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Abstract The oxidative refolding of equilibrium intermediates
of lysozyme stabilized in trifluoroethanol (TFE) and ethylene
glycol was monitored. Equilibrium intermediates of disulfide
reduced lysozyme in TFE are known to contain considerable
amounts of a-helical structure and resemble the early intermedi-
ate in the oxidative refolding of lysozyme. We find that the
intermediates in TFE do not proceed to folding; they form
aggregates. However, interestingly, intermediates in ethylene
glycol refold to the native state with improved folding yield.
Secondary structure of these intermediates was monitored by
far-UV circular dichroism. Our results indicate that formation
of o-helical structure prior to oxidative refolding does not help
the process in the case of lysozyme. Interfering with intermo-
lecular hydrophobic interactions in the unfolded state is more
productive.

© 2003 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

For nearly half a century of our knowledge that the pri-
mary structure of a protein determines its native structure,
very little advance has been made in the understanding of
the actual pathways followed by proteins from their unfolded
to native states and the underlying principles that determine
the above course [1,2]. Kinetic studies with folding proteins
provide some information about folding pathways; equilibri-
um intermediates resembling the kinetic intermediates are
studied to complement the kinetic information. Equilibrium
intermediates of many small proteins have been stabilized and
studied to understand the folding pathways. Cosolvents such
as alcohols are frequently employed to stabilize the equilibri-
um intermediates [3]. One of the alcohols, trifluoroethanol
(TFE), stabilizes o-helical structures in proteins [4-10].

Lysozyme, being a small, single domain protein, has been a
favorite system for protein folding studies. Refolding lyso-
zyme studied using H-D exchange nuclear magnetic resonance
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revealed that the early intermediate of lysozyme is o-helical in
structure [11]. Subsequently an equilibrium intermediate of
lysozyme was stabilized in 40% TFE that resembles the kinetic
intermediate in H-D exchange pattern [12]. However, inter-
mediates formed by denatured lysozyme with intact disulfides
do not reveal any information about the early folding inter-
mediates, as the disulfides represent tertiary structure per se
and also reduce the number of possible conformations. The
disulfide reduced lysozyme serves as a better model to under-
stand the intermediate states populated prior to formation of
disulfide bridges for a complete picture of the folding pathway
of lysozyme. In the recent past there have been a number of
studies on disulfide reduced lysozyme [13-16] and its deriva-
tives carboxymethyl-lysozyme [17] and TMAP-lysozyme [6] to
model the intermediates in TFE and other alcohols. With
TMAP-lysozyme the content and localization of o-helical
structure observed in TFE are the same as in the case of
disulfide intact lysozyme. Earlier studies showed that the in-
termediate of reduced lysozyme in 40% TFE resembled the
intermediate of disulfide intact lysozyme in 40% TFE based
on circular dichroism (CD) and fluorescence spectroscopic
criteria [15]. In the present work, the question whether pre-
formed secondary structure has any positive effect on the oxi-
dative refolding of lysozyme has been addressed.

Protein aggregation, a major problem encountered during
refolding of denatured proteins, results from intermolecular
interactions by virtue of exposed hydrophobic surfaces. Ethyl-
ene glycol is known to interfere with hydrophobic interactions
[18,19]. Here we studied the oxidative refolding of lysozyme in
ethylene glycol to understand the parallel and non-productive
contribution of intermolecular hydrophobic interactions to
refolding.

2. Materials and methods

Hen egg white lysozyme, dithiothreitol (DTT), cystine dihydro-
chloride, guanidine hydrochloride were obtained from Sigma. Lyso-
zyme was found to be pure by sodium dodecyl sulfate gel electropho-
resis. 2,2,2-Trifluoroethanol and ethylene glycol were of analytical
grade.

2.1. Preparation of native lysozyme and reduced and denatured
lysozyme
Lysozyme (at 16 mg/ml) was dissolved in 80 mM Tris-acetate, pH
8.2. Separately, lysozyme was dissolved in a solution containing 6 M
guanidine HCI, 80 mM Tris acetate, pH 8.2 and 100 mM DTT and
incubated overnight at 25°C, to obtain reduced and denatured lyso-
zyme.
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Table 1
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Refolding of denatured lysozyme in the presence of TFE, TFE and 0.1 M NaCl and ethylene glycol

% Organic solvent in the sample

% Recovery of activity?

In TFE In TFE+0.1 M NaCl In ethylene glycol
0 25 14.8 25.0
10 1.1 1.1 28.4
20 1.1 1.1 29.5
30 1.1 1.1 33.0
40 1.1 1.1 36.4

2The percent recovery of activity is with respect to the activity of native enzyme of the same concentration.

2.2. Refolding of reduced and denatured lysozyme and its intermediates
in TFE and ethylene glycol

The reduced and denatured lysozyme (10 ul) was introduced into
refolding buffer with final concentrations of 100 mM Tris acetate, pH
8.2, 2 mM cystine dihydrochloride. The concentration of TFE or
ethylene glycol was varied between 0 and 40% (v/v) in the refolding
buffer. After introducing the reduced and denatured lysozyme in the
refolding buffer, the enzyme was incubated for 15 min. Activity re-
covery in the presence and absence of the organic solvents was esti-
mated by the enzyme assay [20]. 15 ul of the above solution contain-
ing the refolding enzyme was added to a suspension containing 0.22
mg/ml of Micrococcus lysodeikticus cells in 0.1 M phosphate buffer,
pH 6.3. The change in optical density was followed at 450 nm, using a
Hitachi U-2000 absorbance spectrophotometer, at 10 s intervals for
1 min. Blanks were prepared similarly without adding reduced and
denatured lysozyme. Native lysozyme control was also prepared in
100 mM Tris acetate, pH 8.2. Percent recovery of activity was calcu-
lated in comparison with that of native lysozyme as described by
Raman et al. [21].

2.3. CD studies of reduced and native lysozyme

CD spectra were recorded using a Jasco J-715 spectropolarimeter.
cells of 1 mm path length were used. Spectra were recorded at 0.5 nm
resolution. Five spectra were accumulated to reduce the noise. The
samples were prepared by introducing a 10 ul sample of reduced and
denatured lysozyme into a solution containing 50 mM glycine HCI,
pH 2.5. TFE or ethylene glycol was added to a concentration of
0-40% (v/v). Proper blanks were prepared for all the samples and
the spectra of the samples were blank corrected.

3. Results

3.1. Activity recovery after refolding the intermediates of
reduced lysozyme in different organic solvents
When reduced lysozyme was incubated in a refolding buffer
for 15 min, and the activity was measured by M. lysodeikticus
lysis, there was 25% activity regain, compared to native lyso-
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Fig. 1. Far-UV CD spectra of disulfide reduced lysozyme (2) in
40% TFE and disulfide reduced lysozyme in 40% TFE+0.1 M NaCl
(3). The far-UV CD spectrum of native lysozyme (1) is included for
comparison. With addition of salt the negative ellipticity increases
around 220 nm, indicating an increase in o-helical structure. The
spectra were recorded in glycine HCI buffer, pH 2.5. Protein con-
centration was 20.94 uM.

zyme of the same concentration. But presence of TFE reduced
the recovery of activity upon refolding to 1%. Addition of
0.1 M NaCl was found to be ineffective (Table 1). Reducing
the protein concentration or temperature of refolding to 4°C
gave only a marginal increase in the recovery of activity (re-
sults not shown). In contrast, the presence of ethylene glycol
increased the recovery of activity. Activity regained in the
presence of 40% ethylene glycol was 36.4%.

3.2. CD spectra of reduced lysozyme in TFE

The samples for CD spectroscopy were prepared in glycine
HCI buffer, pH 2.5, since reduced lysozyme aggregates at pH
values above 4.5. Moreover at pH values above 7.8 free sulf-
hydryl groups can undergo air oxidation. The CD spectra of
reduced lysozyme in 40% TFE showed increase in negative
ellipticity at 222 nm (Fig. 1). The correlation between pre-
dicted helix content and negative ellipticity measured at 222
nm was found to be significant [22]. This signal, correspond-
ing to o-helicity, is more than 50% that of the native lyso-
zyme, as observed earlier [15]. More importantly, addition of
0.1 M NaCl to reduced lysozyme in 40% TFE increased
o-helical content further (Fig. 1). Aggregation was observed
when reduced lysozyme was introduced directly into glycine
HCI buffer, pH 2.5, with TFE in the concentration range of
10-30% (v/v).

3.3. CD studies with disulfide reduced lysozyme in ethylene
glycol
As shown in Fig. 2, reduced lysozyme shows increase in
negative ellipticity, around 214-218 nm, with increasing con-
centrations of ethylene glycol (from 0 to 40%). The minimum
value in the CD spectrum is observed around 216.5 nm. Di-
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Fig. 2. CD spectrum of disulfide reduced lysozyme in increasing
concentration of ethylene glycol. Spectra 1-5 correspond to 0-40%
ethylene glycol at 10% intervals. With increase in ethylene glycol
concentration the negative ellipticity increases around 218 nm. The
spectra were recorded in glycine HCI buffer, pH 2.5. Protein con-
centration was 10 uM.
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Fig. 3. Far-UV CD spectrum of disulfide intact lysozyme in increas-
ing concentrations of ethylene glycol. Spectra correspond to 0-40%
ethylene glycol at 10% intervals. With increase in ethylene glycol
concentration there is a slight increase in negative ellipticity around
222 nm, indicating a marginal increase in o-helical structure. The
spectra were recorded in glycine HCI buffer, pH 2.5. Protein con-
centration was 10 uM.

sulfide reduced lysozyme displays extended structure of a de-
natured protein. This increase in negative ellipticity indicates
formation of B-sheet-like structure. Interestingly, in 40% eth-
ylene glycol there is a flattened portion around 222 nm, which
decreases further to form a trough later on around 216 nm.
This feature suggests formation of some amount of co-helical
structure along with B-sheet.

3.4. CD studies with disulfide intact lysozyme in ethylene glycol
CD spectra of disulfide intact lysozyme show a slight in-
crease in o-helicity, although the increase is not as dramatic as
with TFE (Fig. 3). Ethylene glycol like all other alcohols can
change the polarity of the medium and also compete for hy-
drogen bonding with water, the effects in this case are not
drastic enough to alter the structure of the protein at the
concentrations of ethylene glycol used in our experiment.

4. Discussion

TFE is known to induce and stabilize o-helical structures in
unfolded proteins. But this stabilization depends on the struc-
tural propensity of the amino acid sequences; it is not indis-
criminate [5-10]. The induction of o-helical structures is de-
pendent on the inherent structural preferences of the amino
acid sequences. The TFE intermediate of lysozyme and its
early folding kinetic intermediate are identical. But these stud-
ies pertain to the unfolded state where the disulfides are intact.
Equilibrium intermediates of unfolded reduced lysozyme and
its sulfthydryl derivatives are also known. The secondary struc-
ture, absence of tertiary structure and fluorescence properties
of these equilibrium intermediates have been reported in detail
[15]. The studies with peptide fragments of reduced lysozyme
in 50% TFE showed that the amount of o-helical content is
more than twice that of the native state [10]. This observation
is in agreement with the amount of helicity observed with
both disulfide reduced and intact forms of lysozyme in similar
concentrations of TFE. Another interesting observation
comes from studies with a derivative of disulfide reduced ly-
sozyme, namely the TMAP-lysozyme. The equilibrium inter-
mediate of TMAP-lysozyme was stabilized in TFE and was
found to be similar to that of disulfide intact lysozyme [6].
Subsequently fragments of TMAP-lysozyme were generated
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and introduced into TFE. The total a-helical content of these
fragments was the same as that of intact TMAP-lysozyme.
Furthermore, the individual fragments that showed o-helical
structure were found to be derived from o-helical regions of
the protein. In the present work, we observed that although
the disulfide reduced lysozyme goes into a helical state, resem-
bling the early folding intermediate, this o-helicity does not
help in its folding to native structure, under oxidizing condi-
tions (Table 1). This might imply that the secondary structure
does not help in holding the sulfhydryls in native-like prox-
imity. On the other hand, arrangement of residues in amphi-
pathic helices wherein the hydrophobic and hydrophilic sur-
faces are well defined, favor aggregation. In other words, the
TFE induced secondary structure does not give any selective
advantage for the formation of native disulfides over non-
native disulfides. Decreasing the TFE concentration below
10% and carrying out refolding at lower temperatures did
not increase the refolding yields (results not shown). From
our data it appears that formation of native disulfides is an
essential step and stabilization of secondary structures appears
to be less important, as the enzyme can fold from the dena-
tured state to the native state, provided the disulfides are
intact. Based on refolding yields it can be concluded that
the intermediates stabilized by TFE are not on the pathway
of oxidative folding to the native state.

The refolding yields of lysozyme in neat organic solvents
were found to be higher in the presence of salts. This was
interpreted to be due to increased solubility of reduced un-
folded lysozyme in the solvent system [23]. Moreover, in a
non-polar environment, electrostatic interactions are known
to play an important role. In view of the above, we have
investigated the role of electrostatic interactions in the inter-
mediate states of reduced lysozyme induced in TFE. Addition
of 0.1 M NacCl to the intermediates in 0-30% TFE showed
increased aggregation. In 40% TFE 0.1 M NaCl induced more
o-helicity, compared to the TFE intermediate at the same
concentration. Refolding these intermediates resulted in ag-
gregation (Fig. 1).

TFE weakens hydrophobic-hydrophobic interactions [24].
Ethylene glycol is another solvent, which has a similar effect
on the hydrophobic interactions. The effect of ethylene glycol
on reduced lysozyme was studied previously at much higher
concentrations of ethylene glycol, and a greater increase in
o-helicity was reported [25]. But these intermediates did not
form active enzyme upon refolding. Fourier transform infra-
red studies with disulfide intact lysozyme showed an increase
in o-helical content with increasing ethylene glycol between
0 and 30% at pH 7.4 [26]. In the present study even at pH 2.5,
the a-helicity of disulfide intact lysozyme increased with ethyl-
ene glycol concentration. However, reduced lysozyme showed
a more extended and B-sheet-like structure (Fig. 2).

Interestingly, upon refolding the activity recovery of ethyl-
ene glycol intermediates is higher than that of reduced lyso-
zyme refolded in an aqueous environment (Table 1), although
these intermediates do not display o-helical structure (Fig. 2)
and the extent of induction of secondary structure with native
enzyme is less (Fig. 3). The ability of ethylene glycol to inter-
fere with hydrophobic interactions [18,19] plays a major role
in preventing aggregation. In addition, favorable contribu-
tions of viscosity effects of ethylene glycol to folding are
also possible. The hydrophobic residues in these intermediates
are exposed, since it was observed that these intermediates
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bind ANS (C.R. Prabha and D. Khushwaha, unpublished
observations). This intermediate can forge correct disulfide
bridges more efficiently under oxidizing conditions. Alterna-
tively, ethylene glycol by preventing aggregation allows the
enzyme to fold on its own to go into the native state. Earlier,
similar effects were reported with glycerol, but the study did
not comment on the secondary structure of the intermediates
[14]. In contrast the TFE intermediates are described to be
extended and are of open nature, where inter-polypeptide di-
sulfide bonding is favored over intra-polypeptide disulfide
bonding [4]. Our results show that formation of o-helical
structure in disulfide reduced lysozyme does not favor its oxi-
dative refolding.

Acknowledgements: C.R.P. is grateful to the Indian National Science
Academy for awarding the visiting fellowship to work at the Centre
for Cellular and Molecular Biology, Hyderabad and to Dr. T. Rama-
krishna for helpful discussions.

References

[1] Dagget, V. and Fersht, A. (2002) Mol. Cell. Biol. 4, 497-502.

[2] Geirasch, L.M. and King, J. (Eds.) (1990) Protein Folding,
American Association for the Advancement of Science, Washing-
ton, DC.

[3] Bhakuni, V. (1998) Arch. Biochem. Biophys. 357, 274-284.

[4] Buck, M. (1998) Q. Rev. Biophys. 31, 297-355.

[5] Lehrmann, S.R., Tuls, J.L. and Lund, M. (1990) Biochemistry
29, 5590-5596.

[6] Segawa, S., Fukuno, T., Fujiwara, K. and Noda, Y. (1991) Bio-
polymers 31, 497-509.

[7] Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. and
Wright, P.E. (1992) J. Mol. Biol. 226, 795-817.

[8] Dyson, H.J., sayre, J.R., Merutka, G., Shin, H.-C., Lerner, R.A.
and Wright, P.E. (1992) J. Mol. Biol. 226, 819-835.

C.R. Prabha, C. Mohan RaolFEBS Letters 557 (2004) 69-72

[9] Kemminck, J. and Creighton, T.E. (1995) Biochemistry 34,
12630-12635.

[10] Yang, J.J., Buck, M., Pitkeathly, M., Kotik, M., Hayne, D.T.,
Dobson, C.M. and Radford, S.E. (1995) J. Mol. Biol. 252, 483—
491.

[11] Miranker, A., Radford, S.E., Karplus, M. and Dobson, C.M.
(1991) Nature 349, 633-636.

[12] Buck, M., Radford, S.E. and Dobson, C.M. (1993) Biochemistry
32, 669-678.

[13] Jarrett, N.M., Djavadi-Ohaniance, L., Willson, R.C., Tachibana,
H. and Goldberg, M.E. (2002) Protein Sci. 11, 2584-2595.

[14] Rairy, R.V. and Klibanov, A.M. (1997) Pro. Natl. Acad. Sci.
USA 94, 13520-13523.

[15] Ratnaprabha, C. and Sasidhar, Y.U. (1998) J. Chem. Soc. Fara-
day Trans. 94, 3631-3637.

[16] Sasidhar, Y.U. and Prabha, C.R. (2000) Indian J. Biochem. Bio-
phys. 37, 97-106.

[17] White, H.F. (1982) Biochemistry 32, 669-678.

[18] Freifelder, D. (1982) Physical Biochemistry Applications to Bio-
chemistry and Molecular Biology, 2nd edn., pp. 573-602, W.H.
Freeman, New York.

[19] al-Shakhshir, R.H., Regnier, F.E., White, J.L. and Hem, S.L.
(1995) Vaccine 13, 41-44.

[20] Fischer, B., Perry, B., Sumner, I. and Goodenough, P. (1992)
Protein Eng. 5, 593-596.

[21] Raman, B., Ramakrishna, T. and Mohan Rao, Ch. (1996) J. Biol.
Chem. 271, 17067-17072.

[22] Luidens, M.K., Figge, J., Breese, K. and Vajda, S. (1996) Bio-
polymers 39, 367-376.

[23] Rairy, R.V. and Klibanov, A.M. (1999) Biotechnol. Bioeng. 62,
704-710.

[24] Thomas, P.D. and Dill, K.A. (1993) Protein Sci. 2, 2050-2065.

[25] Knubovets, T., Osterhout, J.J. and Klibanov, A.M. (1999) Bio-
technol. Bioeng. 63, 242-248.

[26] Huang, P., Dong, A. and Caughey, W.S. (1995) J. Pharm. Sci.
84, 387-392.



	Oxidative refolding of lysozyme in trifluoroethanol (TFE) and ethylene glycol: interfering role of preexisting alpha-helic...
	Introduction
	Materials and methods
	Preparation of native lysozyme and reduced and denatured lysozyme
	Refolding of reduced and denatured lysozyme and its intermediates in TFE and ethylene glycol
	CD studies of reduced and native lysozyme

	Results
	Activity recovery after refolding the intermediates of reduced lysozyme in different organic solvents
	CD spectra of reduced lysozyme in TFE
	CD studies with disulfide reduced lysozyme in ethylene glycol
	CD studies with disulfide intact lysozyme in ethylene glycol

	Discussion
	Acknowledgements
	References


