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7. Introductory.

TrE hypothesis, say H, that two samples of observations of a single variable
have been drawn from the same population may be tested in a variety of
ways. If there are strong grounds for believing that the populations
sampled are approximately normal, then the only possible difference of
importance will be between their means a, and a, or standard deviations
o, and o, ; it is customary, therefore, to test separately for the significance
of differences between (1) the sample variances o, and o, and (2) the sample
means a, and a,. If, however, both tests are on the border line of signifi-
cance it may be difficult to decide what conclusions to draw ; for this and
other reasons there appear to be certain advantages in the availability of a
single comprehensive test of the hypothesis of a common origin for the two
samples. Such tests are frequently applied in statistical analysis; if the
two samples contain many observations the hypothesis may be tested by
applying the X* test to the two series of grouped frequencies and so obtain-
ing a single criterion to judge the probability of H. Again when a number
of samples are available and it is wished to test whether the means in the
several sampled populations are identical, a single test (whether in z or 72
form) is applied rather than a separate test for each pair of samples.

J. Neyman and E. S. Pearson have discussed the use of such compre-
hensive tests in a number of problems. They have pointed out that in
comparing two alternative tests they should in the first place he made
equivalent, that is to say, adjusted so that in hoth cases the risk of rejection
of H when it is true is the same ; consideration should then be given to the
relative efficiency of the two tests in rejecting the hypothesis when some
alternative is true. They have shown that in certain cases there is a single
test associated with a best critical region which is more efficient than any
other from this last point of view.? In other cases no test with a best
critical region common for all alternative hypotheses exists, but they have

t Phil. T'rans.~ Roy. Society, Series 4, 1933, 231,
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suggested the use of the principle of likelihood in picking out a ‘test that
may be described as associated with a good critical region.?

In the present problem they have suggested the use of a test® based on
a criterion I, defined below. The main object of this paper is to discuss the
derivation and use of Tables of 5% and 1% probability levels for this
criterion, but as a preliminary point it is of interest partly on theoretical
grounds to compare this form of test with two alternative comprehensive
tests of the same hypothesis.

2. Comparison of L, test with two alternative two-sample tests.

If two samples of size #, and #, have been drawn randomly ‘from two
normal populations, then we may use as criteria to test separately the
significance of the difference (1) between variances and (2) between means

%52
L o= 31 .. .. .. NS
71512 -+ MoS,
0 = F— z, [ty (my 1y — 2_) . . (2)
22O 7y + 1, _

where @, and 7z, are the means of two samples and
1y _ 7y _
ms® = 2 (% — 2)?; M5, 2 (w0 — m,)?
=1 o i=T "

If the population. variances are the same, then the sampling distribution
of u is '
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If both the population means and variances are the same and we write.
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where 52 _ =1 , %, being the mean of the combined sample of

N
N=m; - n, observations.

# Biometrika, 20, pp. 175-240 and 264-294.
® On the Problem of Two Samples (1930); On the Pro_blem of % Samples (1931) ;
Bulletin de L’academie Polonaize des Sciences, Series A, Sciences Mathematiques.
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Fig. 1 is a diagram having co-ordinate axes t and w. The aval contour
represents a member of (5) for which #, = #n, = 15 and L, = -8028, which
has been so chosen that the chance is -05 of a point (¢, %) falling outside
the curve, if the hypothesis H is true. That is to say, if in drawing a
sample of 15 from each of two normal populatious, it is decided to reject H
whenever the point (£, ) falls outside this contour, we shall reject H when
in fact the populations have the same mean and standard deviations,

5 times in 100.
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We may now use two further alternative contours:

(1) Decide to reject H unless both u, < u < up and f; < £ < 1y, 1.6, 1eject
H when (¢, %) lies outside a rectangle such as that shown in the figure. To
make the test equivalent to the previous one, the limits must be chosen so
that only 5% of possible sample points fall outside the rectangle if H be
true. ‘There will be an infinite number of ways of choosing these limits ; in
the present instance the limits for » and ¢ are chosen in such a way that the
chance of rejection of-the hypothesis H, when it is true, is equal to the
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chance of rejection of H, when it is true.¢ If ¢ denotes this chance of
rejection, then it follows that the chance of falling ‘inside the rectangle is
95 = (1 — €)% sothat e = -02532.

(2) A third alternative test may be obtained on the lines suggested by
R. A, Tlisher® and K. Pearson.® If we write for the case n, = My

;b1==fj1 Jiu  itus< i |

k (6)
Py = /fl(u)du ifu> % J
atid ¢
o po= [ At ft<0 |
e | ™)
)

pr = [ fi(h)dt ift >0

the criterion quggested is

P=p Xty .. : (8
The region of rejection is that for which P is less tban some spec1ﬁed value.
The contour in the (¢, %) field equivalent to that determined in the other
two tests can be readily found from (8) on substituting for P its 5% point
given by

Pos = e X'y = .0087.

Itis drawn asa dotted curve in the figure and differs in the present instance,
when n; = n,, only slightly from the I, contour. It is likely that when
7y = 1y the two contours may differ much more but the case is not consi-

dered in this paper.

Having now obtained these equivalent contours associated with the uge
of these three criteria, it is of interest to consider their relative efficiency in
rejecting the hypothesas H when the populations sampled are in fact

different.
Since it can be shown? that there can be in this case no best critical
region common for all alternatives to H, it may be expected that for some

* The hypotheses H, and H. are identical with those considered by Neyman and Pearson
in their paper “* On the Problem of Two Samples”. H;j is the hypothesis that the samples
have come from some two normal populations with a common variance au:l.Hg i§ the hypo-
thesis that the samples have come from populations with a common mean, it being assumed
that the populations have the same variance. _

§ Statistical Methods for Research Workers, Fourth Edition, p. 97.

§ Biometrika, 1933, 25, p. 379.

T The author has succeeded in proving this rigorously but as the proof extends over

several pages it is not given here.
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alternatives one criterion will be more efficient, for other alternatives
a second and so on. That this is the case is shown in the diagram, where
results are given for two series of samplings from populations not satisfying
the conditions of the hypothesis.

Population 1 Population 2
Alternative A.
Mean .. 0-0 : 725
S.D. . 10-0 5.-75
Alternative B. :
Mean e 0.0 0-0
S.D .. 10-0 ‘ 5.75

100 pairs of samples of 15 were drawn in each case and the points (¢, )
were plotted. It will be seen that the oval contours contain less circles and
more dots than the rectangle. This means that while the L, test and also
the (P = p; X ) test are more likely than the (¢, %) test to detect the fact
that the sampled populations are different when these populations are as in
A, the reverse is the case when the two populations are as in B. It is clear
that there is here a matter for further theoretical investigation and the
problem for the moment may be left with two questions. If there is no test
with a common best critical region for all alternative hypotheses, on what
principle can we choose from among other possible alternative tests? Will
this principle be found to lead to the likelihood or L, criterion, which in
many problems already considered appears at any rate to satisfy our
intuitional requirements ?

3. The Distribution of L.

Suppose that the samples 2, 2, have been drawn at random from some
normal populations with means a; and a, and standard deviations o; and oy
respectively. If the hypothesis that 2, and 2, belong to the same normal
populations be true then they must have been drawn from a common
population with mean = a and standard deviation = ¢ ; and we know that
the frequency function for the simultaneous variations in x,, %,, s, and s, is
given by

R o2 =2y (.;1—-(1)2 4 nalig==)2 + 1752 F11as08
{%1, %2, §1, S} = const. (s5) (s2) e 2;3 =
(9)

My aim will be to transform the variables and integrate for certain of them
until we are left with the frequency function of two variables in terms of
which the value of I, can be expressed. Substituting first

Ry =% —aand (=% —x, .. .. N ¢ 1)
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we obtain the probability law of %', £, s and s,

2
_T181% 85,2
—_——— eV X

f{-'?z’, g: S1, 32}2 const. (sl)nl_,2 (32)”2—2 e 207
1 “ — ” 2 )
- , T 'hc 11,y 2 }
e 20-{("1‘*‘7’52) [xg F %i—l—nJ +7’¢1+712€ | .. (11)
Integrating with respect to %, between the limits — oo and + oo and
substituting
s TS ST . . .. (12)
Ny + (11 + 7)
we obtain
(5,)172(5,) "7 & = Pges 5o
S{se, $1, sa} = const. B/ 1| =7 = (13)
nl( ) +n2(3°)
N My ~+ #p
Lastly putting s, = ssxand s, = 55y .. .. S .. (14)
and integrating for s, between the limits 0 and oo, we get _
2 ~2 ~2
— const. (”L 2k N . . (15
i 33 = const. —ZLBI S0 .. (19)
711 + Ha
It follows from (5) and (14) that |
I = (x) N (y) ™ .. . . . .. (16)

Whernce we obtain

i P o L2 2114
fix, L} = const. R : = . .. (17)
Nx "2 n, % o Lﬂg
Therefore
N 2(;;1 ~1)
JI) = const. L2 252 dx .. (18)

_/ 2ny 2ny + 9 N
Nx "2 — 4 X — 1"z

where @, b denote the real roots of

2ny 2ny 42 N .
Nz 2 — g 572 — n LM = 0 .. . .. (19)
When n; = #n, = #, equation (18) may be written as

b dx ‘
fL) = const. I,’”_z./ v r ;2) =) .. .. (20)
: a S
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where ¢ and b are now given by

8 = 5 {VIFL — V1= =T} |
{ L . .. (21)
and b = —@{ﬁu + V-1 |
On substituting x2 = a? cos?. 4 b? sin’$ .. .. .. (22)
in (20) and using (21) we obtain
fIL) = const. f —
= const. - e
I—L
V1+L 1+\/1+L DL intg *- (23)
+ A/’
I+L
It will be noticed that the integral in equatlon (23) 1s an elliptic
1-L
integral of the first order with modulus equal to ' l'l‘“LL)z . The
(1 + A/
1I+L

modulus appears to be very complex. I shall therefore try to connect this
elliptic integral with another having a simple modulus.

Denote \/ i—;—i by small 2. Then the ellipticintegral can be written as

//\/1 (1+/,>Sn2<}5 . e .. .. .. (24)

Substituting in (24)
26 = 0 + sin™ (& sin 0) . iy .. .. (25)

we have
/\/1 T

the latter being the elliptic integral with modulus 4. Hence on evaluating
the constant, (23) may be written as

b 4T(n—5)T(G) 1 (% o
JE) = T — )I(22) YI+LY V1= K sintd

df
41 — k? sin?f

[CIE |

5 sng/)

1+ &)
0

. (27)

where

1 -1

T+ L

This expression for the distribution of I, is more simple and elegant than the
one given in equation (23). It is of considerable interest to see how this

k2
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form can readily be obtained by using relation (6) which may be written as

L=L1><L2 .. . .. P . (28)
N R RN
where  Ij=-——rt—r uN (1 —4) N .. .. .. (29)
(12) N (7,) N
2. \-1 ‘
and L2=-_(1 + 7\‘_:77) .. .. .. .. {30)

For this purpose it is essential to obtain the distribution of I,, which can
be easily done as follows :

The probability law of s,% and s,2 is given by

1n,—3 ne—3 _ 1 24 o2 .
f{s 9 Sog} = const (512) 2 (ng) 2 e 20° (115124 n5552) .. (3]_)
1’ V2 .
Substituting
n Si Y
«/_?Tl-a—_rcosﬁ, -2-2-TTE—75111,B .. .. (32)

and integrating w.r.t. » between the limits 0 and oo we obtain

J(B) = const. (cos B)"* (sin )2 .. - .. (33)

It follows from (29) and (32) that
1

L1=N{(cos2 B (sin® ﬁ)”Z}N . .. . .. (34)

%1711 7127Z2

On substituting (34) in (33) we get
N _
JILy) = const. L;2  {sin B cos B (m, cos® B — , sin? Bt .. (35)
where f may be written in terms of 1, from (34). When n, = #,, (35)
may be written on evaluating the constant, as

_ M) e
r(;)rg)

ALy) e N 10

It will be noticed that I,® is distributed in Pearson type I curve.
This distribution has been recently deduced independently by Mr. Nayer
from the distribution of % by using relation (29).8

The distribution of I, which can be easily deduced from the ¢
distribution by using (30) is given by
T(n — 3)

Jleo) =___I’(% —1) I’C,ij (L) (1— L2)_% * e o (37)

8 ‘ Practical Application of Neyman and Pearson’s L1 test” Thesis for the degree
of M.Sc. in the University of London, 1934.
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It follows from (28) that the distribution of I, will be that of Ly Te.
From (36) and (37) we get
2 I'() T(n—13)

Tl Ta) =~ r(%h) rin—1)

Ly (1— L)t Ly (1— 1)t (38)

Substituting I,; = L in (38) and integrating w.r.t. L, between the limits

L,
I, and 1, we have
4 —3) I (’“) 17
fL) == = (39)
™ I(n—1) T V1+L
where K represents the elliptic integral
o™
2
f _ 48
y "/m ‘e e . .e . .« (40)

It will be noticed that (39) and (27) are identical.
- 4. Methods of Evaluating the Probability Integral of L.

(a) The general case.

To calculate the probability that I, exceeds a given value I, it is
necessary to integrate (15) so that

2”1. -2_7__32
N N
(%) (v) > L, and mx?® -}-n2y2 <N . .. (41)

N— %% the upper limit of y

Solving for v we get y = \/

2

I

L N
and ..%1- 275 the 1 limsi
y — e lower limit of y.

x

If the corresponding roots of ¥ be denoted by b and « then

,\/N — nl X2
%772 42
= day .. (42)

VN — 2% — npy? -
o >2no

j)(L > Ly = VYN C
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where ‘
‘ 1y — 1 g — 1 I_,('nl_;}..nz _ 1) ‘
¢ = dn) 2 (my) 2 2
1ny + g —2 nl—-l) #y— 1
@ e 2 T(77) (™3
Substituting :
= aﬁ — m%?)
Y= \/ Py
we obtain

b 1

’N- C . e 1 e 1
HI, >y = wl/mfxnlﬂ (N — n1x2)2 dxf 52 (1_5)—% dg. .
2(n,) 2 1

1

where
_N; 2
¢ = 121 9,
1 1_’_1 N"‘nlxz
x”‘lg
Substituting further
Mipz
4 ]"(N_;'__l) N 111;3 np—1 %
P(I« > Lo) = 7=' 7 (1'—77) 2 d
T ’11—1 112""1 77
r ( 3 )F ( 2 )
. %1_02 ,
1
RERES |
[52 (1—8)+
¥

1

593

. (43)

. (44)

. (47T

which can be evaluated on using the Tables of the Incomplete Beta

Function.?

(8) Case n;=n,.

The simple method of quadrature may be used with advantage when
#y = #y = n. The main difficulty is the evaluation of the ordinates of
L-frequency curve. XEquation (39) shows that this depends on the

evaluation of the elliptic integral K.

¢ Edited by Karl Pearson.
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There are several Tables in use of the elliptic integrals. The Tables?
by L. M. Milne Thomson, particulaily, suit here well. In these Tables the
values of K are given for all values of % differing by -01. Interpolation
into the Tables, however, becomes more and more difficult as k% increases.
In such cases, the following method of evaluating X was adopted :—

1
Let e = % TTA=F) .. . .. .. .. (48)
then the nome ¢ is given by

g = e+ 2¢5+15e%+ 150" + 1707617 +20910€* +.... . .. {(49)

The series {49) enables us to calculate the value of g, corresponding to the

desired value of 2. By means of these values of g the function
3=1+2q+2q4+...‘ .- . . .. (50)

was calculated. The value of K is then easily obtained by multiplying 32

by, 5

() An approximate method.

This method, suggested by Neyman and Pearson in their paper, consists
in assuming Pearson type I curve to represent the probability law of
I, and obtaining the probability integral from the Tables of the Incomplete
Beta Function. That is to say

_— F(ﬂzl+”12) 7 -1 — m,—1
fL) = T () Tms) L7 (1—L)7 .. . .. (BY1)
represents the probability law of I, where the values of #z; and m, are
given by

i e S e
uy and p,” being the first two moment coefficients of I, about zero. It
was, however, found in the present case that the values of #, differed only
very slightly from unity and consequently the lower 5%, and 1%, values of
I, were immediately available from the following relations:

1 1
Lo, = (-05)"s and Ly = (-01)™* . .. .. (B3)
The lower limits are used because the_criterion I,is of such form that
the hypothesis tested becomes less and less likely as I, decreases from

1 towards 0.

ml==

10 proceedings of the London Mathematical Society, 33.
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5. The Calculation of the Tables and an Illustration of their Use.

Before using these simple relations in forming the Tables it was essen-
tial to examine the approximations involved. ‘This was accomplished by
comparing the values of L9, and I o5 at (1) n, = n, = 5, 12, 20, 60 and
(2) # = 5, n, = 15, found by using (53) with those obtained by using the
exact methods (@) and (8). The agreement between the two sets of values
of I was found exact to three decimal places. Consequently the relation
(63) was employed in forming the Tables. Tables I and II give these
values for a number of different values of #, and 7y.  Interpolation into the
Tables for any pair of values of #, and ny less than 120 will be found fairly
easy. _

When either #; or #, exceeds 120, the percentage values of I, can be
obtained from the Tables of X2. It has been shown by Neyman and

N
Pearson that if #; and #, are sufficiently large and we write I,2 — ~ix2
then the frequency distribution of x 1s given by
f(X) = X e-}x2 .. .. . .o - (54)

It follows that for large values of %, and #,, approximations to the probabi-
lity integral of I, can be obtained from the Tables of the x2 integral,
Using Fisher's Tables of X?, we find that the 5% and 19, values of X2 for two
degrees of freedom are 5991 and 9.210 respectively. Hence we get
_ 5-991 _9-210 -
Ligs =€ ™MTM2and L. =e mtn .. .. (55)

On comparing the values of I, obtained by this method with the exact
ones, it was found that when #, and #, both exceeded 70 the agreement was
excellent and differed only in the fourth place. The agreement, however,
begins to fall off if the two samples are extremely unequal in size but it is
very rarely that we may have to test two samples when one of them is
thrice as large or larger than the other. I conclude therefore that if the
average size of the two samples is sufficiently large and both the samples
are of about the same size then L.o; and L.o can be obtained by direct use
of relation (55).

One very interesting point comes out of the above discussion, Equation
(55) shows that the value of I, does not depend on the values of n; and 7,
individually but on #;, + #,, or put in another way, on the average size of
sample. This means that whatever be #, and #, , 80 long as they are large
and not very unequal, the sampling distribution of I, is that which would
be obtained if #, and %, were both equal to their average value 1 (1 +75).
The importance of this result is considerably enhanced by the fact that it is
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easily generalised for the problem of % samples and is applicable alike to all
the three criteria L, L; and L,.

ExamprE: Two samples of skulls containing 15 and 13 individuals
respectively give the following value for the mean and the standard devia-
tion of the Cephalic Index. It is wished to test whether these two samples
come from populations with a common Cephalic Index.

Sample (1) ny = 15; x;, = 76-4067; s2% = 6-6806
73-7077; s, = 6.9238

l

Sample (2) n, = 13; x,
Substituting these values in

S 9 %.1512 + 722322 %11%2 - -
Ny + 7y (g + ny)

we obtain

2 . <2 ‘
52 = 8-6053; 2_1 = -T763; and 2 = -8046.

B Sp

ogL = 2 1og() + 22 tog(£)
Tog L N log( i) TR log =

= %% (1-89003) 4 3§ (1-90558) = 1-89725
we have L = -789.

Now to obtain the L.;; we shall have to interpolate into the Table II for
n, = 15 and n, = 13. We have from the column headed #, = 15

ng  Ligs 8%Ligs

Since

20 -830
15 .803 5
12 .781 4
10 -763

The values 20, 15, 12 and 10 are in harmonic progression. Taking 24==60/x,
as the new argument the value of # corresponding to »#, = 20, 15, 12 and 10
becomes 3, 4, 5 and 6 respectively and the problem reduces to interpolating
for w = £§ = 4-6154 from the Table above which gives the values of I,.q;
corresponding to equidistant values of #. Actually on using Everett’s
simplified formula for interpolation it is found that L. = -788. The
observed value is therefore very near to the 59, level. Since this is some-
what exceptional we shall do well to enquire whether the significance is due
to difference in means or standard deviations of the populations. This
leads us to apply the ¢ and z tests. On using these it is found = 2-633
and z = -0234, while the corresponding 59, values are 2-056 and -4649
respectively. The value of £ is thus definitely significant while that of z is
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not, suggesting thereby that it was very unlikely that the two series
of skulls came from populations with a common mean Cephalic Index.

6. Sensitiveness of 1, Test when applied to Non-Normal Data.

It will be recalled that the application of I, test presupposes that the
samples are drawn from some normal population. Actually, however, we
may sometimes deal with non-normal data and consequently it is necessary
to know whether our test becomes invalid in this case. |

There are two ways in which the L test may become invalid when the
variation is non-normal.

(2) It will cease to be the most appropriate test,

(0) Its sampling distribution will no longer have the form given in
equation (18).

It is difficult to measure the precise effect of () and () ; for, the task
of devising tests appropriate to every possible form of non-normal variation
and constructing the tables is an impossible one. It is possible, however, to
obtain experimentally some idea regarding the validity of I, test when -
applied to non-normal data. “This could be accomplished by testing the
goodness of fit of the I, distribution for samples drawn from a series
of non-normal populations. Table ITI gives the types of populations which
have been considered. The types have been represented by curves of the

Pearson system.
TaBLE IIT.

. Standard devia-
Population ﬁ’l 182 tion in terms of

curves grouping unit
Type II 0 | 25 6-32
Type VII 0 4-1 5-67
Type IIT | 0.2 | 3.3 5-00

The results of sampling carried out from these populations were kindly
given to me by Dr. E. S. Pearson. It will be seen from the Table that one
of the four populations is very skew, ome is very leptckurtic while the
remaining two are moderately non-normal.

Tables IV and V compare the observed distributions of I, obtained from
these experimental populations with the expected values calculated from the
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TaBLE IV.

ny=10 ; ny =20.

Limits of L N ormal Theory Frequencies in Samples from Experimental Populations
-Hmits o Frequencies ‘
(0-0,2-5) | (0-0,4-1) | (0-2,3-3) | (1-0,3-8)
-99-1-00 25-2 31 26 25 30
-98— -99 23-0 25 15 18 17
-97— -98 18-8 19 18 21 15
-96— -97 17-2 22 12 22 15
-95— -96 15-2 17 19 19 6
94— -95 13-3 11 6 11 11
-93— 94 11-7 9 14 8 14
-92— -93 10-2 4 8 8
-91— -92 8-9 10 11 9 7
-90— -91 7.7 5 12 4 7
.89— -90 6-7 8 3 9) 4~ 1
Y 5_9312-6 o1 9}12 8}1( 7}8
87— -88 5-1 7 6 3 5
S5 ifes 6}13 | 5}»11 8}11 7}12
.85— -86 3-8 4 1 3 5
.84— -8b 3-3}10 0 2,9 25 2}8 3} 11
.83— -84 2.9 3 2 3 3
-82— -83 2-51‘ 11I 41| b1| 41'
81— -82 2-1 31 31 3 4
g , so— g1 | L.ei®0 | ofd p stz pIE g ol
e -79— -80 1:6] 1] 2 3] 2]
T8 79 1-3) 23 3)- 1) 4
{7— .78 1-1) 1 3 1 2
e 76— -TT 1.0 1 2 .. 4
75— 76 -8 .. 1 . 2
T4~ 75 -7 oo .. 2 2
; 13— T4 -6} 8.7 1+6 24+19 .. r 10 2427
72— T3 -5 .. .. 2 ..
71— 72 4 1 1 1
70— 271 4 .o 1 . 2
Less than -70 1.9 .. 6 4 8
i Totals 200-0 200 200 200 200
b Mean L -9305 -9383 -9161 9265 <9078
e oL -0648 -0573 -0769 -0690 0860
; X* .. 12-4 30.7 14-4 540
P(x?) .. -5744 <0025 -4211 - 000004

law (27). The number of pairs of samples used are 200 when the sizes of
two samples are 10 and 20 and also when they are each equal to 20. In the
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TABLE V.
ﬂ1=n2=20.
Limits of L Normal 1 ['ljeory Frequencies in Samples from Experimental Populations
Frequencies
{0:0, 2.5) (0-0, 4-1) {0-2,3.3) (1-0, 3-8)
+99—1.00 34.2 33 28 30 31
98— .99 286 34 20 24 - 28
97— .98 23.8 18 18 31 25
06— .97 20-0 21 20 18 23
95— .96 16-6 13 14 18 15
‘94 .95 13-8 16 15 4 14 10
93— 94 114 16 16 10 4
92— .93 9.4 12 8 11 11
91— .92 78 4 : 6 7 8
90— .91 6.4}14'2 10]614 10}16 5}12 5}13
80— .90 b-2 4 b 4 4
88— .89 4-4}9'6 7}11 4}9 2}6 1}5
87— 88 3-6) 4 3 5 1
86— -87 2-8:-8.8 | ..\5 4415 3113 1110
-85— .86 2-4_J 1) 8) 5) 5)
84— -85 2-0) 3) 3 3) 6
83— .84 16 2 4 3 5
32— .83 1:2 1 4 2 4
81—~ .82 1.0 1 1 1 .
-80— 81 -8.-9.6 LT 1,21 13 1,25
79— 80 -7 3 1
78— .79 -6 1 1 1
77— 78 -5 1 o
Less than .-77 1.2 3 ) 2] 8
Tatals 200-0 200 200 ' 200 200
Mean L -9491 -9521 - 9342 -9459 -9395
oL -0484 -0404 - 0572 - 0498 -06056
X . 84 25-8 9-0 34-4
P(x*) | 6767 -0070 -6219 -0009

lower part of the Tables are given the values of mean 1, ¢, and the results of
applying the (P, x?) test for goodness of fit.

The following points are suggested by an examination of the Tables :

(i) The agreement of the observed frequencies of I, with those expected
Is satisfactory in the case of moderately non-normal distributions (0, 2.5 ;
(-2, 3-8) ; while it is far from satisfactory in the case of the extremely skew
or leptokurtic distributions.
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(i) A comparison of the means and the standard deviations of I,
suggests the same conclusions. ‘

(iii) A comparison of the detailed frequencies shows that there is
a tendency for too many low values of I, to occur when the variation
markedly differs from the normal. This is of particular interest because it
is this tail of the sampling distribution which is of importance in tests of
significance. In Table VI a comparison is made at about the levels p, = - 05
and p. = -02 of the frequencies, theoretical and observed, of obtaining the
value of I, less than the value indicated in the third column of the Table.

TaBLE VI.

Frequencies in two-hundred samples less than a given value of I,.

. . Observed in Experimental sampling from the gi
Size of Samples Value of i Ex%e[;ted distributions given
L Normal
less than Theorv | '
7y 72 sory ~ (0-0,2-5) (0-0,4-1) |. (0-2,3:8) (1:0, 3-8)
.800 | 10-3 7T 21 13 29
10 20 '
-740 3-8 2 8 6 13
-850 9.6 7 21 13 25
20 20
-810 3-8 0 9 | 4 10

The observed frequencies are of course subject to random sampling
errors but it appears from Table VI that the difference (observed — expected
frequency) increases both as the population f; and B, increase. For the
moderately skew population (0-2, 3:3), however, little error appears to
arise.

Thus on the whole it will be found that there is little to fear in the
application of I, test to data of moderately skew nature.

7. Summary.

(@) The use of a single comprehensive test of the hypothesis H of a
common origin for the two samples is discussed. It is shown that a single
best test of the hypothesis H does not exist. A comparison between I, and
two alternative two sample tests is made, which illustrates how the use of
one test may be more efficient than the other with regard to a given
alternative.
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(b) The sampling distribution of I, is obtained. It is found that the
distribution involves an elliptic function of the first order when the samples
are of equal size. '

(¢) Tables of the 5% and 1% levels of probability for I, have heen
provided.

(4) TFinally the question whether the test is suitable for application to
non-normally distributed material is discussed. It is found that unless the
distribution is extremely non-normal the test may be applied in practice.

In conclusion I like to express my thanks to Professor E. S. Pearson
and Dr. J. Neyman for their advice and criticism while this paper was
being prepared. ‘

A Note on the Relation of the 1,, u and t Tests. By Prof. E. S. Pearson.

It will perhaps not be regarded as out of place if I add a few remarks
to what Mr. Sukhatme has written regarding the alternative I, and (@, u)
tests, particularly in view of difficulty that arises in the lnterpretation of his
skull measurement example. Here the sample point lies on the 59, I,-
contour but outside the 19 {-contour, and the case ny = 15, ny, = 13 is
very closely similar to that illustrated in Mr. Sukhatme’s diagram with
#y =17y = 15. If the reader turns to this diagram he will notice that a
sample point (£, #) lying at P (or P’) on the 5% I.-contour is extremely
divergent judged from the point of view of £. 1In fact since for this point
¢ = 2.62, the chance of a more divergent positive value is less than .01.12
Similarly a sample at Q (or Q') is very exceptional (if H be true) judged
from the point of view of u. If, however, in testing H we were to use the
5% level of the ¢-test whenever a sample point were in the direction of P or
P’, the 5% level of the # (or z) test whenever in the direction of Q or Q
and the L-contour only when the point was diagonally placed, we should in
fact be using a far more stringent test than we may have intended.
Following this procedure we should in the long run of experience be reject-
ing H when true in considerably more than 5% of samples, a result which
follows because we are selecting the criterion with which to test H after we
examined the sample data. ‘

The real justification of using the #-test would appear to be that there
were strong grounds for believing o, to be equal to or nearly equal to o, so
that it was only of interest to test H,.3® The statistician who while believing

' Note that in the skull example ¢ ==2.63 and 1 = 0.53.

12 Q' is the point where the curve cuts the u-axis nearer 1 = 0, and is not marked
in the figure, -

1% See foot-note (4)for definition of Hs.
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he was testing the hypothesis H, rejected this hypothesis when a sample
point occurred near P or P’ would probably be influenced, perhaps uncon-
sciously, by a priori considerations as to the likelihood of the certain alter-
natives, He would, for instance, be perhaps influenced by the common
experience that population means o; and a, frequently differ while their
standard deviations ¢, and o, are practically the same. Or from anocther
point of view he would be regarding it as more important to detect a
difference in means than a difference in standard deviations.¢

In this action he might well be justified from the practical viewpoint,
and Mr. Sukhatme’s illustration serves to bring out admirably the difficulties
connected with a priori probability that arise in an attempt to choose a
good critical region for testing a statistical hypothesis when no best critical
region exists. To recognise the difficulties is, however, an important first
step towards meeting them. The intuitional basis upon which the practical
statistician chooses the test he will employ is very frequently sound, but
sometimes it is demonstrably at fault. As the principles of choice become
more clearly outlined and generally understood these faults will cease, and

we shall be left at any rate with a choice among good tests even if there is
no agreement as to the best.

1% The question of the influence of a priori knowledge on the contours of the sampling
test was referred to by Dr. Neyman and myself in the paper introducing the likelihood crite-
rion (Biometrika, 20A,p. 190). The same point and a further one concerning the relative
importance of different errors in judgment were discussed later in a paper entitled * The
Testing of Statistical Hypothesis in Relation to Probabilities a priori’ Proc. Camb.
Phil. Soc., 29, pp. 492-510.



