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Abstract. In this paper the kinematics of a curved shock of arbitrary strength has been 
discussed using the theory of generalised functions. This is the extension of Moslov's work 
where he has considered isentropic flow even across the shock. The condition for a nontrivial 
jump in the flow variables gives the shock manifold equation (SME). An equation for the rate of 
change of shock strength along the shock rays (defined as the characteristics of the SME) has 
been obtained. This exact result is then compared with the approximate result of shock 
dynamics derived by Whitham. The comparison shows that the approximate equations of 
shock dynamics deviate considerably from the exact equations derived here. In the last section 
we have derived the conservation form of our shock dynamic equations. These conservation 
forms would be very useful in numerical computations as it would allow us to derive difference 
schemes for which it would not be necessary to fit the shock-shock explicitly. 
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1. Introduction 

It is now abou t  three decades since serious a t t empts  were made to solve the p rob lem of  
the p ropaga t ion  o f  a shock o f  a rb i t ra ry  shape and  a rb i t ra ry  strength. The  main  a im was 
to device a me thod  to calculate the successive pos i t ions  o f  a curved shock wi thout  going 
th rough  the task o f  the calculat ion o f  the flow behind the shock. W h i t h a m  [7, 8] 
presented one such method ,  now known  as shock dynamics,  and  showed that  the 
mot ion  o f  a curved shock depends  on the initial  shape and  the d i s t r ibu t ion  o f  the shock 
s t rength on the initial  shock surface. The  simplici ty and elegance o f  Whi tham ' s  shock 
dynamics  results f rom the fact that, in this theory,  the influence o f  the waves which 
catch up with the shock f rom behind is accounted  only approx imate ly  [5]. A precise 
and mathemat ica l ly  satisfying theory on  the kinematics  o f  a curved shock was first 
available in English in 1980 by the t rans la t ion  o f  the work  o f  the Russian 
mathemat ic ian  Mas lov  [2] who derived a first order  par t ia l  differential  equat ion  
satisfied by the shock mani fo ld  in (x~, 0-space  and  then derived an infinite system o f  
compat ib i l i ty  condi t ions  on this manifold .  These compat ib i l i ty  condi t ions  are in the 
form of  t ranspor t  equat ions  a long shock rays. The  par t ia l  differential  equa t ion  for the 
shock (called shock mani fo ld  equat ion  or  SME) is not  unique but  it has been shown [-3] 
that  two different SME s give the same set o f  shock rays s tar t ing f rom a given initial shock 
surface. Since Mas lov  was interested in es tabl ishing certain results for a weak shock, he 
considered the mo t ion  o f  an isentropic  gas and thus paid no a t ten t ion  to the energy 
equation.  

In this paper  we consider  the mot ion  o f  a shock in an ideal gas with cons tant  specific 
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heats with all the three conservation laws, namely the conservation laws representing 
balance of mass, momentum and energy. We use Maslov's method to derive the SME and 
the transport equation along a shock ray. Then we use our exact equations to discuss 
the correct form of the Whitham's shock dynamic equation. We show that shock 
dynamics not only incorrectly accounts for the effect of the waves which catch up with 
the shock from behind but the ccw approximation in the shock dynamics leads to a 
term whose coefficient differs significantly from the exact coefficient which we get using 
Maslov's method. Thus this paper shows the mathematical elegance of Maslov's 
method--the correct form of shock dynamics" can be obtained by a systematic 
mathematical analysis without any assumption or approximation. Since Maslov's 
method is not widely known, we shall briefly indicate in the next section some of  his 
important results using the theory of distribution. 

2. Mas lov 's  l e m m a  on a conservat ion law 

The conservation laws representing the three-dimensional motion of an ideal gas with 
constant specific heats are 

?p 
+ ( v ,  pu ) = 0, (1) 

?(pu ~) 8p 
F-(V, puu')+~X~X =0 ( i = 1 , 2 , 3 ) ,  (2) 

8t 

and 

� 8 9  (~_l  ) + u ) u +  ) 0, (3) 

where p, u = (u x, u2, u3), p, 7 are mass density, particle velocity, gas pressure, ratio of 
the specific heats respectively, ( , )  represents scalar product and 

v =  

is gradient in R 3. 
Consider a piecewise smooth solution of these equations suffering a discontinuity of 

first kind on a smooth three dimensional surface ff~ in R 4. Let ff~ be represented by s(xz, 
x2, x3, t)=0. We choose the function s so that IVsl~= 1. At any fixed time t, s(x, t )=0 
represents a smooth two-dimensional surface ~,  in (x 1, x2, x3) space, fit is then a shock 
surface and we call f~ shock maniJold. The piecewise smooth solution of (I)-(3) can be 
represented in the form 

u(x, t) = | Uo(X, t) + It(s(x, t)) | Ul(X, t) , (4) 
p(x, 0 I_po(x, t) I_pz(x, t) J 

where Pi, ui, p~(i = 0, 1) are C ~(R 4) functions and H(r) is the Heaviside unit function 
defined by 

1, r > 0  
H ( r ) = 0 ,  r~<0" (5) 
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Assuming that (Po, Uo, Po) represents the known state ahead o f  the shock (the domain  
where s < O) the problem is to find the successive positions offer and the state (Po + Pl, 
Uo + ut, Po + Pl) behind f~t satisfying some initial and boundary conditions. 

Let R n be the set of  functions g o f  the form g(x, t ) =  go(x, t)+H(s)g~(x, t), 
where go(x,t) and gt(x,t)~C ~ (R*). R n is closed with respect t o  the operations o f  
addition, subtraction and multiplication. Therefore,  all the combinat ions of  p, u, p 
which appear under  differentiation operators  in (1)-(3) are also elements o f  Ra.  

To a piecewise smooth  function g e Rn, we associate a set of  functions defined on the 
surface o f  discontinuity f~ by 

gi j l f~  = (Vs, V)Jgi[fl, i = 0, l ; j  = 0, 1, 2 . . . .  (6) 

These functions can be interpreted as successive derivatives of  gi(i = 0, 1) along the 
normal to the shock front f~t at any fixed time t. We extend any function go Io defined on 

in a smooth manner  to the whole o f  R 4 so that the extended function gii is constant 
along the trajectories o f  the field (Vs, V) i.e., (Vs, Vtx ) gij [t~ = 0. Then at any instant t, 
the extended function gi~ is constant a long a normal  to ~,. We note that Poo (or P~o) 
need not be equal to P0 (or Pl) in R 4 except on f~. 

Let Vtx = (3/dt, V) be the four-dimensional gradient in R 4. V is gradient in (x~, x2, 
x3)-space. However,  whenever a scalar product  o f  V with an element o f R  4 is taken, it is 
understood that 

V =  0, ' ,9x2 dx3 

Then for g e R 0 and e = (e 1, e 2, e 3, e 4) �9 R 4 

( e - V s  (Vs, e), VtxSgO[il = (e, V,,,)g,i[ o, (7) 

since (Vs, V,~ ) g0 lo = ( Vs, V ) gi~ lu = O. 
Let the class ofgeneralised functions which are the results o f  differentiating functions 

o f  class R u along some direction e = (e 1, e 2, e a, e 4) be denoted by De, o. Let  g~ Rn and 
h(x, t)= (e, V,~)g(x, t). Then heDe. o. To h we assign generalised set o f  functions 
ho Its, i = 0, 1; j = - 1, 0, 1 . . . .  , defined on fl, by 

h~. _~(x, t)l• = {gt0 (e ,  V,, )s(x, 0} If~, 

ho(x, t)[o = {gi.~+ l (e ,  V,x)s(x, t)} In 
+ { ( e -  Vs (e, Vs) ,  V,~ )gi~} Its, (8) 

i = 0 ,  1; j  = 0, 1 . . . .  

Consider the class o f  generalised functions Da representable as a finite sum of  
functions belonging to various sets De.a, e 6 R 4. Then if h [x, t ) � 9  Dn,  there exists an m 
> 0, vectors e~, e 2 . . . . .  e,, and a set o f  functions h ~ ~ ] )e t , f l  . . . . .  hm ~- De, . , t l  such that 

hIx, t)= ~ hi(x, t). (9) 
i = 1  

To  the generalised function h(x, t)~ Da we assign the generalised set h~(x, t); i = 0, 1, 
j = - 1, 0, l, 2 . . . .  in the following manner  

h,j(x, t)= ~ hkj(x, t), (10) 
k = l  
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where h~j is the sequence associated with h~ Dei.n. 
We notice that for a solution of  the form (4) the left side of  the conservation laws 

(1)-(3) are actually the elements h e D o. We next state the lemma which plays an 
important role in Maslov's method. 

LEMMA. Let el . . . . .  g= be piecewise-smooth functions belonging to the class R n of  
functions suffering discontinuity on the same smooth surface ~ and let e 1 . . . . .  e = be a 
collection of  vectors in R'*, if 

(ei ,  V , x f )  = 0 
i = l  

then all terms of the series {hii(x, t)}, i = O, l ; j  = - 1, O, 1, 2 . . . .  defined by equations 
(10) vanish on the surface ~. 

For a proof  of the lemma, reference may be made to Maslov's paper. 

3. The SME and the Rankine-Hugoniot conditions 

Using Maslov's lemma to the solution (4Iofthe system of  conservation laws (1)-(3), we 
get the following expression for the column matrix hi, - 

- t,3s 
PlO ~- + (VS, (PO0 +PlO) (UO0 + glO) --PooUo0) 

i . ~S 
{(poo + p , o) (U'oo + ~ o) - pooUoo ~ S i  

+ ~Ooo + p~ o)(U~o + U~o) ( Vs, Uoo + U~o ) 

c~s 
h l - l ( x , t ) =  i (Vs, ) +plo~x~ , - - P o o U o o  Uoo 

[�89 + P~o) ( Uoo + Ulo, Uoo + Ulo ) 

~3s 1 ds 
-�89 <~oo, .oo >] ~- + ~-:-i~P~o E 

+�89 +Plo)  (Uoo+Uto, Uoo +U to )  (Vs, Uoo + U l o )  

-�89 (Uoo, Uoo) (Vs, Uoo) 

L+ ( r - ~  { (Poo + P,o) ( Vs, uoo + U,o ) - Poo (Vs, uoo ) } 

= 0 .  

(11) 

These are the usual jump conditions across a shock surface. Following the procedure 
followed by Prasad [3], we deduce the shock manifold equation (SME) in the form 

t~s 
+ <Uoo, Vs) +ClVs[ = o, (12) 

3--/ 
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where 

C 2 = Poo + Plo Plo (1 + #) Pl 
- -  Plo ,  # = - - -  (13) 

Poo P~o #Po Po 

The jump conditions across ~ are given by 

(y+ 1) 

Ulo]n --~(VloPlo)I/2[n;P~176176 = (Y --1) (I + /~) -- I I 
= (14) 

Poo n (Y+ 1)_(1 +p )  fl 
( r  - 1) 

Vs 1 l 
where ~ = ~ ,  I"1o - Poo Poo + Plo 

/ 
L \ Po } {2 +--#0 -y)} ] (15) 

and 
IA = P l / P O  (16) 

represents the excess density ratio across the shock, ao is the local sound speed in the 
regions ahead of the shock. 

The characteristics of  the SME define the shock rays and are given by (we write here 
this result for a particular case of  two spatial variables since we shall directly use it in the 
next section, x, y are spatial coordinates and | is the angle which the normal to the 
shock front makes with the x-axis) 

dx2 
dXldz = u~176176174  dzz = u~176 

dO ( s i n o d C _ c o s O ~ _ ~ 2 )  tgC 
dz = ~ = - ~ '  

and 

(17) 

(18) 

where d/dr/is tangential derivative along the shock curve f/, and d/dz represents the 
operator for the temporal derivative of a quantity along a shock ray. 

4. The second compat ib i l i ty  condition on the shock  manifold 

Maslov gives a method for the derivation of  an infinite set of  compatibility conditions 
on the shock manifold. The first group of such relations in this set is the Rankine- 
Hugoniot condition (14)-(15). The second group, namely the jump conditions on the 
first derivatives, consists of  an expression for the rate of change of g = Pl/P0 along a 
shock ray in terms of  a tangential derivative of |  in fit and a normal derivative of  g and 
also some algebraic relations amongst the normal derivatives of  the dependent 
variables. Our aim in this section is to derive one of the compatibility conditions in this 
group---namely the above mentioned expression for the rate of change o f p  along the 
shock ray. For the discussion in the next section, we need only this part of the 
compatibility condition. 

From Maslov's lemma for a solution (4) of  (1) to (3) it follows that all the components 
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of the vector hlo vanish on f/. This gives 

{pll K, + (Poo + plo) (Vs, u11 ) + z} [n = 0, (19) 

PllKt(u~o +U~o) + (Poo + Plo) (U~o + U~o) (Vs, ull  ) 

~S O) / +(Poo+Plo)UII+P11~Xi+ [t'l = 0 ,  (20) 
and 

�89 I ( Uoo + Ulo, Uoo + Ulo ) Kt + (Poo + Plo) 

(UO0 "~- UlO, Ull ) KI + �89 +PlO) (Uoo + ulO, 

I as 
UO0 +UlO ) (VS, Ull ) + ~-~Pll 

+~[(POO'~PlO) (V$, I/1~ .)'~pll (VS, Uoo+Ulo)]+Mlfl = O, (21) 

where 
Os 

Kt = ~-[ + (Vs, Uoo + Ulo ), (22) 

dplo 
Z =---~---+ ~000-'}-P l 0 ) (  VS, U01 ) +  PO1 (Vs, Uoo 

+ Ulo ) - (Vs, Poo Uol +pol  Uoo ) 

+ (V, 09oo +91o) (Uoo + ulo) -PooUoo ), (23) 

ds 
= +Ulo) -PooUol , o '  ~[(Voo+vlo)u~l+Vol(=~oo , 

-- P01 U~)O ] + ~" [ (Po0 + Pl O)(gO0 + 14~ O) -- PO0/'/00] 

+ (PO0 + PIO)(U~)O +U/IO) (Vs, uOl ) + (/900 + PlO)N~)I (Vs, Uoo + ulO ) 

+pol(Uioo + U~o) (Vs, Uoo + Ulo ) 

(Vs, i " �9 
- -  PooUooUot + PooU~ol Uoo + Pol U~ooUoo ) 

+ (Uoo + Ulo, V)  (poo +plo)(U~oo +U'~o) 
+ (Poo + Plo) (U~o + U~o) (V, Uoo + Ulo ) - Poo U~o (V, Uoo ) 

~Pto (24) 
- (Uoo, V)pooUbo + c~x----~-- ' 

c~s - I  
M -- ~-L2pol (Uoo+Uxo, Uoo+Ulo) 

+ (poo + plo)(Uoo + Ulo, Uol ) -�89 (Uoo, Uoo ) -poo (Uoo, Uol ) ]  

+ ~ [~(Poo + Plo) (Uoo + Ulo, Uoo + Ulo ) ( Vs, Uoo + Ulo ) 

1 ~Plo 
-- �89 ( UO0, UO0 ) ] + (• -- 1~) (~t Jl" ~P01 ( UO0 + UlO, UO0 + glO ) 
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(Vs, Uoo + U~o ) +�89 +pig) (Uoo + Ulo, Uoo + U,o ) (Vs, Uol ) 

+ (Poo + plo)(Uoo + Ulo, Uol ) ( Vs, Uoo + Ulo ) 

-�89 (Uoo, Uoo ) (Vs, Uol ) -�89 (Uoo, Uoo ) (Vs, Uoo ) 

- Poo (Uoo, Uol ) (Vs, Uoo ) + �89 + Plo) (Uoo + Ulo, Uoo + Ulo ) 

(V, Uoo + Ulo ) + (Uoo + Ulo, V ) {�89 + Plo) 

�9 < Uoo + U~o, Uoo + Ulo ) } -�89 (Uoo, Uoo ) ( V, Uoo ) 

- (Uoo, V )�89 (Uoo, Uoo) + ( ~ _  1)[Plo ( Vs, Uol ) 

+ Pol ( Vs, Ulo > + ( V, (Poo + Pig) (Uoo + Ulo) -PooUoo ) ] .  (25) 

Multiplying (19) by (Uoo + Ulo) and subtracting from (20) we get 

(poo + Pig) ul i K~ + Pl i Vs + co - (Uoo + Ulo)Z = O. (26) 

Multiplying (19) by �89 (Uoo + Ulo, Uoo + ulo ) and subtracting from (21) we get 

1 c~s 
(Poo + Plo) ( Uoo + ul o, ull ) Kt + ~ : - ~ P t ~  ~ 

+(-~)[(Poo+Plo)( Vs, UII) -~'Pll (VS, Uoo +UlO )]  

+ M - �89 (uoo + Ulo, Uoo + Ulo ) z = 0. (27) 

Multiplying (26) by (Uoo + Ulo) and subtracting from (27) we get 

1 K l + ( - ~ ( P o o + P l o ) ( V s ,  u t t )  
(y - 1) pll  

+ M- �89  Uoo+Ulo)Z-(co ,  Uoo+Ulo ) 

+ < Uoo + Ulo, Uoo + Ulo ) z = 0. (28) 

1 
Multiplying (26) by ~ K~ Vs and subtracting from (28) we get 

ot(Poo + P,o) < Vs, ul , > + M - �89 < Uoo + Ulo, Uoo +Ulo >z 

1 
- (co, Uoo +Ulo )+  (Uoo+Ulo, Uo o + Ul o ) Z - - ( y _ l ) K l  (Vs, co 

- ( U o o  + Ulo)Z ) = 0 (29) 

where ot is defined by (31). 
Multiplying (19) by ~t and subtracting from (29) we get 

M -�89 (Uoo + U~o, Uoo + ulo )z  - ( co, Uoo + Ulo ) 

+ Z ( Uoo + U~o, Uoo + U~o ) - - -  (~ - 1) 
K~ (w - (Uoo + U~o)Z, Vs ) 

- ~tz - otp~ l Ki = 0, (30) 
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where 
Y Poo+Plo K2 } = a ~  # ( l + y )  

or= ( y - l ) P o o + P l o  ) , - 1  O ' - l ) ( l + / O { 2 + / a ( 1 - y ) } "  (31) 

The operator d/dr  in (17) and (18) gives rate of change along a shock ray i.e., it 
represents an inner derivative in the shock manifold D:s(x, t) = 0. Therefore, for a 
function 9ij In defined initially on f~ and extended as 9ij in R 4 so that it is constant on the 
trajectories of the field (Vs, V ), 

d o,j In 

can be obtained from g~j [n alone. From (14) it follows that U~o In is parallel to the vector 
Vs In, hence (Ulo, V ) 9o In = 0. Therefore, 

{0 t 0 ~ + ( U o o ,  V )  o,jJa= { N + ( U o o + U , o ,  V)}o ,~ la  

= -~ + (Uoo + Cr V ) 9o In, ~ = I Vs----/" (32) 

Using these results, we find the following expressions for M - � 8 9  (Uoo + Ulo, Uoo + 

Ulo )z, (to, Uoo + Ulo ), and w - (Uoo + ulo)z on f~: 

M- �89  Uoo+Ulo)Ztn = 

-C[Pol (UIO, UlO ) +�89 (I~10, UlO ) "{-Rio (UOO + IglO, UOI ) 

d l 
+Poo(Ulo,  Uol)]  +~z[~(Poo + pxo) ( Uoo + Ulo, Uoo + Ulo ) 

-- �89 (Uo0, UO0 ) ] -- �89 (Uo0 + U,O, Uoo + U,O ) 

+ � 8 9  (Uoo + Ulo, Uoo + Ulo )~TO0 + - - -  
1 dplo 

(V- I )  dr 

d(Poo + Plo) 
dr 

~'Pot ] (Vs, Uto ) + (poo +plo)  (Uoo + Ulo, Uol ) + (), _ 1) 

+  plo -]<Vs, ) + P ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 8 9 1 7 6 1 7 6 1 7 6 1 7 6  (-~'~--1)| Uox 

-�89 ( Uoo, Uoo ) ( V, Uoo ) + �89 ( Uoo + U~o, Uoo + U~o ) Poo ( V, Uoo ) 

+ -  Y [(Poo +Plo) (V, Uoo + Ulo) + (Uoo + Ulo, V)p lo ]  
(~ - 1) 

(o9, Uoo + U l o )  = 

d 
(Uoo + U~o, ~ ( (Poo + P to) (Uoo + U~o) - PooUoo } ) 

(33) 
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+ (poo + p,o) < Uoo + U,o, .oo + .1o > < v~..oi  > 

+po, <.oo + U,o, .oo + U,o > <Vs, .,o > -poo <.oo, ,,oo + U,o > <v~, Uo, > 

and 

+ (poo + plo) < Uoo + U,o, Uo, > <Vs, .,o > 

- c[p,o <.oo + .so, .o, > + ;o5 <.oo +.,o, .,o >] 
+ (poo + p,o) <.oo + U,o. Uoo + .1o > <v. ~oo + ~,o > 
-poo <.oo + U,o..oo> <v, .oo>+ <.oo+.1o, V>p,o, 

w -  (Uoo + U i o ) Z  = 

d 
- C[ploUol + Po~ ulo] + ~[(Poo + Plo) (Uoo + U~o) - pooUoo] 

dplo 
- (Uoo + U~o)-d;-- T + (poo + p~o)Uo, (Vs, Ulo > 

+ PooU,o <Vs, Uo, > + PooUlo <V, Uoo> + Vp, o .  

(34) 

Substituting these values in (30) we get 

1 dpl o Cpo dulo Cpop duoo 
()'-1) d~ + ( ~ i 3 ( V ~ ' - - d ~  - ) ~  <Vs, ) (7-  l)(1 +#) 

C < Vs, ~ dpoo duoo +(~-l)(l+m . ,o .  d~ + P o o ( U , o , ~ )  

dP~176 dPl~ [ C3'u ~t ( Vs, Ulo ) 
-�89 < ~,o, .,o >-d ; - -~qT-+  po, �89 (1+ ,,;- 

c~, ] [ -Cbo~, c~.  ~ 
(},-1)(1+~? + <w, Uo, > -(iu -�89176 +~,)~ 

7c: l~ Po C2 F, po C2 IA po 
+ - ap~o 4 

(y -1 ) ( l+p )  (7-1)( l+/ t )  ( 7 - 1 ) ( l + p )  

C21Apo ]+ 7Pol (Vs, ulo) 
+ (.y_T~i+~,) ~ (~,--ZT) 

+ [ ~ ( P o o + P , o ) - ~ ( P o o + P , o ) ] <  V, u,o) 

+ PlO+lT_l)(l+M)2 ~Plo (ulo, Ulo> <V, uoo>. 

(351 

Since the operator d/dr gives an interior derivative in fl, we note that in the above we 
can use 

d d(poUo) 
dpoo/dz = dpo/dz, ~(PooUoo) = dr 

(36) 
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etc. The set { go (x, t), no(X, t), Po (x, t)} is a genuine solution of equations (1) to (3), hence 

dpoo 
= Z~-~ . \ ~t (,,o, V)po+C(Vs ,  V) 

= - p o  (V, Uo) +Cpol In- (37) 

Similarly, we get 

d u o  o = 1 
dr n P ~o(Cp~176176 (38) 

and 

= 1 "V Uo 

We also note 

de (r ~ )  =o, (r t ) l~ o, 

(v,  ,,o5 I,, = (v,  Uoo 51~+ (vs, uo, )l,~, (40) 
where 

t. = V - ~  (r V) .  (41) 

In terms of the rate of change of the excess density ratio, p = (pl/po) across the shock, 
eliminating Pro and Uto from (14) and (15) respectively and using (33) to (36) we write 
(32) in the form 

( 7 -  1)11 + ~)2 + (),_ 1)11 + ~ ) ~  

3Cgpo c~c (2 + #) ) d Poo C2P + 
+ ( ? - l ) ( l + p )  ( y - l ) ( l + p ) ~ p o - ~ / ' ( ( l - ~ p ) J  y ~-r 

3Cppo t~C dpoo C2I.tpo 
+ ( ~ , - l ) ( l + p ) @ o  dr + ( ) , - f l ~ + p )  2 ( L '  ~ )  

C2#P~ (Vs, uol ) + [ ~- C2#P~ + 
(~,- I)(I +I,) b , -  I)(I +.) 

~ p o ( 2 + p ) ] ( V . ~ o .  ~cp,ll  
O ~-)~) _l ) + {l~--~)[n =0" (42) 

This is the required compatibility condition giving the rate of change ofp along a shock 
ray in terms of the known quantities in the region ahead of the shock, the interior 
derivatives of unit normal ~ of the shock front ~t and a normal derivative P11. 

5. Correct form of the shock dynamic equations in two-space dimensions 

In the case of  two space variables xt, x2, the shock ~qt at time t will be represented by a 
curve in (xl, x2) plane. Let (9 be the angle which the normal to f~t makes with the xt-axis. 
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Then r = (cos | sin | Assuming the state ahead of the shock to be a constant state 
and at rest, i.e. u~ = 0, Uo 2 = 0, and using ( L, r ) = O| get from (42) 

d# _ B i d O  ~# 
ds  i at/  + B2 ~--~, (43) 

where ds, is an element of length described in time dt in (x .  x2)-plane while moving 
along a shock ray (dsa = C dr), dr/is an element of length along the shock curve f~t at any 
time and dN is an element of length in a direction normal to fit: 

~ + (u~ + C c o s O )  + (Uo2+CsinO) (44) 

d d d 
~r/= sin 0 dxl - cos 0 dx2' (45) 

and 
d a 

- cos 0 ox17 + sin 0 2v~x--" (46) aN 

The coefficients BI and B 2 in (43) are given by 

and 

2#{2+#(1 -7)} 
Bl = - 8 + 6 #  - 2 ~ #  - #2(1  - ~2) (47)  

B2 = _ # ( l  + ) ' )  {2+#(1 --7)} (48) 
{ 8 + 6 # - 2 ~ # - # e ( 1 -  e ) } ( l + # ) "  

Substituting in (18) the expression for C in terms of #, we get 

aO (~ + 1) ## 
as, - 2(I +#){2 +#(1 -~)} a t /  (49) 

Equations (43) and (49) could be used to calculate the successive positions of a shock 
front provided the term a#/SN can be estimated in (43). This term can be approximately 
evaluated for a class of problems when the shock is weak [4]. However, since (43) and 
(49) are exact equations, it would be interesting to compare these with the correspond- 
ing equations of Whitham's shock dynamics [7, 8], which even today, is the only 
successful nonnumerical technique for the determination of the successive positions of  a 
curved shock. We shall first give here Whitham's shock dynamics equations for shock 
motion in two space dimensions. 

Assuming that the state ahead of the shock is at rest the successive positions of the 
shock and the corresponding family of shock rays form a set of orthogonal curvilinear 
coordinates. Let a = a0 t = constant represent the family of curves giving the successive 
positions of the shock and/7 = constant represent the family of shock rays. The line 
elements along the two families of curves are M da and Ad/7, where M is the shock Math 
number and A is an appropriately defined area of an elementary shock ray tube. 
Considering the changes in the shock ray inclination O and the shock Mach number 
along the shock curve, we get the following two equations in O, M and A: 

aO/aa = - (11A) taM~aft), (50) 
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and 

t~A/aa = M (aO/dfl) .  (51) 

To obtain a determinate system of  equations, Whitham assumed that the flow in each ray 
tube can be treated as one-dimensional, and a functional relation between A and M can 
be obtained by using the ccw approximation, in the form A = A o f ( M ) / f ( M o )  where 
f ( M )  is given by 

2 ( M ) =  1 + ( 7 + 1  ) d l + 2 d + ~  

d 2 _  ( 7 - 1 1 M 2 + 2  
2~,M 2 _ O' - 1)" 

Once 0 and M are determined as functions ofc~, fl, the position of the shock at any time 
t = e/ao can be obtained by integrating the ray equations 

ax/dct = M cos O, ay/aa = M sin ~9. (52) 

The operators ?/8~t and 8/?fl give interior derivatives in the shock manifold Q. In 
order to compare the compatibility conditions of the shock dynamics with those derived 
by Maslov's method, we write (50) and (51) in terms of  the excess density ratio # across 
the shock and in terms of spatial distances s and q related to ct and fl by dst = M dot and 
dr /=  A dfl respectively. The results are 

?p/as~ = B3(d~)/~rl) (53) 

and 

where 

as~ 2(] +#){2+#(1 -~,)} an 

B 3 
-23 /2{2+#(1  - 7)I,(1 + # ) [ 2 +  (),+ 1)#] 1/2 

(54) 

x/~{4 + #(3 -),)} [ 2 + ( ? +  l)#]~/z + 1), + 1)#{4 + #(3 - ~,,)} +8(1 +/1)' 
(55) 

We note that (54) of shock dynamics is exactly the same as (49) derived by Maslov's 
method. However, the second term B2(a# /~N)  of  (43) is missing in (53) of  shock 
dynamics. This term is of  the same order as the first two terms unless the state behind the 
shock is almost a uniform state. The limiting form of (43) and (49) have been derived for 
a weak shock by Ramanathan et al [5] by another method. We note that, in this case, i.e. 
# ~ 1, both coefficients B~ (of Maslov's method) and B3 (of shock dynamics) can be 
approximated by the same value - � 8 9  as derived in [5]. For  a shock of arbitrary 
strength table 1 gives a comparison of  the values of B~ and B 3. Unlike the intuitive and 
approximate deduction of  the shock dynamic equations, Maslov's theory gives the 
exact results by a mathematically elegant method. The authors believe that Maslov's 
theory will be of great value in the theory of multi-dimensional shock propagation. 
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Table i .  C o m p a r i s o n  be tween  W h i t h a m ' s  result  a n d  
Mas lov ' s  result  

BI B3 

0 0.00 0.00 
0.5 - 0 . 1 8 2 9 2 6 8 3  - 0 .22842144 
1 - 0 . 2 6 3 1 5 7 8 9  - 0 . 4 1 2 2 5 8 9 8  
1.5 - 0 .28074866 - 0 . 5 4 5 1 5 2 6 5  
2 - 0 .6315796 - 0 . 6 2 3 9 3 5 4 7  
2.5 - 0 .22727273 - 0 .64814813 
3 - 0 . 1 8 2 9 2 6 8 3  - 0 .61873780 
3.5 - 0 .13565892 - 0 . 5 3 7 3 1 3 2 8  
4 - 0 . 0 8 8 4 9 5 5 8 6  - 0 . 4 0 5 7 5 4 6 6  
4.5 - 0 . 0 4 3 0 2 1 0 3 3  - 0 . 2 2 6 0 1 1 4 9  
5 0 .12417634 x 10 -v  0 .74066669 x 10 -7  

F o r  ~u = 5, the table  shows  that  B3 is a p p r o x i m a t e l y  six t imes tha t  o f  BI 

6. Conservation form of the equations on a shock manifold and the jump 
relations for the shock-shock 

In the last section we have derived two equations for the amplitude/~ of the shock and 
for the angle | made by the normal to the shock front with the positive directions of the 
xl-axis. As these equations are exact, it is natural and also interesting to analyse these 
equations further. 

The SME {12) reduces to 

~s/?t + c I Vs l  = 0, 

when the state ahead of  the shock front is at rest. 
For the subsequent part of  the analysis we assume that s is given by 

slx,,  t ) =  t + ck(x,), 

then 
(56) 

1 +C(ckxCkx,) t/2 = O. 

Let us make a coordinate transformation from (x,, t) to (x',, s) given by 

x', = x=, s = s(x=, t) = t + q~(x=). (57) 

In this coordinate system (56) becomes 

l + c(4,x;q~x,) 1'2 = 0. (58) 

The characteristic curves of  158) or shock rays are given by 

dx' , /dr = C~bx;/(~b6~b.Q ~,'a = CN=, (59) 

where N1 = cos | N2 = sin | are the components of  the unit normal to the shock 
curve cb(x',) = constant. 

The directional derivative operator along shock rays is 

? 
d /dr  = C N ,  ~x'= (601 



40 R Srinivasan and Phoolan Prasad 

From (54) we get 

= s i n | 1 7 4  , 

which with the help of  (60) can be written as 

CN~ ~ - c o s  = 0 sinO - Z -  

(61) 

or V'(N'/C) = 0' on IZ (62) 

where V' = ~ i ,  ~x2 is the two-dimensional gradient in (x'~) coordinate system and 

N ' =  (sin | 1 7 4  is the unit vector tangential to the shock curve. Equation (62) 
is a conservation form of one of  our shock dynamic equations. 

Let us integrate the expression on the left side of(62) over the region ABCD as shown 
in figure 1 where AD, BC are two positions of  shock fronts, AB, CD are the shock rays. 

Then 

f V'- (N' /C)  -~ 0 leads to 

area ABCD 

f i N/V dl = 0 

(AB+ BC+CD+ DA) 

v being the exterior unit normal to the curve ABCD. On AD and BC v-N' = 0, on 
AB v. N'  -- 1 and on CD v-N' --- - I. Hence we get 

AB CD 

Since C is the velocity of  the shock, the above equation implies that the shock front at 
any time t can be obtained by moving a distance Ct along the rays starting from its 
initial position. Let us analyse (43) which can be written as 

d# _ ~O c~.u 
dr Bt ~ = B2 d--~. (63) 

.-p 
y 

c 

A 7' 

Figure 1. Elementary area whose boundaries are two positions of the shock front and two 
shock rays 
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The right side expression in (63) represents the derivative o f f  in the direction of normal 
to the shock front and accounts for the effect of  flow from behind the shock. The flow 
behind the shock front depends on initial conditions and boundary conditions which 
can be chosen arbitrarily. Therefore, by choosing initial and boundary conditions in a 

d# 
proper way the term B2~-~ can be made to assume any given value. Thus for the 

kinematics of  a shock front this term should be treated as a known quantity. 

O| - V.N V " N '  and ~ CN~o Since dr/ '~ 

equation (63) becomes 

We shall show that there exists a funct ion/(#)  so that when (64) is multiplied by it, 
it takes the form 

V'. (K(#)N) = F(#, x'~, x~), 

where F (#, x'~, x~) is a known function of#,  xl, x2 and K(#) is a function ofF. Such a 
factor f ( # )  has to satisfy the equations 

C(#)f~) = K'(#) and B1 ~u) f ~ )  = K(#), 

which implies (B l f ) '  = (?for BI x f '  =f(C-B'l). 

Thus f t# )  = { e x P i r e d # I }  

Hence fO)  is determined upto a multiplicative constant. This constant can be taken to 
be one. Hence (64) can be written as 

V'.(K(~)N) = F(#). (65) 

Let us write explicitly the two conservation laws (62) and (65) on the shock manifold f~. 

O ( S i c O ) +  O ( - c ~  (66) 
- -  c 

and 

(K cos (9) + ~-~-2 (K sin (9) = f (#) .  (67) 
dx~ 

The smooth solutions of  the quasilinear equations derived from (66) and (67) develop 
into discontinuities in # and (9 which are shock-shocks. From (66) and (67) we derive 
the jump condition across a shock-shock. 

If U = dx'2/dx't is the slope of  the shock-shock curve in (x't, x~) plane then (66) and 
(67) 

- U[ K cos (9] + [K sin (9] = 0, 

and 

where [ 

.E I,E 7sol 0 
] on any quantity represents its jump across the shock-shock. 
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o r  

U = (K2 sin 0 2  - KI sin Or) = (C2 cos O1 - C1 cos 02 )  (68) 
(K2cos O2 - Kt sin | (Ct sin 0 2 -  C2 sin |  ' 

where K 2 = K ~ 2), K t = K (# 1 ), C2 = C(#2), C t = C(/~ t) and su bscripts 1 and 2 refer to 
the states on the two sides o f  shock-shock. Eliminating U from these two we get 

(K 2 /C 2~ .1 /2  I [ "  2 / ~ 2 " ~ 1 / 2  
~ z x 2 /  t.*.-~ I - -  ~-" 2J  

tan (Or - 02)  = (69) 
(KxC2+K2CI) 

Whitham derived the jump relations across a shock-shock by considering the 
invariance of  the distance traversed by the shock-shock. In contrast to this, we have 
derived these jump relations directly from the appropriate conservation laws which are 
also exact. We have given justification why the term B2(dla/dN) in (65) should not 
contribute to the jump relations. 
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