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Abstract. In this paper the kinematics of a curved shock of arbitrary strength has been
discussed using the theory of generalised functions. This is the extension of Moslov’s work -
where he has considered isentropic flow even across the shock. The condition for a nontrivial
Jump in the flow variables gives the shock manifold equation (SME). An equation for the rate of
change of shock strength along the shock rays (defined as the characteristics of the SME) has
been obtained. This exact result is then compared with the approximate result of shock
dynamics derived by Whitham. The comparison shows that the approximate equations of
shock dynamics deviate considerably from the exact equations derived here. In the last section
we have derived the conservation form of our shock dynamic equations. These conservation
forms would be very useful in numerical computations as it would allow us to derive difference
schemes for which it would not be necessary to fit the shock-shock explicitly.

Keywords. Nonlinear waves; shock dynamics; multi-dimensional shock propagation.

1. Introduction

It is now about three decades since serious attempts were made to solve the problem of
the propagation of a shock of arbitrary shape and arbitrary strength. The main aim was
to device a method to calculate the successive positions of a curved shock without going
through the task of the calculation of the flow behind the shock. Whitham [7, 8]
presented one such method, now known as shock dynamics, and showed that the
motion of a curved shock depends on the initial shape and the distribution of the shock
strength on the initial shock surface. The simplicity and elegance of Whitham’s shock
dynamics results from the fact that, in this theory, the influence of the waves which
catch up with the shock from behind is accounted only approximately [5]. A precise
and mathematically satisfying theory on the kinematics of a curved shock was first
available in English in 1980 by the translation of the work of the Russian
mathematician Maslov [2] who derived a first order partial differential equation
satisfied by the shock manifold in (x,, t)-space and then derived an infinite system of
compatibility conditions on this manifold. These compatibility conditions are in the
form of transport equations along shock rays. The partial differential equation for the
shock (called shock manifold equation or sME) is not unique but it has been shown [3]
that two different sME s give the same set of shock rays starting from a given initial shock
surface. Since Maslov was interested in establishing certain results for a weak shock, he
considered the motion of an isentropic gas and thus paid no attention to the energy
equation.

In this paper we consider the motion of a shock in an ideal gas with constant specific
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heats with all the three conservation laws, namely the conservation laws representing
balance of mass, momentum and energy. We use Maslov’s method to derive the sMEand
the transport equation along a shock ray. Then we use our exact equations to discuss
the correct form of the Whitham’s shock dynamic equation. We show that shock
dynamics not only incorrectly accounts for the effect of the waves which catch up with
the shock from behind but the ccw approximation in the shock dynamics leads to a
term whose coefficient differs significantly from the exact coefficient which we get using
Maslov’s method. Thus this paper shows the mathematical elegance of Maslov’s
method—the correct form of shock dynamics can be obtained by a systematic
mathematical analysis without any assumption or approximation. Since Maslov’s
method is not widely known, we shall briefly indicate in the next section some of his
important results using the theory of distribution.

2. Maslov’s lemma on a conservation law

The conservation laws representing the three-dimensional motion of an ideal gas with
constant specific heats are

5P+<V puy =0, W

a(gu) sy rE o0 (=123, @
and

¢, p -

ét zP<u,u>+(y +{V,3p(u, “>“+ T uy=9o ©

where p,u = (u', u?, u®), p, y are mass density, particle velocity, gas pressure, ratio of
the specific heats respectively, {, ) represents scalar product and
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@xl @Xl @x3

is gradient in R>.

Consider a piecewise smooth solution of these equations suffering a discontinuity of
first kind on a smooth three dimensional surface Q in R*. Let Q be represented by s(x,,
X3, X3, 1) =0. We choose the function s so that |Vs|,=1. At any fixed time ¢, s(x, t)=0
represents a smooth two-dimensional surface Q, in (x;, x,, X3) space. , is then a shock
surface and we call Q shock manifold. The piecewise smooth solution of (1)-(3) can be
represented in the form

pix, 1) po(x, 1) pr{x, 1)
I:u(x, t):I =1| uplx,t) | +H(s(x, 1)) [ul(x, t):l, 4)
p(x# t) pO(x, t) pl(X, t)

where p;, u;, p;(i = 0, 1) are C *(R*) functions and H () is the Heaviside unit function
defined by
>0

1,
H(r)=0 <0 (5)
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Assuming that (p,, e, po) represents the known state ahead of the shock (the domain
where s < 0) the problem is to find the successive positions of €, and the state (p, + p,,
ug+uy, po+ p,) behind Q, satisfying some initial and boundary conditions.

Let Ry be the set of functions g of the form g(x, t) = go{x, t)+ H(s)g,(x, 1),
where go(x,?) and g; (x,t)eC® (R*). R, is closed with respect to the operations of
addition, subtraction and multiplication. Therefore, all the combinations of p, u, p
which appear under differentiation operators in (1}-(3} are also elements of Rq.

To a piecewise smooth function g € Rq, we associate a set of functions defined on the
surface of discontinuity Q by

gilo= (Y5, VVgila, i=0,1;j=012... ©)

These functions can be interpreted as successive derivatives of g;(i = 0, 1) along the
normal to the shock front Q, at any fixed time t. We extend any function g;; | defined on
Q in a smooth manner to the whole of R* so that the extended function g;; is constant
along the trajectories of the field (Vs, V) ie., (Vs, V,, ) g;;lo = 0. Then at any instant ¢,
the extended function g;; is constant along a normal to Q,. We note that poq (or pyo)
need not be equal to p, (or p,) in R* except on .

Let V,, = (0/0t, V) be the four-dimensional gradient in R*. V is gradient in (x,, x,,
x3)-space. However, whenever a scalar product of V with an element of R*is taken, it is
understood that

g & @
V= (Oa a—xly a—xza a’—%)'

Then for ge Ry and e = (€', €%, €°, e*)eR*
<e—Vs(Vs, e>, Vix >gijlﬂ = <e, V:x>gij lo» 7

since (Vs, V. ) gila= (V5 V)glo=0.

Let the class of generalised functions which are the results of differentiating functions
of class Rq along some direction e = (e, €2, €3, ¢*) be denoted by D, q. Let g€ Ry and
h(x,t) = {e,V, »g(x, ). Then heD,q. To h we assign generalised set of functions
hijlg,i=0,Lj=-1,0,1,..., defined on Q, by

hl, —l(x9 t) |Q = {gw(& Vtx >s(x, [2} |ﬂs

hij(x, g = {9i.j+1 (e, Ve >5(X, t)} Ia
+ {<e— Vs (e’ Vs >, Ve >gij} las (8)
i=01j=01,...
Consider the class of generalised functions D, representable as a finite sum of

functions belonging to various sets D, g, e€ R*. Then if h(x, )€ Dy, there exists an m
>0, vectors ey, e;, . . . , e, and a set of functions h'€D, q, ..., H"€D,_gqsuch that

hix, )= 3 h(x,1). )
i=1
To the generalised function h(x, )€ D, we assign the generalised set h;;(x,t); i =0, 1,
j=-10,1,2,...in the following manner
hij(x, ) =Y. hf(x, 1), (10)

k=1
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where hY; is the sequence associated with h'e D, eia-

We notlce that for a solution of the form (4) the left side of the conservation laws
(1)-(3) are actually the elements he D,. We next state the lemma which plays an
important role in Maslov’s method.

LemMaA. Letg’, . .., g™ be piecewise-smooth functions belonging to the class Rq, of
functions suffering discontinuity on the same smooth surface Qand lete!, ..., e bea
collection of vectors in R*, if

z <ei, Vtxgi> =0
i=1

then all terms of the series {h;;(x,1)},i =0,1;j=—1,0,1,2, ... defined by equations
(10) vanish on the surface Q.
For a proof of the lemma, reference may be made to Maslov's paper.

3. The sME and the Rankine-Hugoniot conditions

Using Maslov’s lemma to the solution (4) of the system of conservation laws (1)—(3), we
get the following expression for the column matrix h,, _;

[ os N
Ploat + Vs, (poo + p10) (Uoo + U10) — Poolioo )

. . ., 0s
{(Poo+ P10) (oo + 14} 0) — Pootibo } o

+ (Poo + P10) (ho + o) { Vs, ugo + tiro )
os

hy - 1(x,t) =| —pootiho Vs, tgo > +p1°6x

[4(poo +Plo)<“oo+u10, Ugo + U10) =0.

1 » 0s
TronPa

+4(poo + P10) {too + H10, too + 10 ) VS, Uge +Uyo)

— 3 Poo {Ugo, o> Vs, tigo )

—%Poo (Upg» Uoo >]

+(y {(P00+P10) Vs, ugo + U39 ) —poo Vs, uoo)}—J (11)

These are the usual jump conditions across a shock surface. Foliowing the procedure
followed by Prasad [3], we deduce the shock manifold equation (sME) in the form

%;+(u00, Vs> +C|Vs| =0, (12)



Multi-dimensional shock of arbitrary strength 31

where

_PootPiobio (144
Poo  Pio ~ upo

The jump conditions across Q are given by

C2

P1
Pio>» U= —. 13
10 e (13)

Poo+P gi—:;(lﬂ‘)_l
“10|n= ‘f(onplo)mlg; 90TA0 = o 1) (14)
Poo o T (14 lo
-1
Vs 1 1
Whereé=m’ 10=Pz—l’oo+ﬂm
YPo (14p) 112
Clo=-]2{Z&Z2 ) —72
o [ (po){2+u(1~y)}] (15)
and
1= p1/po (16)

represents the excess density ratio across the shock. a, is the local sound speed in the
regions ahead of the shock.

The characteristics of the smE define the shock rays and are given by (we write here
this result for a particular case of two spatial variables since we shall directly use it in the
next section, x, y are spatial coordinates and @ is the angle which the normal to the
shock front makes with the x-axis)

dx dx .

Hr—l—=u(‘,o+Ccos®, —de=u30+Csm®, (17)
and

de oc ac oC

— =(sin®@=—=—cos®— | = —, 18

i <sm © o, cos axz) on (18)

where 0/0n is tangential derivative along the shock curve Q, and d/dz represents the
operator for the temporal derivative of a quantity along a shock ray.

4. The second compatibility condition on the shock manifold

Maslov gives a method for the derivation of an infinite set of compatibility conditions
on the shock manifold. The first group of such relations in this set is the Rankine-
Hugoniot condition (14)—(15). The second group, namely the jump conditions on the
first derivatives, consists of an expression for the rate of change of u = p;/p, along a
shock ray in terms of a tangential derivativeof @ in Q, and a normal derivative of x and
also some algebraic relations amongst the normal derivatives of the dependent
variables. Our aim in this section is to derive one of the compatibility conditions in this
group—namely the above mentioned expression for the rate of change of u along the
shock ray. For the discussion in the next section, we need only this part of the
compatibility condition.

From Maslov’s lemma for a solution (4) of (1) to (3) it follows that all the components
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of the vector hy, vanish on Q. This gives

and

where

{pP11 Ki+(poo+p10) {Vs, uy, ) +2} In=0» (19)
P11K (U0 +ulo) + (Poo + P1o) (o + o) { Vs, uyy >

Js )
+ (Poo + P10) U1, +P115‘—_+w' |n =0, (20)

3p11 {Uoo + U1, Uoo +s0 ) K;+ (oo + p10)
(oo +u10,411 ) Ki+3(poo + p1o) {too + tyo,

ds
Uoo+u10) Vs, uyy ) +ml’u§t‘

+6—1T)[(P00+P10) Vs, g1 ) +p1a Vs, ugo + 10> ]+ Mg =0, (21)

a
K = Z');*’ VS, o + 110D, @)
P10
zZ= ot +(Poo + P10) Vs, ugy ) + po1 Vs, ugo
+ 30 > — (Vs, poo o1 + Po1 oo )
+ <V, (poo + p10) (oo + U10) = Poottoo > (23)

i _0s i i i i
w =5?[(Poo +p10) Uo1 + Po1 (oo +U10) — Pootivr
; d , ; ;
— Po1ttho] +E[(Poo + P10) (Uoo + U10) — Pootibe]

+(Poo + p10)(Ubo +uko) Vs, tio1 > + (oo + Pro)uby Vs, uge + 10 )
+ poi1 (oo + o) (Vs, tgo + g0 )

~ < Vs, Pootoo o1 + Pooto1 oo + Po1 ¥botoo

+ Cugo + 10, V> (Poo + P10) (bo + o)

+(Poo + P10) (Ubo + uio) <V, oo+ 10 ) — Pootaho {V, oo )

) d
= Ctioo, V> pooitho +%, (24)

ds
M= 5{[%:901 {Uoo + Uy, Ugo + Uy

+ (poo + P10} Uoo + U10, Uo1 ) —1Po1 {Uoo, 400 ) — Poo {Uoos oy Y]

d
+ a*t[‘if(l’oo + p1o) {Ugo + Uyg, oo + o) Vs, ugo + 1410 )

1 0
—%p00 o0, Uoo >] +m—z?+%l’m oo + Uy 0, Ugo +Uyo )
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Vs, ugo + 10> +4(poo + p10) o + Uz, Uoo + 10D Vs, Uoy )
+ (Poo + p10) oo + U10,Uos > Vs, oo +uy0 )

—32Poo {Uoo» too > Vs, g1 > —4poy oo, Uoo > Vs, oo >

~ Poo {00 o1 > Vs, oo > +3(poo + p10) {Uoo + tso, Uoo +U10)
(V, ugo + ti1o ) + {tioo + 10, V> {3(Poo0 + P10)

* {ttoo + 10, too + 10>} —4Poo Uoo, Uoo > {V, Ugo )

— oo, V>1Poo {oos Hoo) + 7 [Pw Vs, ugy )

(
+Po1 < Vs, ty0> + {V, (Poo + P10) (Hoo + 110) — Pootioo ) ]-

Multiplying (19) by (o0 + #;0) and subtracting from (20) we get

(Poo+P10) 11 K+ pyy Vs + @ — (oo + uy0)z = 0.

Multiplying (19) by % {uoo + U410, Uoo + U0 > and subtracting from (21) we get

1 ds
(Poo + P10) CUoo + Uy Uy DKi+——p11 —
(yv=1) "ot
+——[(Poo + P10} Vs, g1 > +p1y Vs, tioo +430 ) ]

v
+ M —3 (upo + tty0, g + U102 =0.

Multiplying (26) by (uoo + u;0) and subtracting from (27) we get

1
-1
+ M —4 (ugo+ tty o Uoo + Uy >z — @, Ugo + U0 )

4
Ki+——(poo+ Vs, u
D11 By G-1) Poo + P10) € 1)

+ {ugo + U1q, tgo + U0z = 0.

1
=1 K, Vs and subtracting from (28) we get
a(poo + p10) Vs, uys > + M =5 ugo + th10, Uoo +Uy0 ) 2

1
— {, Ugp +u10) + {ligo + Utos “oo+“1o>2"m1{t<vs’ 0]

—(ugo +u10)z> =0

where « is defined by (31).
Multiplying (19) by a and subtracting from (29) we get

M =3 ugo+ U0, oo + Ui Y2 — W, oo + 1o )

1
+ 2 {Ugo + U0, Ugo + U0 —mKt (w —(upp + 1)z, Vs )
—az—ap“K, = O,

33
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(29)

(30)
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where

a={ Y  DPoo+DPio sz}_az u(l+7v) (31)
=1 poo+pro y—1 DA+ {2+ud -9}

The operator d/dz in (17) and (18) gives rate of change along a shock ray ie., it
represents an inner derivative in the shock manifold Q:s(x, t) = 0. Therefore, for a
function g;; | defined initially on Q and extended as g;; in R* so that it is constant on the
trajectories of the field (Vs, V),

d
dz i lo

can be obtained from g;; | alone. From (14) it follows that u,, |, is parallel to the vector
Vs |q, hence (uyo, V ) gijlq = 0. Therefore,

0 é
{54’(“00, V>}9ij|n= {E+<uoo+“10v V>}gij|Q

Vs

0
={E+<u00+cf,v>}9ﬁ|gsf=m- (32)

Using these results, we find the following expressions for M —% {ugg + U, g, Ugo +
Uio >z, <O, tgo +Uy0 ), and W ~ (Ugg + Uy o)z on Q
M —3ugo +uyg, tgo+ 0 Y2lg =

—Clpo1 {1os 410D +3po1 (U0 Uyo ) + P10 {Ugo + Ui0s Uo1 P
d
+ poo (U0, U1 ] +a"[‘[%(ﬂoo + p10) Ugo + Uy, Ugo T U10 )

d(poo +p10)

—4poo (Uoo, Uoo Y] —% (oo + U1, Ugo + U1o ) dc

dpge 1 dp,
1 + , Y
+ 7 {ugo + U0, Uoo + Uro ) prye +(y—l) de

YPoy
-1

+|:(Poo+l’10)<“00+“10, Uoy > + ](VS, U )

+[Poo<uoo, Uyo ) +3poo{Usos Ujo ) + (;,p_“;)jl (Vs, ugy >

—2P00 {Uoo> oo » {V, oo + ¥ oo + Uy o, Uoo + U0 Poo V, Uoo D
Y
+Zm[(1700 +P10) KV, oo + 10 > + (g + U0, VO P10, (33)

(w, Ugg+uyg) =

d
oo +uyo, ac {{(poo+ P1o) (too + U10) — Pookon } >
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+(Poo+ P1o) Moo+ Uyg: Ugo+ Uyo ) { Vs, ugy )
+po1 (oo + 1o, tige + g0y {Vs, )0 ) — Poo{toos Uoo+ 1oy {Vs, Uy )
+ (Poo + P10) oo + o, Ugs ) {Vs, Uy )
—C[p10 {uoo+ Uy0s Uy )+ Po1 {Uop + U0, Uy )]
+(Poo+P10) (oo + U10s Hoo + o ) {V, tigo + 10
— Poo {Uoo + U10s oo ) Vs oo ) + (oo +U10: V) P10, (34)
and

w—(Ugg + lij)2 =
d
—CLp1ouo; + Po1410] +a;[(Poo+P1o) (#g0 + t10) — Pootioo]

dpyo
dr

+poottro VS, Uo1 ) + poottyo Vs tgo ) + Vpyo. (35)

~(Ugo +Us0)—— + (Poo + P10)Uo1 Vs, yg )

Substituting these values in (30) we get

1 dpo  Cpo (Vs duy, ) Coou (Vs duge )
¢—1) dt (-1 " G-D+p > 7 dr
' C duo0
— AV o4 ,
+(‘Y“l)(1+# < S, u10> p00<u10 dT
dp dp Cu
“‘12‘<“10y u10>-?;)3-—a drl0+p [I(1+#), a< S, “10>

Cu —Clpou ,  C*?
“w—l)<1+u)2]+<vs’ “°‘>[ (+p  PoU+p?

yelupo  cFupy c*ppo

G=DU+p -0+ PTG Da+w
Cup, ] 7Po1
TETTET o AT

+|:( zl)(Poo'*'Plo) Poo+p10]<v “10>

Y C*upo '
PETYTETY - v, . 36
+[(7—1)p1°+(y,—1)(1+u)2 *o 1<u'°’u'°>]< oo/~ 36)

Since the operator d/dr gives an interior derivative in (), we note that in the above we
can use

d(pouo)
dr

) d
dpoo/dt = dpo/dt, E(Poouoo) =
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etc. The set { po (x, £), tp(x, 1), po(x, )} is a genuine solution of equations (1) to (3), hence

dpoo dpo Cpo )
=—| == \% C
= “Po(V, “0>+CP01|Q 37
Similarly, we get
du 1
doo = —(Cpottor —~ Vpo), (38)
T la Po
and
1 dpoo 39
p01=C po(V, uo>+ (39)
We also note
, d¢
(¢ 5
<V’ u0>,Q= <V7 u00>'ﬂ+ <VS, u01>lﬂa (40)
where
L=V—§<§,V>4 (41)

In terms of the rate of change of the excess density ratio, & = (p,/po)across the shock,
eliminating p,, and u,, from (14) and (15) respectively and using (33) to (36) we write
(32) in the form

{ 2C3%p, 2Cup, Oc }dy
GO+ G-Dl+men Ffdr
{ C?u 3Cupo ﬁc__aﬂ(2+u)}d_po3
=D+ -+ ip, (1+w) dr
3Cupo  OC dpog C*upo (L&
=D +pdp, dr  (y—- DL +p)?
C?upo (Vs, oy > + v _Clupo
G=DI+m VT DU+
oaupo(2+ p) aCpyy
i A aid =0. 42
-+ ]< AT A “

This is the required compatibility condition giving the rate of change of u along a shock
ray in terms of the known quantities in the region ahead of the shock, the interior
derivatives of unit normal ¢ of the shock front , and a normal derivative p,,.

5. Correct form of the shock dynamic equations in two-space dimensions

In the case of two space variables x, x,, the shock €, at time ¢ will be represented by a
curve in (x4, x,) plane. Let © be the angle which the normal to , makes with the x -axis.
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Then ¢ = (cos ©, sin @). Assuming the state ahead of the shock to be a constant state
and at rest, i.e. uy =0, u5 =0, and using (L, {) = 0O /0n we get from (42)

ou 0 i

— =B,—+B,—, 43

a5y Yon 20N @3)
where ds, is an element of length described in time dt in (x, x;)-plane while moving
along a shock ray (ds, = Cdt), dn is an element of length along the shock curve Q, at any
time and dN is an element of length in a direction normal to Q;:

0 1/¢ . 5, 2 ) 0
E—E((—3;+(u0+Ccos®)a—x1+(uo+Csm®)a—x2 (44)
i, d 0

— =sin®—— —_ 45
o sm@)ax1 cos@axz, (45)

and

é ¢ d

— = — +sin®—. 46
AN COS®6x1+Sln®0x2 (46)

The coeflicients B, and B, in (43) are given by

2u{2+u(l —v)}
B, = — 47
YT B46u—2pu—pi(1—yY “n
and
( , pRY)
B, = pl+y) 2+p(1—7); (48)

C{8+bu—2yp—p(1—y)} (1 +p)
Substituting in (18) the expression for C in terms of u, we get

fC) y+1) cu

== =, 49
dsy 20+ w{2+p(1 —y)} on @)

Equations (43) and (49) could be used to calculate the successive positions of a shock
front provided the term du/0N can be estimated in (43). This term can be approximately
evaluated for a class of problems when the shock is weak [4]. Howeyver, since (43) and
(49) are exact equations, it would be interesting to compare these with the correspond-
ing equations of Whitham’s shock dynamics [7, 8], which even today, is the only
successful nonnumerical technique for the determination of the successive positions of a
curved shock. We shall first give here Whitham’s shock dynamics equations for shock
motion in two space dimensions.

Assuming that the state ahead of the shock is at rest the successive positions of the
shock and the corresponding family of shock rays form a set of orthogonal curvilinear
coordinates. Let @ = aot = constant represent the family of curves giving the successive
positions of the shock and B = constant represent the family of shock rays. The line
elements along the two families of curves are M dx and Adf, where M is the shock Mach
number and A is an appropriately defined area of an elementary shock ray tube.
Considering the changes in the shock ray inclination ® and the shock Mach number
along the shock curve, we get the following two equations in ®, M and A:

00 /0a = — (1/4) (0M/oP), (50)
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and
CA/)da = M (6©/3p). (51)

To obtain a determinate system of equations, Whitham assumed that the flow in each ray
tube can be treated as one-dimensional, and a functional relation between 4 and M can
be obtained by using the ccw approximation, in the form A = 4, f (M)/f (M,) where
f(M) is given by

Mi(M
f(M)=CXp{— Ml(— l)dM}

2 g-ay T
A(M)_{l+(v+1) _ Hl+2d+M2}

_G-)M?+2
M- —1)

2

Once © and M are determined as functions of a, §, the position of the shock at any time
1 = a/ag can be obtained by integrating the ray equations

Ox/0o = M cos ®, ¢y/Co. = Msin@. (52)

The operators ¢/da and ¢/¢f give interior derivatives in the shock manifold Q. In
order to compare the compatibility conditions of the shock dynamics with those derived
by Maslov’s method, we write (50) and (51) in terms of the excess density ratio u across
the shock and in terms of spatial distances s and n related to ¢ and § by ds; = M dxand
dy = A dp respeciively. The results are

Cu/Csy = B3(CO/dn) (53)
and
©_ G s
asy 2L+ w{2+u(l—y)} on
where

— 22202+ pu(1—y) (1 + p)[2+ (y + ]2

V2B =) 2+ G+ D] 2+ (5 + D4+ pu3 7)) +8(1 + )
(55)

B3=

We note that (54) of shock dynamics is exactly the same as (49) derived by Maslov’s
method. However, the second term B,(éu/éN) of (43) is missing in (53) of shock
dynamics. This term is of the same order as the first two terms unless the state behind the
shock is almost a uniform state. The limiting form of (43) and (49) have been derived for
a weak shock by Ramanathan et al [ 5] by another method. We note that, in this case, i.c.
4 < 1, both coefficients B, (of Maslov’s method) and B; (of shock dynamics) can be
approximated by the same value —}u as derived in [5]. For a shock of arbitrary
strength table 1 gives a comparison of the values of B, and B,. Unlike the intuitive and
approximate deduction of the shock dynamic equations, Maslov’s theory gives the
exact results by a mathematically elegant method. The authors believe that Maslov’s
theory will be of great value in the theory of multi-dimensional shock propagation.
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Table 1. Comparison between Whitham's result and
Maslov’s result

H B, B,

0 0.00 0.00

0.5 —0.18292683 —0.22842144

1 —0.26315789 —0.41225898

1.5 —0.28074866 —0.54515265
—0.6315796 —-0.62393547

25 —0.22727273 —0.64814813

3 —0.18292683 - 0.61873780

35 —0.13565892 —0.53731328

4 —0.088495586 —0.40575466

45 —0.043021033 —0.22601149

5 0.12417634 x 1077 0.74066669 x 107

For u =5, the table shows that B; is approximately six times that of B,

6. Conservation form of the equations on a shock manifold and the jump
relations for the shock-shock
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In the last section we have derived two equations for the amplitude u of the shock and
for the angle © made by the normal to the shock front with the positive directions of the
X-axis. As these equations are exact, it is natural and also interesting to analyse these

equations further.
The s™E (12) reduces to

Cs/Ct+C|Vs| =0,

when the state ahead of the shock front is at rest.
For the subsequent part of the analysis we assume that s is given by

5(xz ) =t+P(x,),

then

1+C(¢$,)'"*=0.
Let us make a coordinate transformation from (x,, ) to (x,, s) given by
Xy = X,, § = 5(X,, £} =t + P{x,).
In this coordinate system (56) becomes
1+C(¢dy)''?=0.
The characteristic curves of (58) or shock rays are given by

dx;/df = C¢X,/(¢xﬁ¢\’ﬂ)l(2 = Cst

(56)

(57)

(58)

(59)

where N, = cos @, N, = sin ® are the components of the unit normal to the shock

curve ¢(x,) = constant.
The directional derivative operator along shock rays is

d/dr = CN, i
0x,

(60)
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From (54) we get

de . oC oc
a?-f (Slﬂ@g;{—COS@b—x—,;), (61)
which with the help of (60) can be written as
CNaie—— sin(-)a—c,,—cos@)?£ =0
ox, oxy ox,
or VV(IN'/C)=0' on 9, (62)

d d\. . . . .
where V' = (5;—, 6—) is the two-dimensional gradient in (x}) coordinate system and
1 X3
N’ = (sin @, —cos ©) is the unit vector tangential to the shock curve. Equation (62)
is a conservation form of one of our shock dynamic equations.
Let us integrate the expression on the left side of (62) over the region ABCD as shown

in figure 1 where AD, BC are two positions of shock fronts, AB, CD are the shock rays.
Then

V' -(N’/C) = 0 leads to

area ABCD

N'-v
—dl=0
c d

(AB+BC+CD+DA)
v being the exterior unit normal to the curve ABCD. On AD and BC v'N’' =0, on
AB v'N'=1and on CD v-N' = — 1. Hence we get

di  (d/
c jc'
AB CD
Since C is the velocity of the shock, ihe above equation implies that the shock front at
any time ¢ can be obtained by moving a distance Ct along the rays starting from its
initial position. Let us analyse (43) which can be written as

du ‘0 u

e Bia =By (63)

=4

—-

A 7

Figure 1. Elementary area whose boundaries are two positions of the shock front and two
shock rays
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The right side expression in (63) represents the derivative of g in the direction of normal
to the shock front and accounts for the effect of flow from behind the shock. The flow
behind the shock front depends on initial conditions and boundary conditions which
can be chosen arbitrarily. Therefore, by choosing initial and boundary conditions in a

i)

proper way the term Bzﬁ can be made to assume any given value. Thus for the
kinematics of a shock front this term should be treated as a known quantity.

0
Since —®= ~-V-N=-V"-N and£=CN,,,i

on dr ox,
equation (63) becomes

Ju oN, ou
CNaE + B (1) P Bz(ﬂ)ﬁ (64)

We shall show that there exists a function f (u) so that when (64) is multiplied by it,
it takes the form

V(K (N) = Fy, x1, x3),

where F (u, x}, x3) is a known function of y, x,, x, and K (u) is a function of u. Such a
factor f(u) has to satisfy the equations

Cw/f () = K'(u) and By () f(u) = K(n),
which implies (B, fY = Cf or B; x f' = f(C— B}).

Thus f(ﬂ)={exp[-[(cl—; Il)dﬂ:l}
1

Hence f () is determined upto a multiplicative constant. This constant can be taken to
be one. Hence (64) can be written as

VA(K(uN) = F(u). (65)
Let us write explicitly the two conservation laws (62) and (65) on the shock manifold Q.
0 (sin® ¢ [—cos@®
hmahdl I = 66
6x’1< c >+ax;< c ) 0 (©0)
and
0 3} .
— (Kcos @)+ —(K sin @) = F(u). (67)
axl (3x 2

The smooth solutions of the quasilinear equations derived from (66) and (67) develop
into discontinuities in u and © which are shock-shocks. From (66) and (67) we derive
the jump condition across a shock-shock.

If U = dx}/dx} is the slope of the shock-shock curve in (x}, x3) plane then (66) and
(67)

—U[Kcos@]+[Ksin®] =0,

sin ©@ —cos©®
_ =0,
o[22

where [ ] on any quantity represents its jump across the shock-shock.

and
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or
_ (Kz sin @2 - Kl sin 91) _ (Cz Ccos @1 - Cl (o0 )3 @2)
T (Kpc080,—K;5in®,) (C,sin®,—C,sin®,)’

where K, = K(u;), K; = K(uy),C, = C(u;),Cy = C(u,) and subscripts 1 and 2 refer to

the states on the two sides of shock-shock. Eliminating U from these two we get

(K3~ K3\ 2(CE—C3)2
tan(®, - 0,) =
an(©0,~0,) (K.C; +K:Cy)

Whitham derived the jump relations across a shock-shock by considering the
invariance of the distance traversed by the shock-shock. In contrast to this, we have
derived these jump relations directly from the appropriate conservation laws which are
also exact. We have given justification why the term B,(0u/dN) in (65) should not
contribute to the jump relations.

(68)

(69)
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