepton signature.

The event selection criteria are designed to identify events with two charged leptons and
additional jets in the final state as expected from tt → ℓℓ + X decays. The background in
the ee and µµ channels is dominated by Z → ee and Z → µµ decays. We apply additional
criteria, described in the following sections, that remove these particular backgrounds. Table
III gives the number of background events expected in each dilepton channel after all se-
lection criteria are applied. Instrumental backgrounds arise from particle misidentification,
e.g. mistaking a jet for an electron.
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TABLE II. Kinematic and fiducial cuts used in selecting dilepton events.

Objects ee eµ µµ

2 Leptons pℓ
T > 20 GeV > 15 GeV > 15 GeV

|ηℓ| < 2.5 < 1.7 < 1.7

≥ 2 Jets p
j
T > 20 GeV > 20 GeV > 20 GeV

|ηj | < 2.5 < 2.5 < 2.5

Event /pT — > 10 GeV —

/pT
cal > 25 GeV > 20 GeV —

HT > 120 GeV > 120 GeV > 100 GeV

TABLE III. Expected numbers of background events.

Background Source ee eµ µµ

Z → ℓℓ 0.058 ± 0.012 — 0.558 ± 0.21

Z → ττ → ℓℓ 0.078 ± 0.022 0.099 ± 0.076 0.029 ± 0.017

WW 0.083 ± 0.023 0.074 ± 0.018 0.007 ± 0.004

Drell-Yan 0.054 ± 0.030 0.002 ± 0.003 0.066 ± 0.035

tt → e + jets 0.04 — —

Instrumental 0.197 ± 0.046 0.035 ± 0.13 0.068 ± 0.010

Total Background 0.51 ± 0.09 0.21 ± 0.16 0.73 ± 0.25

B. eµ Channel

The eµ channel is the most powerful dilepton channel with twice the branching ratio
of the ee and µµ channels and without the background from Z → ee or Z → µµ decays.
The largest background is Z → ττ → eµ+X, which is suppressed by both branching ratio
and kinematics. Instrumental backgrounds arise from W bosons that decay to µν which are
produced in association with jets, one of which is mistaken for an electron.

We observe three events in this channel.

C. ee Channel

The primary source of physics background in the ee channel is Z boson production with
associated jets. These events have no neutrinos and can be rejected effectively by cutting
on /pT . We therefore require /pT > 40 GeV if the dielectron invariant mass is within 12 GeV
of the Z boson mass peak. Instrumental backgrounds arise from W+jets production or
multijet events in which jets fake the electron signature.

In this channel we extend our event selection criteria to include an additional event that
was not part of the final sample for the measurement of the cross section. This event passes
all selection criteria, except that one of the electron candidates has no matching track. This
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cluster is nevertheless consistent with originating from an electron because the trajectory
connecting the vertex with the cluster passes only through the two inner layers of the CDC.
The inner two layers do indeed have hits but to reconstruct a track, hits are required in
at least three layers. The lack of a reconstructed track could indicate a higher probability
for this electron to be misidentified. On the other hand one of the jets contains a muon,
which passes all requirements for the muon-tag analyses reported in reference [12]. A muon
tag indicates that the jet probably originates from the fragmentation of a b quark. The
probability of tagging a jet from the fragmentation of a light quark or a gluon is quite
small. The presence of a b jet reduces the likelihood that this event arises from instrumental
background sources and we therefore include it in the event sample for the mass analysis.

We revise the background estimate for the ee channel to include an additional component
due to the inclusion of this event. We compute the number of additional background events
expected if events are admitted that are missing a matched track for one of the two electron
candidates but have a muon tag. In our data we find 11 events with one electron candidate
and three jets, one with muon tag. In these events, there are 22 jets that could fake a second
electron. The probability for any one of these jets to mimic an electron signature without
matched track requirement is 8 × 10−4 [18], so that we expect about 0.018 events due to
the extension of the selection cuts. We also have to take into account that we specifically
extended the selection criteria to add this event. The additional background only contributes
to experiments in which at least one event satisfies the extended selection cuts. This is
expected to happen only once every six experiments. The additional background component
is therefore six times 0.018 or 0.11 events. The most significant source of these background
events are tt decays to e+jets with a muon-tagged jet, in which one jet is misidentified as
an electron.

In total, two ee events enter our final sample.

D. µµ Channel

The dimuon channel shares the Z → ℓℓ background with the dielectron channel. The
less precise measurement of the muon momentum makes separation of the tt signal from
this background more difficult. In order to reduce this background, a kinematic fit to the
Z → µµ hypothesis is applied, and the event is required to have χ2 probability less than
1% for this fit. Even after this cut, Z boson production remains the dominant background
source. Instrumental backgrounds arise from heavy quark jets with a high-pT muon that is
misidentified as an isolated muon.

One event survives all selection criteria.

E. Dilepton Events

Six events enter our dilepton event sample: three are eµ events, two are ee events, and
one is a µµ event. Table IV lists the properties of these events.



15

TABLE IV. Kinematic properties of dilepton events (momenta in GeV) used in the reconstruc-

tion of the top quark mass. All corrections are included.

Event Object px py pz pT η φ

eµ#1 e 12.3 −97.8 41.1 98.6 0.41 4.84

µ −68.3 272.5 95.1 280.0 0.33 1.82

/pT 100.5 −152.7 — 182.9 — 5.29

jet −25.5 −9.9 −20.8 27.3 −0.70 3.51

jet −14.4 −20.5 32.3 25.1 1.07 4.10

eµ#2 e −75.4 −1.1 −30.2 74.5 −0.39 3.16

µ −25.2 10.6 −12.8 27.4 −0.45 2.75

/pT 62.0 5.2 — 62.3 — 0.08

jet 38.9 −85.6 −16.0 94.0 −0.17 5.14

jet 14.2 33.1 −11.4 36.0 −0.31 1.17

jet −1.6 29.3 11.9 29.4 0.39 1.63

eµ#3 e −44.7 20.2 140.1 49.1 1.77 2.72

µ 5.4 17.2 −3.3 18.1 −0.18 1.27

/pT −12.5 4.5 — 13.2 — 2.79

jet 39.6 −29.9 11.3 49.7 0.22 5.64

jet 19.8 −19.4 −31.0 27.7 −0.97 5.51

ee#1 e 2.7 50.4 17.1 50.5 0.33 1.52

e −7.4 21.4 −47.6 22.6 −1.49 1.91

/pT 41.3 −4.0 — 41.5 — 6.19

jet −29.2 −36.9 −37.0 47.1 −0.72 4.04

jet 3.5 −27.1 −28.9 27.4 −0.92 4.84

ee#2 e 52.3 −4.1 −34.4 52.5 −0.62 6.20

e −8.5 −26.6 27.0 27.9 0.86 4.40

/pT 42.6 −11.3 — 44.1 — 6.02

jet∗ −92.4 −26.0 −61.6 96.0 −0.60 3.41

jet −23.5 25.3 −34.0 34.6 −0.87 2.32

jet 0.0 27.7 18.3 27.7 0.62 1.57

µµ µ −63.9 12.7 −21.4 65.1 −0.32 2.94

µ −16.0 31.0 1.9 34.9 0.05 2.05

/pT 71.2 53.2 — 88.9 — 0.64

jet 33.8 −103.1 −107.6 108.5 −0.88 5.03

jet −9.1 22.7 27.7 24.5 0.97 1.95

jet −8.4 −18.6 47.8 20.5 1.58 4.29

∗ tagged by a soft muon
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VI. RECONSTRUCTION OF THE TOP QUARK MASS

A. Characteristics of Dilepton Events

The dilepton decay topology does not provide sufficient information to uniquely recon-
struct the t and t quarks. In the simplest scenario, the decay t→ W+b, t→W−b, followed
by W+ → ℓ+ν and W− → ℓ−ν produces six particles in the final state: two charged leptons,
which we allow to be either electrons or muons (ee, eµ, or µµ); two neutrinos (ν,ν); and two b
quarks (b,b), as shown in Fig. 2. Given the identities of the particles, this final state is there-
fore completely specified by the momenta of these six particles, i.e. 18 numbers. We measure
the momenta of the charged leptons and the jets from the hadronization of the b quarks di-
rectly. In addition, the observed /~pT provides the x and y components of the sum of the
neutrino momenta for a total of 14 measurements. Assuming mt > MW +mb we can impose
three constraints, two on the masses of the decaying W bosons, mℓ+ν = mℓ−ν = MW , and
one on the masses of the top quarks, mℓ+νb = mℓ−νb. This leaves us with 17 equations and 18
unknowns so that a kinematic fit would be underconstrained. We have to develop a different
procedure to obtain an estimate of the top quark mass from the available information. This
is the fundamental difference between the mass determination in the dilepton channel and
that in the lepton+jets channel, which allows a kinematic fit with two constraints.

�p
�p

�b e�; �����e+; �+bt W+�t W�X
FIG. 2. Schematic representation of tt production and decay in the dilepton channels.
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We solve this problem by fitting the dynamics of the decays [19]. For each event we
derive a weight function, which is a measure of the probability density for a tt pair to decay
to the observed final state, as a function of the top quark mass. We compare these weight
functions to Monte Carlo simulations of tt decays for different values of the top quark mass
and use a maximum likelihood fit to extract the mass value that yields the best agreement.

B. Computation of the Weight Function

Ideally we would like to compute analytically the probability density for a tt pair to
decay to the observed final state for any given value of the top quark mass. This probability
density is given by

P({o}|mt) ∝
∫
f(x)f(x)|M|2p({o}|{v})δ4d18{v} dx dx, (6)

where {o} is the set of 14 measured quantities and {v} is the set of 18 parameters that specify
the final state. M is the matrix element for the process qq or gg → tt+X → ℓ+νbℓ−νb+X,
f(x) the parton density for quarks or gluons of momentum fraction x in the proton, and
f(x) that for antiquarks or gluons of momentum fraction x in the antiproton. The detector
resolution function p({o}|{v}) is the probability density to observe the values {o} given
the final state parameters {v}. The four-dimensional δ-function enforces the four mass
constraints:

δ4 = δ(mℓ+ν −MW ) × δ(mℓ−ν −MW ) × δ(mℓ+νb −mt) × δ(mℓ−νb −mt). (7)

Here we neglect the finite widths of the W boson and the top quark.
Unfortunately this expression involves a multidimensional integral that has to be eval-

uated numerically and is complicated by the need to include initial and final state gluon
radiation. Such higher order effects complicate the reconstruction of the top quark mass
substantially and cannot be neglected. We therefore do not attempt to compute the exact
probability density given in Eq. 6. Rather, we construct simpler weights that retain sensi-
tivity to the value of the top quark mass but can be evaluated with the available computing
resources. We calibrate the effect of the simplifications by comparing the weight functions
obtained from the collider data to Monte Carlo simulations (Sect. VII).

The calculation of the weight function proceeds in three steps. First we map the ob-
served charged leptons and jets to the corresponding t and t decay products. There are
ambiguities in this step because the fragmentation of the b quarks may result in more than
one reconstructed jet or because a gluon radiated from the initial state may contribute a jet
to the event. We cannot, in general, distinguish between jets originating from gluons and
quarks. Furthermore, we do not measure the sign of the electron charge nor can we distin-
guish between jets originating from quarks and antiquarks. Therefore, there is an ambiguity
in pairing the charged leptons and b jets that originate from the same top quark. We repeat
the following two steps for each of the possible assignments and add the resulting weight
functions.

Given the charged lepton and b quark momenta from the decay of the t and t quarks
and the sum of the neutrino momentum components, pνν

x and pνν
y , we compute a weight as
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TABLE V. Possible assignments of three observed jets (j1, j2, and j3) to the b quarks and

initial state radiation (ISR).

Permutation b-Jets ISR

1 j1 j2 j3

2 j1 j3 j2

3 j2 j3 j1

4 j1 + j2 j3 —

5 j2 + j3 j1 —

6 j1 + j3 j2 —

a function of the top quark mass. We have developed two algorithms to compute the weight
function which emphasize different aspects of top production dynamics. The first algorithm
(matrix-element weighting) is an extension of the weight proposed in Ref. [20] and takes
into account the parton distribution functions for the initial proton and antiproton and the
decay distribution of the W bosons due to the V –A coupling of the charged current. The
second (neutrino weighting) [6] is based on the available phase space for neutrinos from the
decay of the tt pair.

Finally we average the weight function over the experimental resolution.
In the following, we first discuss the ambiguities in associating the observables with final

state particles. Then we discuss the two algorithms that are used to compute the weight
functions and finally the experimental resolutions.

C. Jet Combinatorics

In the calorimeter we detect the jets from the fragmentation of the two b quarks. The
fragmentation of a b quark can produce more than one jet because of hard gluon radiation.
This corresponds to final state radiation. Jets can also originate from gluons radiated by
partons in the initial state. We refer to this as initial state radiation. It is not possible to
tell whether a jet originates from the fragmentation of a quark or a gluon, unless a b quark
decays semileptonically to a muon that we subsequently detect. Thus, reconstruction of the
original partons from the observed jets presents some complication.

We consider jets with pT > 15 GeV. If there are only two such jets we assign their
measured momenta to the two b quarks. If there are more than two jets we have a range
of possible assignments. To limit the possibilities, we restrict the procedure to the three
leading jets in pT . We assign two of them to the b quarks and the third jet either to initial
state radiation, in which case we ignore it, or to final state radiation, in which case we add
its momentum to that of one of the two b quarks. There are six possible permutations for
three jets, as listed in Table V.

If there is a jet in the event that is tagged by a soft muon, we only allow permutations
that assign this jet to a b quark. In the collider data sample this is the case for one ee event.
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Not all permutations are equally likely to be correct. For each jet considered to be due
to initial state radiation, we assign a weight factor

QISR = exp

(
−pj

T sin θj

25 GeV

)
. (8)

Similarly, for every pair of jets that is assigned to a b quark, we define

QFSR = exp

(
−mjj

20 GeV

)
, (9)

where mjj is the invariant mass of the two jets. These functional forms of the weights were
derived empirically from a study of tt decays generated by isajet [21]. The factor QISR favors
assignments in which jets from initial state radiation are close to the beam direction, and
QFSR favors the merging of jets which are soft or close together. The numerical coefficients
of the exponents are chosen such that the mean reconstructed top quark masses for events
with two-jet and multi-jet final states are the same.

After adding the four-momenta of the jets assigned to a b quark, we rescale the mo-
mentum components, keeping the energy fixed, so that the b quark four-momentum has an
invariant mass of 5 GeV to put the outgoing quark momentum on the mass shell.

There are two ways to pair the momenta of the two charged leptons with the two b quark
momenta. Since we cannot determine which b quark originated from the decay of the t quark
and which from the decay of the t quark, we consider both pairings with equal probability.

D. Matrix-Element Weighting (MWT) Algorithm

Assuming that we know the momenta of the charged leptons (pℓ+, pℓ−), the b quarks (pb,

pb), and the sum of the x and y components of the neutrino momenta (pνν
x , pνν

y ) and that
we impose the three constraints mentioned above, we are still one constraint short of being
able to solve for the unknown components of the neutrino momenta. Assuming a fixed value
for the top quark mass mt supplies the required constraint to solve the problem, except for
a fourfold ambiguity. Not all solutions are equally likely for any given value of mt. We
therefore assign a weight to the ith solution [20]:

wM
i (mt) = f(x)f(x) p(Eℓ−∗

i |mt) p(E
ℓ+∗
i |mt), (10)

where f(x) and f(x), the parton distribution functions, are evaluated at Q2 = m2
t , and

p(Eℓ∗|mt) is the probability density function for the energy of the charged lepton in the rest
frame of the top quark (Eℓ∗). This probability density is given by

p(Eℓ∗|mt) =
4mtE

ℓ∗(m2
t −m2

b − 2mtE
ℓ∗)

(m2
t −m2

b)
2 +M2

W (m2
t +m2

b) − 2M4
W

. (11)

We sum the weights for all solutions and normalize by a factor A(mt) to obtain the
weight for the event

wM(mt) = A(mt)
4∑

i=1

wM
i (mt). (12)
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The factor A(mt) ensures that the average weight is independent of the top quark mass.
We compute the weight function for 82 < mt < 278 GeV in steps of 4 GeV, where the lower
limit is given by the requirement that the top quark decays into a real W boson and a b
quark and the upper limit is placed well above the measurement of the top quark mass in the
lepton+jets channel. The normalization factor is computed using a Monte Carlo simulation
so that

N∑

1

wM(mt) = N, (13)

where the sum is over the events that pass the selection cuts. We parametrize the factor
A(mt) at different values of mt (in GeV) as

A(mt) =
(
5.86 − 0.044mt + 0.000084m2

t

)−1
. (14)

E. Neutrino Weighting (νWT) Algorithm

The neutrino weighting algorithm also computes a weight as a function of the top quark
mass. In contrast to the MWT algorithm it does not solve for the unknown neutrino
momentum components, but rather samples the neutrino pseudorapidity space and computes
a weight based on how much of the sampled space is consistent with the observed /pT .

For every value of the top quark mass, we sample the rapidities of neutrino (ην) and
antineutrino (ην) from the tt decay. For each top decay we then know the momenta of the
charged lepton and the b quark, the assumed neutrino pseudorapidity, and the top quark
mass, which allows us to solve for the transverse momentum components of the neutrino (pν

x

and pν
y) with a twofold ambiguity. The two solutions for each of the two top decays combine

to give four solutions for the event. For the ith solution we compute a weight based on the
agreement between the observed /pT and the sum of the calculated neutrino pT values:

wν
i (mt) = exp



−
(
/px − pν

x − pν
x

)2

2σ2


× exp



−
(
/py − pν

y − pν
y

)2

2σ2


, (15)

where σ = 4 GeV is the resolution for each component of /~pT (Sect. VIF).
Not every value of the neutrino pseudorapidity is equally likely. Figure 3 shows the

distribution of neutrino rapidities predicted by the herwig Monte Carlo program for several
top quark masses. The distributions can be approximated by Gaussian curves. The width
ση of the Gaussian varies as a function of the top quark mass. It can be parametrized by
the second order polynomial

ση = 5.56 × 10−6m2
t − 2.16 × 10−3mt + 1.314, (16)

as shown in Fig. 4. We compute the weights wν
i for ten values of each of the neutrino

rapidities, spaced such that they divide the Gaussian into slices of equal area.
To obtain the weight for the event we add the weights for all four solutions and all values

of the neutrino rapidities,

wν(mt) =
∑

ην

∑

ην

4∑

i=1

wν
i (mt). (17)
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FIG. 3. Distributions of neutrino pseudorapidity from top quark decay, modeled by herwig,

for several top quark masses. The smooth curves are fits to Gaussians.
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F. Detector Resolution

The algorithms described in the two previous sections use as input the measured momenta
of the charged leptons and b jets and the transverse components of the sum of the neutrino
momenta. To account for finite resolution, we integrate the weights over the ranges of these
quantities that are consistent with the measurements to smooth out the weight functions.

To evaluate this integral, we generate a large number of sets of event parameters over
which we average the weights. These sets of event parameters derive from the observed
events by adding normally distributed resolution terms to the observed values to populate
the parameter space consistent with the measured values. The new values õ are given in
terms of the observed value o, the resolution, σ, for the measurement of o, and a normally
distributed random variable ξ:

õ = o + σξ. (18)

We apply such fluctuations to all momentum measurements. Directions are relatively precise
and are therefore not fluctuated. This also reduces the number of numerical operations.

The energy resolution for electrons is

σ(Ee) = 0.15 GeV
1

2

√
Ee. (19)

The resolution function for the inverse of the muon momentum is approximately Gaussian.
We therefore fluctuate the inverse of the momentum with the resolution

σ

(
1

pµ

)
=






(
0.18(pµ − 2 GeV)

pµ2

)2

+
(

0.003

GeV

)2





1

2

. (20)

The energy resolution for jets receives contributions from several effects. One is the
intrinsic resolution of the calorimeter. The energy of the jet is measured as the energy in
a cone of radius ∆R = 0.5. This energy is not identical to that of the parton. Additional
energy can be accrued from overlap with other jets and energy can be lost due to gluon
radiation outside of the cone. These contributions to the resolution depend on the process
and we therefore use Monte Carlo tt events to evaluate the jet energy resolution.

We compare the reconstructed jet pT to that of the nearest cluster of hadrons generated
by the Monte Carlo in a sample of tt events with top quark masses ranging from 110 to
190 GeV. Typically, the distribution in the fractional mismeasurement in pT exhibits a
narrow peak due to the intrinsic calorimeter resolution and broad tails due to ambiguity
in the jet definition. We fit two Gaussian curves with equal means but different widths
to the distribution, and parametrize the widths of the two Gaussians and their relative
normalization as functions of pT and η. Figure 5 shows a typical distribution along with the
fit that we use as a resolution function. Figure 6 shows the rms resolution as a function of
pT .

The Monte Carlo simulation used to determine the jet energy resolution neither includes
noise due to the intrinsic radioactivity of the uranium nor due to multiple interactions. We
therefore add an additional uncorrelated constant noise term of 5–6 GeV, depending on η.
These values were determined by balancing the pT vectors in dijet events.
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Using a sample of random pp interactions, we measure the resolution for any component
of /~pT to be about 4 GeV. Both components of /~pT are fluctuated by this resolution. The /pT

vector is also corrected for the fluctuations in the lepton and jet momenta.
The number of variations performed for each event is limited by the available computing

power. We average over 100 variations per event for Monte Carlo samples and 5000 variations
per event for the collider data.

The weight function for each event is then

W x(mt) =
1

N ′N ′′

N ′∑

j=1

2∑

k=1

N ′′∑

l=1

QISRQFSRw
x(mt), (21)

where QISR and QFSR are the parametrized weights defined in Eqs. 8 and 9. The index j
runs over the N ′ resolution fluctuations, k over the two lepton–b jet pairings, l over the N ′′

jet permutations, and x refers to the MWT or νWT algorithms.
Figure 7 shows W (mt) for the dilepton events for the MWT analysis and Fig. 8 shows

the corresponding functions for the νWT analysis.
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FIG. 7. W (mt) functions for the dilepton events from the MWT analysis. The labels in the

upper right hand corners identify the events (cf. Table IV).

G. Monte Carlo Tests

We now describe tests of the properties of the weight functions to demonstrate their
sensitivity to the top quark mass and other parameters.
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upper right hand corners identify the events (cf. Table IV).

1. Parton-level Tests

Parton-level tests are based on the momenta of the partons generated by the Monte
Carlo simulation. Tests at this level are neither subject to effects from detector resolution
nor initial or final state radiation. To restrict the sample to events that are broadly similar
to those which enter the collider data analysis, the event selection for these tests requires
two b quarks and two leptons with pT > 20 GeV and |η| < 2.5.

We examine the average weight function as a function of input top quark mass by nor-
malizing the area of the weight function for each event to unity and then summing these
normalized functions for a collection of Monte Carlo events. A sample of 10,000 events was
used, about half of which passed the cuts. The results are shown in Fig. 9 for top quark
masses of 130 and 190 GeV. On average, the weight function is sharply peaked within one
GeV of the input mass. The tails of the function are asymmetric, with the high-end tail
extending further than the low-end tail.

Figure 10 shows the impact of detector resolution, jet combinatorics, and radiation on
the weight functions for 190 GeV Monte Carlo events. The distribution becomes significantly
broader when resolution effects and both lepton-b jet pairings are considered, but the peak
value remains unchanged. Initial state radiation increases the mean value and adds a high-
mass tail, as expected. Final state radiation has the opposite effect. In total, the effect of
resolution, combinatorics, and radiation is to broaden the distribution of the weight function
and move the peak of the distribution away from the input mass.
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FIG. 9. Average parton-level weight W (mt) for tt decays with (a) mt = 130 GeV and (b)

mt = 190 GeV for the νWT algorithm. The vertical lines indicate the input mass values.
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FIG. 10. Average parton-level weight functions for the νWT algorithm, obtained (a) with the

parton momenta smeared by the detector resolutions, (b) with the two-fold ambiguity in lepton-jet

pairings included, (c) with ISR but without FSR, and (d) without ISR but with FSR. The vertical

lines indicate the input mass value of 190 GeV.
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2. Tests using Full Simulation

To quantitatively assess the response of the fitting algorithm to events from the DØ
data sample that pass the kinematic selection described in Sect. V, we use fully simulated
samples of herwig tt decays. In contrast to the parametrized detector response used in the
parton-level tests, these samples derive from a detailed detector model implemented using
the geant program. The events are processed with the same reconstruction program and
filtered using the same kinematic criteria as for the collider data.

Figures 11, 12, and 13 show the average weight functions for the full simulation of all
three dilepton channels. Both the kinematic cuts and the additional complexity of the col-
lider environment further degrade the resolution from that obtained in parton-level tests. In
particular, for top quark masses less than 140 GeV, the distributions are distorted signifi-
cantly by the HT cut. This distortion reduces the precision with which a top mass value in
this range can be measured. It does not, however, introduce any bias in our top mass deter-
mination since the effect of the HT cut is modeled in the probability distribution functions
used for the mass fits (Sect. VII).
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FIG. 11. Average weight functions for fully simulated tt decays events in the eµ channel from

the MWT analysis (solid line) and the νWT analysis (dashed line).

The weight distributions become less sharp as the number of muons in the final state
increases, reflecting the relatively poor measurement of their momenta. This effect is more
pronounced for the νWT analysis. For this reason, and also because the signal to background
ratio is significantly higher for the eµ channel than for the ee or µµ channels, it is important
to treat the three channels separately when extracting the top quark mass.
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FIG. 12. Average weight functions for fully simulated tt decays in the ee channel from the

MWT analysis (solid line) and the νWT analysis (dashed line).
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FIG. 13. Average weight functions for fully simulated tt decays events in the µµ channel from

the MWT analysis (solid line) and the νWT analysis (dashed line).
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VII. MASS FITS

A. General Procedure

We estimate the top quark mass by comparing weight functions from Monte Carlo tt
samples, generated at different values of the top quark mass, with the weight functions for
the collider data. We use a maximum likelihood fit to find the value of the top quark mass
for which the Monte Carlo predictions agree best with the data.

For each dilepton event, we compute the weights W (mt) at 50 values of the top quark
mass between 80 and 280 GeV. To fit these 50 values directly we would need the probability
density as a function of 50 arguments, which is impractical. We can, however, reduce the
number of quantities without losing too much information. The individual weight functions
are much broader than the size of the steps for which the weights are computed. As shown
in Figures 12–13, their rms is 35–40 GeV. Therefore, we integrate the weights over five bins
40 GeV wide, as shown in Fig. 14. Since we need information only about the shape of the
weight function, we normalize the area under the function to unity, such that the integrals
over four of the bins are independent quantities. We thereby reduce the weight function for
each event to the four-dimensional vector

~W = (W1,W2,W3,W4) , (22)

where

W1 =
∫ 120 GeV

80 GeV
W (m) dm (23)

and W2, W3, and W4 are computed analogously.
We now maximize the joint likelihood

L =
1√

2πσb

e
−

(nb−nb)
2

2σ2
b

(ns + nb)
N e−(ns+nb)

N !
×

N∏

i

nsfs( ~Wi|mt) + nbfb( ~Wi)

ns + nb

(24)

with respect to the parameters ns (the expected number of signal events), nb (the expected
number of background events), and mt (the top quark mass). The product is taken over all
events. The first term in the likelihood is a Gaussian constraint that forces the expected
number of background events to agree with the background estimate nb within its uncertainty
σb. The second is a Poisson constraint that forces the expected number of events to be
consistent with the observed number of dilepton events N . The remaining part is the
probability density for the vector ~Wi for the collider data for ns signal and nb background
events. Here fs is the probability density function for signal and fb for background events.
We maximize L with respect to ns and nb at each value of mt using the minuit program [22]
to eliminate the nuisance parameters ns and nb. We are left with L at the discrete values
of mt for which we have Monte Carlo samples. Each dilepton channel is treated separately
in this fit and the final likelihood L is the product of the likelihoods from each channel. We
fit a polynomial to − lnL, the minimum of which gives the measured value of the top quark
mass.

The following sections describe the derivation of the probability density function for ~W ,
the parametrization of the likelihood functions, and the fit results.
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FIG. 14. The weight function for a typical Monte Carlo event, normalized to unity. The vertical

lines show the five intervals over which the weight function is integrated.

B. Probability Density Estimation

To estimate the continuous functions fs and fb from the discrete sample of Monte Carlo
points available for each value of mt would require a prohibitively large number of Monte
Carlo events to populate the four dimensional parameter space. We therefore use a proba-
bility density estimation (PDE) technique employing continuous kernels [23].

Consider that each event in the sample is characterized by a set of d uncorrelated values,
which are grouped into the d-dimensional vector ~ζ. Then the probability density f for any
~ζ can be estimated based on a sample of NMC Monte Carlo events as

f(~ζ) =
1

NMChd

NMC∑

i=1

K




~ζ − ~ζi
h

,C



 , (25)

where C is the covariance matrix for the components of ~ζ, h is a free parameter, and K is
the kernel function.

Any function which is maximal at zero and asymptotically approaches zero as the abso-
lute value of its argument becomes large would be an acceptable choice for K. For simplicity,
we choose a multidimensional Gaussian. In our application, the results of applying either
the MWT or νWT techniques to an event is the 4-dimensional vector ~W . The elements
of ~W are highly correlated, and so a linear transformation must be applied to the data to
remove the correlations before using Eq. 25:

~W ′ = A ~W . (26)

The transformation matrix A is chosen so that the covariance matrix C of the transformed
variables is diagonal. It can be shown that for two distinct sources of events (signal and
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background in our case), there exists a unique matrix A which results in the covariance ma-
trix for one source to be the identity matrix I and that from the other source to be a general
diagonal matrix D [23]. We choose to have C be the identity matrix for background. The
matrix A is computed only once, using the distribution of Monte Carlo tt events generated
at all top quark masses. After transformation, the kernel function has the form:

K




~W ′ − ~W ′

i

h
,C



 =
d∏

j=1

1√
2πcj

exp


−

(
( ~W ′ − ~W ′

i )j/h
)2

2cj


 (27)

where the cj are the diagonal elements of C.
One minor extension of this method is needed to properly model the background. As

described in Sec. V, the backgrounds in the dilepton channel arise from a variety of sources.
We assign weight factors bj such that their contribution to the probability density corre-
sponds to the relative strengths of the n background sources:

bjN
MC
j∑n

i=1 biN
MC
i

=
nj

nb

, (28)

where NMC
j is the number of Monte Carlo events and nj is the number of events expected

from the jth background source. The estimate for the probability density for an event weight
vector ~W is then given by:

fs( ~W |mt) =
1

Nh4

N∑

i=1

K




~W ′ − ~W ′

i

h
,D



 (29)

for signal and

fb( ~W ) =
1(∑n

j=1 bjN
MC
j

)
h4

n∑

j=1

bj

NMC
j∑

i=1

K




~W ′ − ~W ′

i

h
, I



 (30)

for background.
The remaining step is to fix the value of the free parameter h to maximize the expected

resolution of the measurement. Using the ensemble test method described below, we find
that values of h in the range 0.1 – 0.4 are preferred, and we choose h = 0.3.

C. Ensemble Tests

Ensemble tests are mock experiments in which the dilepton events are simulated using
a Monte Carlo program with a known top quark mass (mMC

t ) and processed in exactly the
same manner as the collider data. The procedure is as follows: if there are Nj events in the
jth decay channel, we draw Nj events from the MC samples for this decay channel. We then
select a random number between 0 and 1 for each event. If the random number is greater
than nj/Nj, we take an event from the signal sample. Otherwise we select an event from the
background sample. If there are multiple sources of background, another random number is
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TABLE VI. Results of ensemble tests using the νWT algorithm showing the effect of different

parametrizations of the − ln L function. The fits are polynomials of degree m to n points.

Fit mMC
t = 150 GeV mMC

t = 200 GeV

n m Median Mean R68 Median Mean R68

GeV GeV GeV GeV GeV GeV

5 2 152.2 154.1 13.4 198.1 197.8 18.6

7 2 151.6 154.0 13.0 198.2 198.1 19.0

9 2 151.9 154.5 13.6 198.8 199.4 18.9

9 3 151.6 151.8 13.3 196.0 190.0 19.6

11 3 151.9 152.5 13.8 193.4 196.3 19.3

selected in order to decide the source of background from which to draw the event. We then
fit the ensemble using the maximum likelihood procedure described above. We repeat this
procedure for a large number of ensembles (typically 1000). In this manner we can gauge
the statistical properties of the maximum likelihood estimate of the top quark mass, m̂t.

We characterize the width of the (in general not Gaussian) distribution of fit results by
half the length of the shortest interval in mt that contains 68.3% of the ensembles, R68.

D. Parametrization of the Likelihood Function

We fit a polynomial to the values of − lnL computed for different top quark masses.
The fitted top quark mass is the value of mt for which the polynomial assumes its minimum
− lnL0. The statistical uncertainty δmt due to the finite size of the event sample is given
by half of the interval in mt for which − lnL < − lnL0 + 1

2
.

We have a choice of what order polynomial, and how many points around L0, to include
in the fit. The values of m̂t and δm̂t returned by the fit depend on these choices. We
therefore perform ensemble tests to select the choice that gives the most accurate values.
For the fitted top quark mass this means agreement with the input mass used to generate the
ensembles. For the uncertainty it means agreement with the observed scatter of ensemble
results.

We fit quadratic and cubic polynomials to five to eleven points, centered on the point of
maximum likelihood. Table VI gives the results of ensemble tests using these fitting options.
The cubic does not improve the accuracy of the fitted mass and we therefore choose to fit
the − lnL points with a quadratic polynomial.

The width of the fitted quadratic polynomial increases with the number of points included
in the fit. We choose the number of points that results in pull distributions of unit widths.
If m̂t is an unbiased estimate of mMC

t with a Gaussian resolution of width δm̂t, then the pull

s =
m̂t −mMC

t

δm̂t

(31)

is normally distributed around zero with unit width. We fit Gaussians to histograms of the
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TABLE VII. Pull means and widths from ensemble tests of the MWT algorithm.

mMC
t n = 5 n = 7 n = 9

GeV Width Width Width Mean

130 1.16 0.90 0.79 0.65

140 1.01 0.90 0.81 0.38

150 1.12 0.95 0.87 0.13

160 1.34 1.12 1.03 0.12

170 1.26 1.08 0.99 0.11

180 1.24 1.08 0.98 0.00

190 1.12 1.02 1.03 −0.06

200 1.17 1.10 1.06 −0.11

210 1.09 1.04 1.04 −0.09

TABLE VIII. Pull means and widths from ensemble tests of the νWT algorithm.

mMC
t n = 5 n = 7 n = 9

GeV Width Width Width Mean

130 1.22 1.04 1.04 0.58

140 1.09 0.97 0.88 0.40

150 1.03 0.92 0.86 0.16

160 1.18 0.99 0.96 0.17

170 1.17 1.06 0.98 0.08

180 1.27 1.11 1.03 0.03

190 1.16 1.05 0.99 −0.07

200 1.07 1.10 1.02 −0.08

210 1.08 1.01 1.03 −0.08

pulls for all ensembles generated with the same mMC
t . The pull widths are tabulated in

Table VII for the MWT algorithm and in Table VIII for the νWT algorithm.
The fits that include only five points underestimate δm̂t. The nine point fits give pull

widths closest to unity over the whole range of mt. Therefore we choose to fit the quadratic
polynomial to nine points for the final results. The pull distributions for ensemble tests at
a variety of top quark masses are shown in Fig. 15 for the MWT algorithm and in Fig. 16
for the νWT algorithm.

Tables IX and X list the median and mean fitted top quark masses from ensemble tests
using a quadratic fit to nine points. The differences between m̂t andmMC

t at masses below 150
GeV can be traced to the small number of events available to model some of the backgrounds
(Z → ℓℓ, WW ). For these background processes the selection efficiency is so low that a
significant increase in the number of Monte Carlo events that satisfy the selection criteria
is not possible due to limited computing resources. When we replace these small samples
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FIG. 15. Pull distributions for the MWT algorithm. The smooth curves are fits to Gaussians.
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FIG. 16. Pull distributions for the νWT algorithm. The smooth curves are fits to Gaussians.
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TABLE IX. Median and mean of the fitted top quark masses and 68% confidence intervals

from ensemble tests of the MWT algorithm.

mMC
t Median Mean R68

GeV GeV GeV GeV

130 138.1 138.3 13.6

140 144.6 147.1 12.7

150 151.6 153.4 12.8

160 161.6 163.9 15.8

170 172.2 173.7 16.7

180 180.5 181.0 17.3

190 189.5 190.5 17.8

200 200.3 200.1 19.5

210 210.0 210.9 21.4

TABLE X. Median and mean of the fitted top quark masses and 68% confidence intervals from

ensemble tests of the νWT algorithm.

mMC
t Median Mean R68

GeV GeV GeV GeV

130 138.2 139.8 18.1

140 145.9 147.5 13.9

150 151.9 154.5 13.6

160 161.5 163.5 14.4

170 172.2 173.0 16.2

180 180.5 181.3 18.1

190 188.7 189.6 17.7

200 198.8 199.4 18.9

210 210.1 210.0 20.2
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with large samples picked randomly from a smooth distribution these differences vanish.
For fitted masses above about 150 GeV, these differences become small. We choose not
to correct the results for this effect. It is included in the uncertainty assigned to the fit
procedure in Sect. VIII F. Figures 17 and 18 show that for the two algorithms, the peak of
the m̂t distribution is consistent with mMC

t .
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FIG. 17. Distribution of m̂t from ensemble tests of the MWT algorithm. The arrows point to

the input mass.

E. Results

Applying the procedure outlined above to the dilepton event sample, we find

mt = 168.2 ± 12.4 (stat) GeV (32)

for the MWT algorithm and

mt = 170.0 ± 14.8 (stat) GeV (33)

for the νWT algorithm. Figures 19 and 20 compare
∑

i
~Wi for collider data to the fitted

signal plus background shapes. The insets show the corresponding fits to − lnL.
In Figures 21(a) and 22(a) we compare the statistical uncertainties for the MWT and

νWT analyses with the distribution of R68 observed in ensemble tests with mMC
t = 170 GeV.

For the MWT analysis there is a 21% probability to obtain a smaller statistical uncertainty
than 12.4 GeV and for the νWT analysis there is a 47% probability to obtain a smaller
statistical uncertainty than 14.8 GeV. The pull distributions indicate that δm̂t is a good
estimate of the statistical uncertainty. We verify this by considering the subset of ensembles



37

0

50

100

150

100 150 200 250

mt = 140 GeV

en
se

m
bl

es
0

50

100

150

100 150 200 250

mt = 160 GeV

0

25

50

75

100

125

100 150 200 250
m
∧

t (GeV)

mt = 180 GeV

en
se

m
bl

es

0

25

50

75

100

125

100 150 200 250
m
∧

t (GeV)

mt = 200 GeV

FIG. 18. Distribution of m̂t from ensemble tests of the νWT algorithm. The arrows point to

the input mass.
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bars indicate the rms observed for five event samples in ensemble tests. The inset shows the

corresponding fit to − lnL, drawn as a solid line in the region considered in the fit.
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with δm̂t consistent with the observed value. Figures 21(b) and 22(b) show the distribution
of mass estimates m̂t for the ensembles with δm̂t between the dashed lines in (a). The widths
R68 of all such ensembles are consistent with the observed values of δm̂t.

The eµ channel, with the largest number of events and smallest background, should
dominate the result of the fit, while the µµ channel with only one event and a sizeable
background should have the least effect. We therefore also fit separately the five events from
the ee and eµ samples and the three eµ events. Table XI lists the results. This table also
shows the effect of varying the degree of the polynomial used to fit − lnL and the number
of points included in the fit. No excursions comparable to the statistical uncertainty of the
measurement are seen in the results of any of these variations.

VIII. SYSTEMATIC ERRORS

A. Estimation of Systematic Uncertainties

Systematic uncertainties give rise to biases in the result of the analysis no matter how
many events are analyzed. They are due to differences between the collider data and our
signal or background models. Variation in the event selection or the fit procedure, which in
general also result in a change in the final result when applied to a small sample of events, do
not represent systematic uncertainties. Rather, these are statistical effects and are properly
accounted for by our use of a maximum likelihood fit to define the statistical uncertainty.
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algorithm with mMC
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0

25

50

75

100

125

0 5 10 15 20 25 30 35 40 45 50

(a)

δm
∧

t (GeV)

en
se

m
bl

es

0

10

20

30

80 100 120 140 160 180 200 220 240 260

(b) R68 = 12.8 GeV

m
∧

t (GeV)

en
se

m
bl

es

FIG. 22. (a) Distribution of uncertainties δm̂t obtained from ensemble tests of the νWT

algorithm with mMC
t = 170 GeV. The arrow marks the value returned by the fit to the data (14.8

GeV). (b) Distribution of m̂t for the ensembles with δm̂t between the dashed lines in (a).



40

TABLE XI. Results of several variations of the maximum likelihood fit to the data. The fits

are polynomials of degree m to n points.

Channels Fit Fitted Mass (GeV)

n m MWT νWT

ee, eµ, µµ 5 2 166±12 169±11

7 2 168±12 170±13

9 2 168±12 170±15

11 3 167+11
−13 171±16

ee, eµ 5 2 166±13 173±12

7 2 167±12 172±15

9 2 168±13 173±14

11 3 166+11
−13 172+13

−15

eµ 5 2 173±15 169±14

7 2 173±13 169±13

9 2 173±13 170±15

11 3 172+13
−15 170+15

−16

Systematic uncertainties can, in general, be estimated using ensemble tests in which a
mismatch is introduced between the conditions under which the ensembles are created, and
the assumptions used in the probability density estimation. In most cases we vary conditions
in the ensembles and then analyse them with the same probability density functions used
for the collider data, i.e., assuming the nominal conditions. Any deviation of the fitted mass
values from the mass used when generating the ensembles indicates a systematic effect. Due
to the finite number of Monte Carlo events available, these systematic effects can be esti-
mated with an uncertainty of about 1 GeV. Table XII summarizes the sources of systematic
uncertainties and their estimated magnitudes. The estimated uncertainties differ insignif-
icantly between the two algorithms so that we use the average of the uncertainties from
both analyses, weighted by the respective statistical uncertainty in the measured top quark
mass, as an estimate for both algorithms. The following sections describe the individual
uncertainties in more detail.

B. Jet Energy Scale

To propagate the jet energy scale uncertainty (section IVC) to the top mass measure-
ment, we generate signal Monte Carlo samples (mt = 170 GeV) and background samples
with jet energy responses one standard deviation higher and lower than the nominal re-
sponse. We also scale the energy in the calorimeter that is not included in any jet by the
same factor as the jets, and the /pT is recomputed to reflect the scale change. We then create
Monte Carlo ensembles from the scaled samples and fit them using the probability density
functions generated with the nominal jet energy response. Table XIII shows the results of
this mismatch in jet energy scale. Averaging the upward and downward excursions of the
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TABLE XII. Summary of systematic uncertainties for the dilepton mass fits.

Source Uncertainty (GeV)

MWT νWT average

Jet Energy Scale 2.0 2.9 2.4

Multiple Interactions 1.4 1.2 1.3

Background Model 0.9 1.5 1.1

Signal Generator 2.3 1.1 1.8

Monte Carlo Sample Size 0.3 0.3 0.3

Likelihood Fit 0.9 1.3 1.1

Total 3.5 3.9 3.6

TABLE XIII. Effect of varying the jet energy response in ensemble tests with mt = 170 GeV.

Jet Scale Median m̂t (GeV)

MWT νWT

+2.5% + 0.5 GeV 172.9 174.0

Nominal 172.2 172.2

−2.5% − 0.5 GeV 168.9 168.3

median results in a systematic uncertainty of 2.0 GeV for the MWT algorithm and 2.9 GeV
for the νWT algorithm.

C. Signal Monte Carlo Generator

The accurate determination of the top quark mass depends on the signal Monte Carlo
providing a faithful description of tt events. Some features, in particular gluon radiation and
parton fragmentation, are only modeled approximately by herwig and other reasonable
approximations exist. In the absence of large samples of tt events, none of them can be
directly excluded. To test the sensitivity of the result to the Monte Carlo generator, we
generate ensembles of events with the isajet event generator. We simulate the detector
response using geant and analyse them in the standard way. We then fit the weight
functions of ensembles of these events with the probability density functions obtained from
Monte Carlo events generated by the herwig program. Tables XIV and XV list the results.
For a given top quark mass, we take the difference ∆Median between the medians of the
results from the isajet samples (Tables XIV and XV) and the herwig samples (Tables IX
and X). We compute the average of the magnitude of these differences for all top quark
masses, 2.3 GeV for the MWT algorithm and 1.1 GeV for the νWT algorithm, and assign
these values as the systematic uncertainty in the top quark mass measurement.

In addition, we have performed studies to directly assess the impact of gluon radiation
by varying the fraction of events with gluon radiation in a herwig Monte Carlo sample by
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TABLE XIV. Results of analyzing ensembles of events generated by isajet with the MWT

algorithm.

mMC
t Median Mean R68 ∆Median ∆Mean

GeV GeV GeV GeV GeV GeV

140 143.6 145.0 14.4 −1.0 −2.1

150 151.0 151.6 14.3 −0.6 −1.8

160 160.0 161.4 16.4 −1.6 −2.5

170 169.0 168.6 17.3 −3.2 −5.1

180 178.0 178.4 18.0 −2.5 −2.6

190 186.2 186.9 19.8 −3.3 −3.6

200 197.2 196.1 20.2 −3.1 −4.0

210 206.7 206.1 22.1 −3.3 −4.8

TABLE XV. Results of analyzing ensembles of events generated by isajet with the νWT

algorithm.

mMC
t Median Mean R68 ∆Median ∆Mean

GeV GeV GeV GeV GeV GeV

140 145.9 147.8 15.6 0.0 0.3

150 152.6 154.4 15.4 0.7 −0.1

160 160.1 161.6 15.8 −1.4 −1.9

170 170.8 171.6 17.6 −1.4 −1.4

180 179.1 179.5 18.2 −1.4 −1.8

190 189.4 188.7 18.5 0.7 −0.9

200 198.6 198.3 19.5 −0.2 −1.1

210 206.8 205.6 20.3 −3.3 −4.4

50%. This results in a change of 1.3 GeV in the measured top quark mass, which is quite
consistent with the uncertainties quoted above based on herwig-isajet differences.

We studied the sensitivity of the results to variations in our choice of parton distribution
functions. We expect the sensitivity to parton distribution functions to be larger for the
MWT analysis because it uses them explicitly in the mass reconstruction. Our default
choice is the CTEQ3M set of parton distribution functions [24]. We also perform ensemble
tests with weight functions derived using MRSA′ parton distribution functions [25] with
three different values of ΛQCD. The Monte Carlo events for the ensembles were generated
with an input mass of 170 GeV and CTEQ3M parton distribution functions in the generation
and the top mass reconstruction. The results are summarized in Table XVI. The variation
in the median of the ensemble tests is 20 MeV. We conclude that any sensitivity to parton
distribution functions is negligible compared to other systematic effects in the generation of
the Monte Carlo samples.
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TABLE XVI. Results of varying the choice of parton distribution functions (pdf) in the MWT

analysis.

pdf Median Mean

GeV GeV

CTEQ3M 172.25 173.67

MRSA′ (ΛQCD = 266 MeV) 172.27 173.66

MRSA′ (ΛQCD = 344 MeV) 172.27 173.51

MRSA′ (ΛQCD = 435 MeV) 172.26 173.38

TABLE XVII. Effect of introducing dummy models for the poorly modeled portion of the

background.

Background Model Median m̂t (GeV)

MWT νWT

Low Mass 172.9 172.7

Nominal 172.2 172.2

High Mass 172.0 171.2

D. Background Shape

The modeling of the background also depends on a Monte Carlo simulation. In addition,
for some sources of background (Z → ℓℓ, WW ) very few Monte Carlo events satisfy the
selection criteria. To estimate how sensitive the result is to the poorly constrained distri-
bution of these events, we use dummy models instead of the Monte Carlo samples. These
models assume that the W (mt) distributions for these backgrounds are Gaussian, with a
width chosen randomly between 20 and 60 GeV. In one of the models (“low mass”), the
mean of the Gaussian was randomly selected between 120 and 160 GeV, and in the other
(“high mass”) between 180 and 220 GeV. We then perform ensemble tests using the known
background components plus the dummies to estimate the background probability densities,
with events drawn from the standard signal and background models. The results are listed
in Table XVII. Based on the observed shifts in the median m̂t the uncertainties are 0.9 GeV
and 1.5 GeV for the MWT and νWT analyses, respectively.

E. Multiple Interactions

The beams in the Tevatron are structured into six proton and six antiproton bunches.
Proton and antiproton bunches collide every 3.5 µs in the center of the detector. More than
one pp interaction can take place during a crossing and the detector sees the superposition
of all these interactions. At the mean luminosity at which the data were taken (7.5 ×
1030/cm2/s) on average 1.3 interactions occur per crossing. Since the cross section for the
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production of high-pT secondaries is small, it is very unlikely that more than one of these
interactions produces high-pT particles or jets. However, the Monte Carlo models do not
include the effect of the additional low-pT particles due to multiple interactions during the
same crossing.

There are two ways in which these additional interactions may affect the reconstructed
event. First, the additional particles deposit energy in the calorimeter, some of which falls
into the jet cones. Second, the additional tracks may confuse the algorithm that determines
the z-position of the interaction vertex, leading to mismeasurement of the jet directions. The
jet energy scale calibration accounts for the former effect on average. To study the latter
effect, we add particles from one or two simulated additional pp interactions to a sample
of 5000 Monte Carlo tt decays with mt = 170 GeV. The signatures of the resulting events
in the detector are simulated by the geant program. The events are reconstructed by the
same programs as the collider data. For this study ensemble tests are of little help, since the
small sample sizes prohibit the generation of a large number of independent ensembles. We
estimate the size of the systematic effect by comparing the W (mt) distributions in the sam-
ples with zero, one, and two additional interactions. Although the resolution of the z vertex
degrades with the additional interaction, the effect on the W (mt) distribution is modest.
The difference in mean between a sample without additional interactions and the sample in
which 33% of the events have one and 36% two additional interactions, approximating the
conditions at which the data were taken, is only 0.6 GeV for the νWT analysis. A change
of this magnitude is roughly equivalent to a change of 1.2 GeV in the top quark mass. For
the MWT analysis we get a similar value, 1.4 GeV.

F. Likelihood Fit and Monte Carlo Statistics

There are systematic uncertainties in the value of the top quark mass that minimizes
− lnL. These arise both from the finite number of Monte Carlo events used in determining
the − lnL points and the choice of function to fit these points.

To estimate the effect of the Monte Carlo sample size, we split the signal Monte Carlo
samples into five subsets and repeat the fit to the data using each subset as the signal model.
The rms variation observed in the central value is then divided by

√
5, yielding a systematic

uncertainty of 0.3 GeV for either algorithm.
To estimate the uncertainty arising from the choice of the parabolic fit to nine likelihood

points, we fit Monte Carlo ensembles with mt = 170 GeV using a variety of parametrizations
and observe the resulting changes in the median of m̂t. We fit quadratic polynomials to five
and seven points and cubic polynomials to nine and eleven points. The largest variations of
0.9 GeV (MWT) and 1.3 GeV (νWT) give estimates of the systematic uncertainties.

IX. RESULTS

A. Combination of the MWT and νWT Measurements

The two algorithms we use give consistent results. The weights computed by the MWT
and νWT algorithms are based on different aspects of tt production and decay and are
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therefore not completely correlated. To gauge the degree of correlation, we fit ensembles of
ttMonte Carlo events for a top quark mass of 170 GeV using both algorithms. We then select
the subset of these ensembles with likelihood functions of similar widths as observed in the
data (i.e. those for which the MWT analysis yields 11.4 < δmt < 13.4 GeV and the νWT
analysis yields 13.8 < δmt < 15.8 GeV). Based on these tests we find that the correlation
coefficient between the MWT and νWT algorithms is 0.77. A statistical combination of the
results from the two algorithms then yields

mt = 168.4 ± 12.3 (stat) ± 3.6 (syst) GeV. (34)

The systematic uncertainties are taken as completely correlated between the two algorithms.
Since they differ insignificantly between the two algorithms we quote the mean from Table
XII.

B. Combination of the Dilepton and Lepton+Jets Measurements

The value of the top quark mass obtained from the dilepton channel is in good agreement
with that found by fitting tt→ ℓ+jets events [7], supporting the hypothesis that both are due
to the decays of the same pair-produced particles. We obtain our best measurement of the
mass of the top quark by combining the results of the analyses in the two channels. Since
the two measurements are statistically independent the combination is straight forward.
The systematic uncertainties in the combined measurement are evaluated by propagating
the uncertainties in each channel with correlation coefficients of either 0 (for MC statistics,
likelihood fit, and background model) or 1 (for jet energy scale, multiple interactions, and
herwig–isajet differences). We obtain

mt = 172.1 ± 5.2 (stat) ± 4.9 (syst) GeV. (35)

The effective correlation coefficient between the two measurements is 0.15. If we neglected
all correlations the result would change by less than 200 MeV.

C. Conclusions

We have reported the measurement of the top quark mass using six dilepton events. We
use maximum likelihood fits to the dynamics of the decays to achieve maximum sensitivity
to the mass of the top quark. We developed two algorithms for the computation of the
likelihood that exploit complementary features of tt production and decay. Both result in
very similar measurements of the top quark mass. They also agree well with the mass
measured from fits to tt → ℓ + jets events, supporting the hypothesis that both channels
correspond to decays of the same particle. We combine the mass measurements from both
channels to obtain

mt = 172.1 ± 7.1 GeV. (36)
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