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1. Introduction

1.1. A fake projective plane is a smooth compact complex surface which
is not the complex projective plane but has the same Betti numbers as the
complex projective plane. Such a surface is known to be projective algebraic
and it is the quotient of the (open) unit ball B inC2 (B is the symmetric space
of PU(2, 1)) by a torsion-free cocompact discrete subgroup of PU(2, 1)
whose Euler–Poincaré characteristic is 3. These surfaces have the smallest
Euler–Poincaré characteristic among all smooth surfaces of general type.
The first fake projective plane was constructed by David Mumford [Mu]
using p-adic uniformization, and latter two more examples were found
by M. Ishida and F. Kato in [IK] using a similar method. We have learnt
from JongHae Keum that he has recently constructed an example which
is birational to a cyclic cover of degree 7 of a Dolgachev surface (see
5.15 below). It is known that there are only finitely many fake projective
planes [Mu], and an important problem in complex algebraic geometry is
to determine them all.

It is proved in [Kl] and [Y] that the fundamental group of a fake projec-
tive plane is a torsion-free cocompact arithmetic subgroup of PU(2, 1). It
follows from Mostow’s strong rigidity theorem [Mo] that the fundamental
group of a fake projective plane determines it uniquely up to isomorphism.
In this paper we will make use of the volume formula of [P], together with
some number theoretic estimates, to list all torsion-free cocompact arith-
metic subgroups (of PU(2, 1)) whose Euler–Poincaré characteristic is 3, see
Sects. 5, 8 and 9. This list of course contains the fundamental groups of all
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fake projective planes. It provides several new examples of fake projective
planes. In fact, we show that there are at least seventeen distinct nonempty
classes of fake projective planes (see 1.4–1.5 below). We obtain these fake
projective planes as quotients of the ball B by explicitly given torsion-free
cocompact arithmetic subgroups of either SU(2, 1) or PU(2, 1). In Sect. 10,
we use this explicit description of their fundamental groups to prove that for
any fake projective plane P occurring in these seventeen classes, H1(P,Z) is
nonzero, and if P is not one of the fake projective planes constructed in 9.3,
its fundamental group embeds in SU(2, 1). The latter result implies that the
canonical line bundle KP of P is divisible by 3, i.e., there is a holomorphic
line bundle L on P such that KP = 3L , see 10.4. 7L is very ample and it pro-
vides an embedding of P in P14

C
as a smooth complex surface of degree 49.

We have also proved that besides the seventeen classes of fake projective
planes mentioned above, there can exist at most four more classes, see 1.6.

We will now present a brief outline of our methods and results. We begin
by giving a description of the forms of SU(2, 1) over number fields used in
this paper.

1.2. Let k be a real number field, vo be a real place of k, and G be
a simple simply connected algebraic k-group such that G(kvo)

∼= SU(2, 1),
and for all other archimedean places v of k, G(kv) ∼= SU(3). From the
description of absolutely simple simply connected groups of type 2A2 (see,
for example, [Ti1]), we see that k is totally real, and there is a totally
complex quadratic extension � of k, a division algebra D of degree n|3,
with center �, D given with an involution σ of the second kind such that
k = {x ∈ � | x = σ(x)}, and a nondegenerate hermitian form h on D3/n

defined in terms of the involution σ such that G is the special unitary group
SU(h) of h.

Let k, �, D be as above. We will now show that the k-group G is uniquely
determined, up to a k-isomorphism, by D (i. e., the k-isomorphism class
of G does not depend on the choice of the involution σ and the hermitian
form h on D3/n). Let σ be an involution of D of the second kind with
k = {x ∈ � | x = σ(x)}. Let h be a hermitian form on D3/n. For x ∈ k×,
xh is again an hermitian form on D3/n, and det(xh) = x3det(h). Now
since N�/k(�

×) ⊃ k×2, det(det(h)h), as an element of k×/N�/k(�
×), is 1.

Moreover, SU(h) = SU(det(h)h). Hence, it would suffice to work with
hermitian forms of determinant 1.

If D = �, and h is a hermitian form on �3 of determinant 1 such that the
group SU(h) is isotropic at vo, and is anisotropic at all other real places of k
(or, equivalently, h is indefinite at vo, and definite at all other real places),
then being of determinant 1, its signature (or index) at vo is −1, and at all
other real places of k it is 3. Corollary 6.6 of [Sc, Chap. 10] implies that any
two such hermitian forms on �3 are isometric, and hence they determine
a unique G up to a k-isomorphism.

Now let us assume that D is a cubic division algebra with center �, σ an
involution of the second kind such that for the hermitian form h0 on D
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defined by h0(x, y) = σ(x)y, the group SU(h0) is isotropic at vo, and is
anisotropic at every other real place of k. For x ∈ D×, let Int(x) denote the
automorphism z �→ xzx−1 of D . Let Dσ = {z ∈ D | σ(z) = z}. Then for
all x ∈ Dσ , Int(x) ·σ is again an involution of D of the second kind, and any
involution of D of the second kind is of this form. Now for x ∈ Dσ , given
an hermitian form h ′ on D with respect to the involution Int(x) ·σ , the form
h = x−1h ′ is a hermitian form on D with respect to σ , and SU(h ′) = SU(h).
Therefore, to determine all the special unitary groups we are interested in,
it is enough to work just with the involution σ , and to consider all hermitian
forms h on D , with respect to σ , of determinant 1, such that the group
SU(h) is isotropic at vo, and is anisotropic at all other real places of k. Let h
be such a hermitian form. Then h(x, y) = σ(x)ay, for some a ∈ Dσ . The
determinant of h is Nrd(a) modulo N�/k(�

×). As the elements of N�/k(�
×)

are positive at all real places of k, we see that the signatures of h and h0
are equal at every real place of k. Corollary 6.6 of [Sc, Chap. 10] again
implies that the hermitian forms h and h0 are isometric. Hence, SU(h) is
k-isomorphic to SU(h0). Thus we have shown that D determines a unique
k-form G of SU(2, 1), up to a k-isomorphism, namely SU(h0), with the
desired behavior at the real places of k. The group G(k) of k-rational points
of this G is

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1}.
Let D and the involution σ be as in the previous paragraph. Let Do be

the opposite of D . Then the involution σ is also an involution of Do. The
pair (Do, σ) determines a k-form of SU(2, 1) which is clearly k-isomorphic
to the one determined by the pair (D, σ).

In the sequel, the adjoint group of G will be denoted by G , and ϕ will
denote the natural isogeny G → G .

1.3. Let Π be a torsion-free cocompact arithmetic subgroup of PU(2, 1)
whose Euler–Poincaré characteristic is 3. The fundamental group of a fake
projective plane is such a subgroup. Let ϕ : SU(2, 1) → PU(2, 1) be the
natural surjective homomorphism. The kernel of ϕ is the center of SU(2, 1)
which is a subgroup of order 3. Let ˜Π = ϕ−1(Π). Then ˜Π is a cocompact
arithmetic subgroup of SU(2, 1). The orbifold Euler–Poincaré character-
istic χ(˜Π) of ˜Π (i.e., the Euler–Poincaré characteristic in the sense of C.T.C.
Wall, cf. [Se1, §1.8]) is 1. Hence, the orbifold Euler–Poincaré characteristic
of any discrete subgroup of SU(2, 1) containing ˜Π is a reciprocal integer.

Let k be the number field and G be the k-form of SU(2, 1) associated
with the arithmetic subgroup Π. The field k is generated by the traces,
in the adjoint representation of PU(2, 1), of the elements in Π, and G is
a simple simply connected algebraic k-group such that for a real place,
say vo, of k, G(kvo)

∼= SU(2, 1), and for all archimedean places v �= vo,
G(kv) is isomorphic to the compact Lie group SU(3), and ˜Π is an arithmetic
subgroup of G(kvo) (i.e., it is commensurable with ˜Π ∩ G(k)). Throughout
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this paper we will use the description of G and G given in 1.2. In particular,
�, D and h are as in there.

Let Vf (resp. V∞) be the set of nonarchimedean (resp. archimedean)
places of k. Let R� be the set of nonarchimedean places of k which ramify
in �. The k-algebra of finite adèles of k, i.e., the restricted direct product of
the kv, v ∈ Vf , will be denoted by Af .

The image Π of ˜Π in G(kvo) is actually contained in G(k) [BP, 1.2]. For
all v ∈ Vf −R�, we fix a parahoric subgroup Pv of G(kv) which is minimal
among the parahoric subgroups of G(kv) normalized by Π. For each of the
finitely many v ∈ R�, we fix a maximal parahoric subgroup Pv of G(kv)
normalized by Π (see 2.2). Then

∏

v∈Vf
Pv is an open subgroup of G(Af ),

see [BP, §1]. Hence, Λ := G(k) ∩ ∏

v∈Vf
Pv is a principal arithmetic sub-

group [P, 3.4] which is normalized by Π, and therefore also by ˜Π. Let Γ be
the normalizer of Λ in G(kvo), and Γ be its image in G(kvo). Then Γ ⊂ G(k)
[BP, 1.2]. As the normalizer of Λ in G(k) equals Λ, Γ∩ G(k) = Λ. Since Γ
contains ˜Π, its orbifold Euler–Poincaré characteristic χ(Γ) is a reciprocal
integer.

In terms of the normalized Haar-measure µ on G(kvo) used in [P]
and [BP], χ(Γ) = 3µ(G(kvo)/Γ) (see [BP, §4], note that the compact dual of
the symmetric space B of G(kvo)

∼= SU(2, 1) is P2
C

, and the Euler–Poincaré
characteristic of P2

C
is 3). Thus the condition that χ(Γ) is a reciprocal inte-

ger is equivalent to the condition that the covolume µ(G(kvo)/Γ), of Γ, is
one third of a reciprocal integer; in particular, µ(G(kvo)/Γ) � 1/3. Also,
χ(Γ) = 3µ(G(kvo)/Γ) = 3µ(G(kvo)/Λ)/[Γ : Λ], and the volume for-
mula of [P] can be used to compute µ(G(kvo)/Λ) precisely, see 2.4 below.
Proposition 2.9 of [BP] implies that [Γ : Λ] is a power of 3. Now we see
that if χ(Γ) is a reciprocal integer, then the numerator of the rational number
µ(G(kvo)/Λ) must be a power of 3.

1.4. In Sects. 4–5, and 7–9, we will determine all k, �, D , simple sim-
ply connected algebraic k-groups G so that for a real place vo of k,
G(kvo)

∼= SU(2, 1), for all archimedean v �= vo, G(kv) ∼= SU(3), and (up to
conjugation by an element of G(k)) all collections (Pv)v∈Vf of parahoric sub-
groups Pv of G(kv) such that (i) for v ∈ R�, Pv is a maximal parahoric sub-
group of G(kv), and

∏

v∈Vf
Pv is an open subgroup of G(Af ), (ii) the princi-

pal arithmetic subgroup Λ := G(k) ∩ ∏

v∈Vf
Pv considered as a (discrete)

subgroup of G(kvo) is cocompact (by Godement compactness criterion, this
is equivalent to the condition that G is anisotropic over k), and (iii) the
image Γ in G(kvo) of the normalizer Γ of Λ in G(kvo) contains a torsion-
free subgroup Π of finite index whose Euler–Poincaré characteristic is 3.
Then the orbifold Euler–Poincaré characteristic of Γ is a reciprocal integer.

It will turn out that for every v ∈ Vf − R�, Pv appearing in the pre-
ceding paragraph is a maximal parahoric subgroup of G(kv), it is in fact
a hyperspecial parahoric subgroup if G is isotropic at v. In particular, if Π,
Λ, Γ, and the parahoric subgroups Pv are as in 1.3, then for v ∈ Vf − R�,
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as Pv was assumed to be minimal among the parahoric subgroups of G(kv)
normalized by Π, we conclude that it is the unique parahoric subgroup of
G(kv) normalized by Π.

We will prove that there are exactly seventeen distinct {k, �, G,
D, (Pv)v∈Vf } with D �= �. Each of these seventeen sets determines a unique
principal arithmetic subgroup Λ (= G(k) ∩ ∏

v∈Vf
Pv), which in turn de-

termines a unique arithmetic subgroup Γ of G(kvo) (recall that Γ is the
image in G(kvo) of the normalizer Γ of Λ in G(kvo)). For twelve of these
seventeen, k = Q, see Sect. 5; and there are two with k = Q(

√
2), two

with k = Q(
√

5), and one with k = Q(
√

6), see Sect. 9. We will show that
the pair (k, �) = (Q,Q(

√−7)) gives two of these Λ, and each of these
two contains a torsion-free normal subgroup Λ+ of index 7 which is the
fundamental group of a fake projective plane. On the other hand, the pair
(k, �) = (Q,Q(

√−23)) gives us two principal arithmetic subgroups Λ,
and the subgroup Γ determined by either of them is the fundamental group
of a fake projective plane. The image Λ in G(kvo) of each of the other
thirteen Λ is the fundamental group of a fake projective plane.

1.5. We will now describe the class of fake projective planes associated to
each of the seventeen Γs of 1.4. The orbifold Euler–Poincaré characteristic
χ(Γ) of Γ equals 3χ(Γ) = 3χ(Λ)/[Γ : Λ], and we compute it precisely.
Now if Π is a torsion-free subgroup of Γ of index 3/χ(Γ), then χ(Π) = 3,
and if, moreover, H1(Π,C) vanishes (or, equivalently, the abelianization
Π/[Π,Π] is finite), then by Poincaré-duality, H3(Π,C) vanishes too, and
hence, as χ(B/Π) = χ(Π) = 3, B/Π is a fake projective plane.

The class of fake projective planes given by Γ consists of the fake
projective planes B/Π, where Π is a torsion-free subgroup of Γ of index
3/χ(Γ) with Π/[Π,Π] finite.

We observe that in principle, for a given Γ, the subgroups Π of Γ as above
can all be determined in the following way: First find a “small” presentation
of Γ using a “nice” fundamental domain in B (maximal arithmetic subgroups
tend to have small presentation), and use this presentation to list all torsion-
free subgroups of index 3/χ(Γ) whose abelianization is finite. Note that the
computations given below show that 3/χ(Γ) is quite small; in fact, it equals
1, 3, 9 or 21.

1.6. Let h be a nondegenerate hermitian form on �3 (defined in terms of
the nontrivial automorphism of �/k) which is indefinite at vo and definite
at all other real places of k. Let G = SU(h), and G be its adjoint group.
According to Proposition 8.8, if G(kvo) contains a torsion-free cocompact
arithmetic subgroup Π with χ(Π) = 3, then, in the notation of 8.2, (k, �)
must be one of the following five: C1, C8, C11, C18, or C21. Tim Steger has
shown that (k, �) cannot be C8, and together with Donald Cartwright he has
shown that it cannot be C21 either. We do not expect that h described in
terms of any of the three remaining pairs (k, �) = C1, C11 or C18, will give



326 G. Prasad, S.-K. Yeung

a fake projective plane. In any case, we know that the group G associated
to the pair C1 can give at most two classes of fake projective planes and the
group G associated to either of the pairs C11 and C18 can give at most one.

1.7. The results of this paper show, in particular, that any arithmetic sub-
group Γ of SU(2, 1), with χ(Γ) � 1, must arise from a k-form G of SU(2, 1)
as above, where the pair (k, �) consists of k = Q, and � is one of the eleven
imaginary quadratic fields listed in Proposition 3.5, or (k, �) is one of the
forty pairs C1–C40 described in 8.2. The covolumes, and hence the orbifold
Euler–Poincaré characteristics, of these arithmetic subgroups can be com-
puted using the volume formula given in 2.4 and the values of µ given in
Proposition 3.5 and in 8.2. The surfaces arising as the quotient of B by one
of these arithmetic subgroups will often be singular. However, as they have
a small orbifold Euler–Poincaré characteristic, they may have interesting
geometric properties.

2. Preliminaries

A comprehensive survey of the basic definitions and the main results of the
Bruhat–Tits theory of reductive groups over nonarchimedean local fields is
given in [Ti2].

2.1. Let the totally real number field k, and its totally complex quadratic
extension �, a real place vo of k, and the k-form G of SU(2, 1) be as in 1.2.
Throughout this paper, we will use the description of G given in 1.2 and the
notations introduced in Sect. 1.

We shall say that a collection (Pv)v∈Vf of parahoric subgroups Pv of
G(kv) is coherent if

∏

v∈Vf
Pv is an open subgroup of G(Af ). If (Pv)v∈Vf is

a coherent collection, then Pv is hyperspecial for all but finitely many v’s.
We fix a coherent collection (Pv)v∈Vf of parahoric subgroups Pv of G(kv)

such that for v ∈ R�, Pv is maximal (cf. 1.3). Let Λ := G(k) ∩ ∏

v∈Vf
Pv,

and Γ be its normalizer in G(kvo). Note that as the normalizer of Λ in G(k)
equals Λ, Γ ∩ G(k) = Λ. We assume in the sequel that χ(Γ) � 1.

The Haar-measure µ on G(kvo) is the one used in [BP].
All unexplained notations are as in [BP] and [P]. Thus for a number

field K , DK denotes the absolute value of its discriminant, hK its class
number, i.e., the order of its class group Cl(K ). We shall denote by nK,3 the
order of the 3-primary component of Cl(K ), and by hK,3 the order of the
subgroup (of Cl(K )) consisting of the elements of order dividing 3. Then
hK,3 � nK,3 � hK .

For a number field K , U(K ) will denote the multiplicative-group of units
of K , and K3 the subgroup of K× consisting of the elements x such that for
every normalized valuation v of K , v(x) ∈ 3Z.
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We will denote the degree [k : Q] of k by d, and for any nonarchi-
medean place v of k, qv will denote the cardinality of the residue field fv
of kv.

For a positive integer n, µn will denote the kernel of the endomor-
phism x �→ xn of GL1. Then the center C of G is k-isomorphic to the
kernel of the norm map N�/k from the algebraic group R�/k(µ3), ob-
tained from µ3 by Weil’s restriction of scalars, to µ3. Since the norm
map N�/k : µ3(�) → µ3(k) is onto, µ3(k)/N�/k(µ3(�)) is trivial, and hence,
the Galois cohomology group H1(k, C) is isomorphic to the kernel of the
homomorphism �×/�×3 → k×/k×3 induced by the norm map. This kernel
equals �•/�×3, where �• = {x ∈ �× | N�/k(x) ∈ k×3}.

2.2. For v ∈ Vf , let the “type” Θv of Pv be as in [BP, 2.2], and ΞΘv
be

as in 2.8 there. We observe here, for later use, that for a nonarchimedean
place v, ΞΘv

is nontrivial if, and only if, G splits at v (then v splits in �,
i.e., kv ⊗k � is a direct sum of two fields, each isomorphic to kv) and Pv

is an Iwahori subgroup of G(kv) (then Θv is the empty set), and in this
case #ΞΘv

= 3.

We recall that G(kv) contains a hyperspecial parahoric subgroup if, and
only if, v is unramified in � and G is quasi-split at v (i.e., it contains a Borel
subgroup defined over kv). Let T be the set of nonarchimedean places v
of k which are unramified in � and Pv is not a hyperspecial parahoric
subgroup of G(kv), and T0 be the subset of T consisting of places where G
is anisotropic. Then T is finite, and for any nonarchimedean v �∈ T , ΞΘv

is
trivial. We note that every place v ∈ T0 splits in � since an absolutely simple
anisotropic group over a nonarchimedean local field is necessarily of inner
type An (another way to see this is to recall that, over a local field, the only
central simple algebras which admit an involution of the second kind are
the matrix algebras). We also note that every absolutely simple group of
type A2 defined and isotropic over a field K is quasi-split (i.e., it contains
a Borel subgroup defined over K ).

If v does not split in � (i.e., �v := kv ⊗k � is a field), then G is quasi-
split over kv (and its kv-rank is 1). In this case, if Pv is not an Iwahori
subgroup, then it is a maximal parahoric subgroup of G(kv), and there are
two conjugacy classes of maximal parahoric subgroups in G(kv). Moreover,
if P′ and P′′ are the two maximal parahoric subgroups of G(kv) containing
a common Iwahori subgroup I , then the derived subgroups of any Levi
subgroups of the reduction mod p of P′ and P′′ are nonisomorphic: if �v is
an unramified extension of kv, then the two derived subgroups are SU3 and
SL2, and if �v is a ramified extension of kv, then the two derived subgroups
are SL2 and PSL2, see [Ti2, 3.5]. Hence, P′ is not conjugate to P′′ under
the action of (Aut G)(kv) (= G(kv)). In particular, if an element of G(kv)
normalizes I , then it normalizes both P′ and P′′ also. If v ramifies in �, then
P′ and P′′ are of same volume with respect to any Haar-measure on G(kv),
since, in this case, [P′ : I ] = [P′′ : I ].
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2.3. By Dirichlet’s unit theorem, U(k) ∼= {±1} × Zd−1, and U(�) ∼=
µ(�) × Zd−1, where µ(�) is the finite cyclic group of roots of unity in �.
Hence, U(k)/U(k)3 ∼= (Z/3Z)d−1, and U(�)/U(�)3 ∼= µ(�)3 × (Z/3Z)d−1,
where µ(�)3 is the group of cube-roots of unity in �. Now we observe that
N�/k(U(�)) ⊃ N�/k(U(k)) = U(k)2, which implies that the homomorphism
U(�)/U(�)3 → U(k)/U(k)3, induced by the norm map, is onto. The kernel
of this homomorphism is clearly U(�)•/U(�)3, where U(�)• = U(�) ∩ �•,
and its order equals #µ(�)3.

The short exact sequence (4) in the proof of Proposition 0.12 in [BP]
gives us the following exact sequence:

1 → U(�)•/U(�)3 → �•
3/�

×3 → (P ∩ � 3)/P 3,

where �•
3 = �3 ∩ �•, P is the group of all fractional principal ideals of �,

and � the group of all fractional ideals (we use multiplicative notation for
the group operation in both � and P ). Since the order of the last group of
the above exact sequence is h�,3, see (5) in the proof of Proposition 0.12
in [BP], we conclude that

#�•
3/�

×3 � #µ(�)3 · h�,3.

Now we note that the order of the first term of the short exact sequence
of [BP, Proposition 2.9], for G′ = G and S = V∞, is 3/#µ(�)3.

The above observations, together with [BP, Proposition 2.9 and
Lemma 5.4], and a close look at the arguments in [BP, 5.3 and 5.5] for
S = V∞ and G of type 2A2, give us the following upper bound (note that for
our G, in [BP, 5.3], n = 3):

[Γ : Λ] � 31+ # T0h�,3

∏

v∈T −T0

#ΞΘv
.(0)

We note also that [BP, Proposition 2.9] applied to G′ = G and Γ′ = Γ,
implies that the index [Γ : Λ] of Λ in Γ is a power of 3.

2.4. As we mentioned in 1.3, χ(Γ) = 3µ(G(kvo)/Γ). Our aim here is to
find a lower bound for µ(G(kvo)/Γ). For this purpose, we first note that

µ(G(kvo)/Γ) = µ(G(kvo)/Λ)

[Γ : Λ] .

As the Tamagawa number τk(G) of G equals 1, the volume formula of [P]
(recalled in [BP, §3.7]), for S = V∞, gives us

µ(G(kvo)/Λ) = D4
k

(

D�/D2
k

)5/2
(16π5)−dE = (

D5/2
� /Dk

)

(16π5)−dE;
where E = ∏

v∈Vf
e(Pv), and

e(Pv) = q(dim Mv+dim Mv)/2
v

#Mv(fv)
.
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We observe that if Pv is hyperspecial,

e(Pv) =
(

1 − 1

q2
v

)−1(

1 − 1

q3
v

)−1

or

(

1 − 1

q2
v

)−1(

1 + 1

q3
v

)−1

according as v does or does not split in �. If v ramifies in � and Pv is
a maximal parahoric subgroup of G(kv), then

e(Pv) =
(

1 − 1

q2
v

)−1

.

Now let ζk be the Dedekind zeta-function of k, and L�|k be the Hecke
L-function associated to the quadratic Dirichlet character of �/k. Then as

ζk(2) =
∏

v∈Vf

(

1 − 1

q2
v

)−1

,

and

L�|k(3) =
∏′(

1 − 1

q3
v

)−1
∏′′(

1 + 1

q3
v

)−1

,

where
∏′ is the product over those nonarchimedean places of k which split

in �, and
∏′′ is the product over all the other nonarchimedean places v

which do not ramify in �, we see that

E = ζk(2)L�|k(3)
∏

v∈T

e′(Pv);

where, for v ∈ T ,

• if v splits in �, e′(Pv) = e(Pv)
(

1 − 1
q2
v

)(

1 − 1
q3
v

)

,

• if v does not split in � but is unramified in �, e′(Pv) = e(Pv)
(

1− 1
q2
v

)(

1+ 1
q3
v

)

,

• if v ramifies in �, e′(Pv) = e(Pv)
(

1 − 1
q2
v

)

.

Thus

µ(G(kv0)/Γ) = D5/2
� ζk(2)L�|k(3)

(16π5)d[Γ : Λ]Dk

∏

v∈T

e′(Pv)(1)

� D5/2
� ζk(2)L�|kr(3)

3(16π5)dh�,3Dk

∏

v∈T

e′′(Pv),

where, for v ∈ T − T0, e′′(Pv) = e′(Pv)/#ΞΘv
, and for v ∈ T0, e′′(Pv) =

e′(Pv)/3.
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2.5. Now we provide the following list of values of e′(Pv) and e′′(Pv), for
all v ∈ T .

(i) v splits in � and G splits at v:
(a) if Pv is an Iwahori subgroup, then

e′′(Pv) = e′(Pv)/3,

and

e′(Pv) = (q2
v + qv + 1)(qv + 1);

(b) if Pv is not an Iwahori subgroup (note that as v ∈ T , Pv is not
hyperspecial), then

e′′(Pv) = e′(Pv) = q2
v + qv + 1;

(ii) v splits in � and G is anisotropic at v (i.e., v ∈ T0):

e′′(Pv) = e′(Pv)/3,

and

e′(Pv) = (qv − 1)2(qv + 1);
(iii) v does not split in �, then it is unramified in �, and

e′′(Pv) = e′(Pv) =

⎧

⎪

⎨

⎪

⎩

q3
v + 1 if Pv is an Iwahori subgroup

q2
v − qv + 1 if Pv is a non-hyperspecial

maximal parahoric subgroup.

2.6. As χ(Γ) � 1, µ(G(kvo)/Γ) � 1/3. So from (1) in 2.4 we get the
following:

1/3 � µ(G(kv0)/Γ) � D5/2
� ζk(2)L�|k(3)

3(16π5)dh�,3 Dk

∏

v∈T

e′′(Pv).(2)

We know from the Brauer–Siegel theorem that for all real s > 1,

h�R� � w�s(s − 1)Γ(s)d
(

(2π)−2d D�

)s/2
ζ�(s),(3)

where h� is the class number and R� is the regulator of �, and w� is the order
of the finite group of roots of unity contained in �. Zimmert [Z] obtained
the following lower bound for the regulator R�

R� � 0.02w�e0.1d.
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Also, we have the following lower bound for the regulator obtained by
Slavutskii [Sl] using a variant of the argument of Zimmert [Z]:

R� � 0.00136w� e0.57d.

We deduce from this bound and (3) that

1

h�,3
� 1

h�

� 0.00136

s(s − 1)

(

(2π)se0.57

Γ(s)

)d 1

Ds/2
� ζ�(s)

;(4)

if we use Zimmert’s lower bound for R� instead, we obtain

1

h�,3
� 1

h�

� 0.02

s(s − 1)

(

(2π)se0.1

Γ(s)

)d 1

Ds/2
� ζ�(s)

.(5)

2.7. Lemma. For every integer r � 2, ζk(r)1/2L�|k(r + 1) > 1.

Proof. Recall that

ζk(r) =
∏

v∈Vf

(

1 − 1

qr
v

)−1

,

and

L�|k(r + 1) =
∏′(

1 − 1

qr+1
v

)−1
∏′′(

1 + 1

qr+1
v

)−1

,

where
∏′ is the product over all finite places v of k which split over �

and
∏′′ is the product over all the other nonarchimedean v which do not

ramify in �. Now the lemma follows from the following simple observation.
For any positive integer q � 2,

(

1 − 1

qr

)(

1 + 1

qr+1

)2

= 1 − q − 2

qr+1
− 2q − 1

q2r+2
− 1

q3r+2
< 1.

2.8. Corollary. For every integer r � 2,

ζk(r)L�|k(r + 1) > ζk(r)
1/2 > 1.

2.9. Remark. The following bounds are obvious from the Euler-product
expression for the zeta-functions. For every integer r � 2,

ζ(dr) � ζk(r) � ζ(r)d,
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where ζ( j) = ζQ( j). Now from the above corollary we deduce that

ζk(2)L�|k(3) > ζk(2)1/2 � ζ(2d)1/2 > 1.(6)

2.10. Since e′′(Pv) � 1 for all v ∈ T , see 2.5 above, and D�/D2
k is an

integer, so in particular, Dk � D1/2
� , see, for example, Theorem A in the

appendix of [P], bounds (2) and (3) lead to the following bounds by taking
s = 1 + δ, with 0 < δ � 2, in (3)

D1/d
k � D1/2d

� < ϕ1(d, R�/w�, δ)(7)

:=
( δ(1 + δ)

ζ(2d)1/2(R�/w�)

)1/(3−δ)d(
23−δπ4−δΓ(1 + δ)ζ(1 + δ)2)1/(3−δ)

,

D1/d
k � D1/2d

� < ϕ2(d, h�,3) :=
[

24dπ5dh�,3

ζ(2d)1/2

]1/4d

,(8)

and

D�/D2
k < p(d, Dk, h�,3) :=

[

24dπ5dh�,3

ζ(2d)1/2 D4
k

]2/5

.(9)

Using the bound R�/w� � 0.00136e0.57d due to Slavutskii, we obtain
the following bound from (7):

D1/d
k � D1/2d

� < f(δ, d)(10)

:=
[

δ(1 + δ)

0.00136

]1/(3−δ)d

· [23−δπ4−δΓ(1 + δ)ζ(1 + δ)2e−0.57]1/(3−δ).

2.11. As χ(Λ) = 3µ(G(kvo)/Λ),

χ(Γ) = χ(Λ)

[Γ : Λ] = 3µ(G(kvo)/Λ)

[Γ : Λ] .

Now since [Γ : Λ] is a power of 3 (see 2.3), if χ(Γ) is a reciprocal integer,
the numerator of the rational number µ(G(kvo)/Λ) is a power of 3.

We recall from 2.4 that

µ(G(kvo)/Λ) = (

D5/2
� /Dk

)

(16π5)−dζk(2)L�|k(3)
∏

v∈T

e′(Pv).

Using the functional equations

ζk(2) = (−2)dπ2d D−3/2
k ζk(−1),
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and

L�|k(3) = (−2)dπ3d(Dk/D�)
5/2L�|k(−2),

we can rewrite the above as:

µ(G(kvo)/Λ) = 2−2dζk(−1)L�|k(−2)
∏

v∈T

e′(Pv).(11)

Hence we obtain the following proposition.

2.12. Proposition. If the orbifold Euler–Poincaré characteristic χ(Γ) of Γ
is a reciprocal integer, then the numerator of the rational number 2−2d ζk(−1)
L�|k(−2)

∏

v∈T e′(Pv) is a power of 3. Moreover, as e′(Pv) is an integer for
all v, the numerator of µ := 2−2dζk(−1)L�|k(−2) is also a power of 3.

3. Determining � when k = Q
We will assume in this, and the next section, that k = Q. Then � = Q(

√−a),
where a is a square-free positive integer.

We will now find an upper bound for D�.

3.1. Since Dk = DQ = 1, and e′′(Pv) � 1, from (2), (5) and (6), taking
s = 1 + δ, we get the following:

D� < (2π)2

(

52 · δ(1 + δ) · Γ(1 + δ)ζ(1 + δ)2

e0.1ζ(2)1/2

)2/(4−δ)

.(12)

Letting δ = 0.34, we find that D� < 461.6. Hence we conclude that
D� � 461.

Thus we have established the following.

3.2. If χ(Γ) � 1 and k = Q, then D� � 461.

3.3. We will now improve the upper bound for the discriminant of � using
the table of class numbers of imaginary quadratic number fields.

Inspecting the table of class numbers of � = Q(
√−a), with D� � 461,

in [BS], we find that h� � 21, and hence, h�,3 � n�,3 � 9.
Since DQ = 1, ζQ(2) = ζ(2) = π2/6 and ζ(3)L�|Q(3) = ζ�(3) > 1, (2)

provides us the following bounds

1 � D5/2
� L�|Q(3)

25 · 3 · π3 · h�,3

∏

v∈T

e′′(Pv) �
D5/2

� ζ�(3)

25 · 3 · π3 · h�,3ζ(3)

>
D5/2

�

25 · 3 · π3 · h�,3ζ(3)
.
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Hence, in particular, as h�,3 � n�,3,

D� <
(

25 · 3 · π3 · n�,3ζ(3)
)2/5

.

The above leads to the following bounds once the value of n�,3 is determined.

n�,3 1 3 9
D� � 26 40 63.

The last column of the above table implies that we need only consider
D� � 63.

3.4. We will further limit the possibilities for D�. If 40 < D� � 63, we
observe that n�,3 � 3 from the table in Appendix. Hence, from the middle
column of the above table we infer that D� can at most be 40.

For 26 < D� � 40, we see from the table in Appendix that unless
D� = 31, n�,3 = 1, and the first column of the above table shows that if
n�,3 = 1, D� � 26. Hence, the only possible values of D� are 31 or D� � 26.

From the table in Appendix we now see that the possible values of h�,3
and D� are the following (note that if n�,3 = 3, then h�,3 = 3 also).

h�,3 = 3 : D� = 23, 31.

h�,3 = 1 : D� = 3, 4, 7, 8, 11, 15, 19, 20, 24.

Now we recall that for � = Q(
√−a), D� = a if a ≡ 3 (mod 4),

and D� = 4a otherwise. Using this we can paraphrase the above result as
follows.

3.5. Proposition. Let k = Q. Then � = Q(
√−a), where a is one of the

following eleven integers,

1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31.

The following table provides the value of

µ := D5/2
� ζ(2)L�|Q(3)

16π5
= − 1

48
L�|Q(−2)

(recall the functional equation L�|Q(3) = −2π3 D−5/2
� L�|Q(−2)).

a 1 2 3 5 6 7
LQ(

√−a)|Q(−2) −1/2 −3 −2/9 −30 −46 −16/7
µ 1/96 1/16 1/216 5/8 23/24 1/21

a 11 15 19 23 31
LQ(

√−a)|Q(−2) −6 −16 −22 −48 −96
µ 1/8 1/3 11/24 1 2.
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3.6. The volume formula of [P] and the results of [BP] apply equally
well to noncocompact arithmetic subgroups. So if we wish to make a list
of all noncocompact arithmetic subgroups Γ of SU(2, 1) whose orbifold
Euler–Poincaré characteristic χ(Γ) is� 1, we can proceed as above. If Γ is
such a subgroup, then, associated to it, there is an absolutely simple simply
connected algebraic group G defined and (by Godement compactness cri-
terion) isotropic over a number field k such that G(k ⊗Q R) is isomorphic
to the direct product of SU(2, 1) with a compact semi-simple Lie group.
But since G is k-isotropic, for every place v of k, G is isotropic over kv,
and hence, G(kv) is noncompact. In particular, for every archimedean place
v of k, G(kv) is noncompact. This implies that k = Q, G is an abso-
lutely simple simply connected Q-group of type A2 of Q-rank 1 (and hence
G is quasi-split over Q). Moreover, G splits over an imaginary quadratic
extension � = Q(

√−a) of Q. For a given positive integer a, there is
a unique such G (up toQ-isomorphism). The considerations of 3.1–3.4 apply
again and imply that a has to be one of the eleven integers listed in Prop-
osition 3.5.

We fix a coherent collection (Pp) of maximal parahoric subgroups Pp
of G(Qp) such that Pp is hyperspecial whenever G(Qq) contains such
a parahoric subgroup. Let Λ = G(Q)∩∏

p Pp. (This Λ is a “Picard modular
group”.) From the volume formula of [P], recalled in 2.4, we obtain that

χ(Λ) = 3µ(G(R)/Λ) = 3
D5/2

� ζQ(2)L�|Q(3)

16π5
= D5/2

� L�|Q(3)

32π3

= − 1

16
L�|Q(−2) = 3µ,

where we have used the functional equation for the L-function L�|Q recalled
in 3.5, and the fact that ζQ(2) = ζ(2) = π2/6. (We note that the above
computation of the orbifold Euler–Poncaré characteristic of Picard modular
groups is independently due to Rolf-Peter Holzapfel, see [Ho, Sect. 5A.])
Now we can use the table of values of L�|Q(−2) given in 3.5 to compute the
precise value of χ(Λ) for each a.

Among all arithmetic subgroups of G contained in G(Q), the above Λ
has the smallest orbifold Euler–Poincaré characteristic. Its normalizer Γ
in G(R) has the smallest orbifold Euler–Poincaré characteristic among all
discrete subgroups commensurable with Λ. Note that Λ has torsion.

4. Determination of G and the parahoric subgroups Pv

We continue to assume in this section that k = Q. We will use the usual
identification of a nonarchimedean place v of Q with the characteristic p
of the residue field of Qv. Let � be one of the eleven imaginary quadratic
extensions of Q listed in Proposition 3.5. R� will denote the set of rational
primes which ramify in �.
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4.1. Let D , the involution σ , the hermitian form h, and the k-group G,
for k = Q, be as in 1.2. As in 2.1 we fix a coherent collection (Pp) of
parahoric subgroups of G(Qp) such that for p ∈ R�, Pp is maximal. Let
Λ = G(Q)∩∏

p Pp, and Γ be the normalizer of Λ in G(R). We assume that
Γ is cocompact and χ(Γ) is a reciprocal integer.

We first show that D is a cubic division algebra. Assume, if possible, that
D = �. Then h is a hermitian form on �3. As the arithmetic subgroup Γ of
G(R) is cocompact, by Godement compactness criterion, h is an anisotropic
form on �3. On the other hand, its signature over R is (2, 1). The hermitian
form h gives us a quadratic form q on the six dimensional Q-vector space
V = �3 defined as follows:

q(v) = h(v, v) for v ∈ V.

The quadratic form q is isotropic over R, and hence by Meyer’s theorem it
is isotropic over Q (cf. [Se2]). This implies that h is isotropic and we have
arrived at a contradiction.

4.2. Let T be the finite set of rational primes p /∈ R� such that Pp is
not hyperspecial, and T0 be the subset of T consisting of p such that G is
anisotropic over Qp. Since D must ramify at at least some nonarchimedean
places of �, T0 is nonempty. As pointed out in 2.2, every p ∈ T0 splits in �.
Theorem 4.4 lists all possible �, T , T0, and the parahoric subgroups Pp.

As ζQ(2) = ζ(2) = π2/6, using the functional equation

L�|Q(3) = −2π3 D−5/2
� L�|Q(−2),

we obtain the following from bound (1) for k = Q :

χ(Γ) = 3µ(G(R)/Γ) � µ

h�,3

∏

p∈T

e′′(Pp),

where µ is as in 3.5.

4.3. We recall here that given a square-free integer a, an odd prime p splits
in � = Q(

√−a) if, and only if, p does not divide a, and −a is a square
modulo p; 2 splits in � if, and only if, −a ≡ 1 (mod 8); see [BS, §8 of
Chap. 3]. A prime p ramifies in � if, and only if, p|D�; see [BS, §7 of
Chap. 2 and §8 of Chap. 3].

Now using Proposition 3.5, the fact that the numerators of µ and
µ(G(R)/Λ) = µ

∏

p∈T e′(Pp) are powers of 3 (Proposition 2.12), the value
of µ given in 3.5, the values of e′(Pp), e′′(Pp) given in 2.5, the value of h�,3
given in 3.4, and the fact that χ(Γ) � 1, we see by a direct computation that
the following holds.

4.4. Theorem. T0 consists of a single prime, and the pair (a, p), where � =
Q(

√−a), and T0 = {p}, belongs to the set {(1, 5), (2, 3), (7, 2), (15, 2),
(23, 2)}. Moreover, T = T0.
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4.5. Since for a ∈ {1, 2, 7, 15, 23}, T0 consists of a single prime, for each a
we get exactly two cubic division algebras, with center � = Q(

√−a),
and they are opposite of each other. Therefore, each of the five possible
values of a determines the Q-form G of SU(2, 1) uniquely (up to a Q-
isomorphism), and for q /∈ R�, the parahoric subgroup Pq of G(Qq) uniquely
(up to conjugation by an element of G(Qq), where G is the adjoint group
of G).

We can easily compute µ(G(R)/Λ), which, using the volume formula
given in 2.4 is seen to be equal to µe′(Pp), where (a, p) is as in the pre-
ceding theorem, µ is as in Proposition 3.5, and (see 2.5 (ii)) e′(Pp) =
(p − 1)2(p + 1). We find that µ(G(R)/Λ) equals 1, 1, 1/7, 1, and 3,
for a = 1, 2, 7, 15, and 23 respectively. This computation is clearly
independent of the choice of maximal parahoric subgroups Pq in G(Qq) for
primes q which ramify in � = Q(

√−a).
In the sequel, the prime p appearing in the pair (a, p) will be called the

prime associated to a, and we will sometimes denote it by pa.

5. The fake projective planes arising from k = Q
We will show in this section that there are exactly twelve finite classes
(cf. 1.5) of fake projective planes with k = Q. We will explicitly determine
their fundamental groups.

We prove results in 5.2–5.4 for an arbitrary totally real number field k
for applications in Sects. 8 and 9.

5.1. We will use the notation introduced in 1.2. In particular, k is a totally
real number field of degree d, � a totally complex quadratic extension of
k, and vo is a real place of k, G is a simple simply connected algebraic k-
group, which is an inner form of SL3 over �, such that G(kvo)

∼= SU(2, 1),
and for all real places v �= vo, G(kv) ∼= SU(3). We recall (1.2) that there
is a division algebra D of degree n|3, with center �, D given with an
involution σ of the second kind so that σ |� is the nontrivial k-automorphism
of �, and a nondegenerate hermitian form h on D3/n defined in terms of the
involution σ , such that G is the special unitary group SU(h) of the hermitian
form h.

Let T0 be the finite set of nonarchimedean places of k where G is
anisotropic. As pointed out in 2.2, every place v ∈ T0 splits in �. If D = �,
then h is a hermitian form on �3, and G is isotropic at every nonarchimedean
place of k, so in this case T0 is empty. Now we note that T0 is nonempty
if D is a cubic division algebra since this division algebra must ramify at
least at two nonarchimedean places of �.

5.2. Let C be the center of G, G the adjoint group, and let ϕ : G → G
the natural isogeny. Let P = (Pv)v∈Vf and P ′ = (P′

v)v∈Vf be two coherent
collections of parahoric subgroups such that for all v ∈ Vf , P′

v is conjugate
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to Pv under an element of G(kv). For all but finitely many v, Pv = P′
v, and

they are hyperspecial. Therefore, there is an element g ∈ G(Af ) such that
P ′ is the conjugate of P under g. Let Pv be the stabilizer of Pv in G(kv).
Then K := ∏

v∈Vf
Pv is the stabilizer of P in G(Af ), and it is a compact-open

subgroup of the latter. So the number of distinct G(k)-conjugacy classes of
coherent collections P ′ as above is the cardinality1 of G(k)\G(Af )/K.

As ϕ : G → G is a central isogeny, ϕ(G(Af )) contains the commutator
subgroup of G(Af ). Moreover, as G is simply connected and G(kvo) is non-
compact, by the strong approximation property [PlR, Theorem 7.12], G(k) is
dense in G(Af ), i.e., for any open neighborhood Ω of the identity in G(Af ),
G(k)Ω = G(Af ). This implies that G(k)K contains ϕ(G(Af )), which in turn
contains [G(Af ), G(Af )]. Hence, G(k)K = G(k)[G(Af ), G(Af )]K. Using
this observation it is easy to see that G(k)K is a subgroup, and the natu-
ral map from G(k)\G(Af )/K to the finite abelian group G(Af )/G(k)K is
bijective. We shall next show that this latter group is trivial if h�,3 = 1.

We begin by observing that for every v ∈ V∞, H1(kv, C) vanishes
since C is a group of exponent 3. Now since by the Hasse principle for
simply connected semi-simple k-groups [PlR, Theorem 6.6] H1(k, G) →
∏

v∈V∞H1(kv, G) is an isomorphism, we conclude that the natural map
H1(k, C) → H1(k, G) is trivial, and hence the coboundary homomorphism
δ : G(k) → H1(k, C) is surjective.

Now we note that since for each nonarchimedean place v, H1(kv, G) is
trivial [PlR, Theorem 6.4], the coboundary homomorphism δv : G(kv) →
H1(kv, C) is surjective and its kernel equals ϕ(G(kv)). Now let v be a nonar-
chimedean place of k which either does not split in �, or it splits in � and Pv

is an Iwahori subgroup of G(kv), and g ∈ G(kv). Then the parahoric sub-
group g(Pv) is conjugate to Pv under an element of G(kv), and hence,
G(kv) = ϕ(G(kv))Pv, which implies that δv(Pv) = δv(G(kv)) = H1(kv, C).
We observe also that for any nonarchimedean place v of k, the subgroup
ϕ(G(kv))Pv is precisely the stabilizer of the type Θv (⊂ ∆v) of Pv under
the natural action of G(kv) on ∆v described in [BP, 2.2]. Thus δv(Pv) =
H1(kv, C)Θv

, where H1(kv, C)Θv
is the stabilizer of Θv in H1(kv, C) under

the action of the latter on ∆v through ξv given in [BP, 2.5 ]. It can be seen,
but we do not need this fact here, that for any nonarchimedean place v of
k which does not lie over 3 and Pv is a hyperspecial parahoric subgroup
of G(kv), δv(Pv) equals H1

nr(kv, C), where H1
nr(kv, C) (⊂ H1(kv, C)) is the

“unramified Galois cohomology” as in [Se3, Chap. II, §5.5].
The coboundary homomorphisms δv combine to provide an isomorphism

G(Af )/G(k)K −→ C :=
∏′

H1(kv, C)/
(

ψ(H1(k, C)) ·
∏

v

δv(Pv)
)

,

1 This number is called the “class number” of G relative to K and is known to be finite,
see for example, Proposition 3.9 of [BP].
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where
∏′ H1(kv, C) denotes the subgroup of

∏

v∈Vf
H1(kv, C) consisting

of the elements c = (cv) such that for all but finitely many v, cv lies in
δv(Pv), and ψ : H1(k, C) → ∏′ H1(kv, C) is the natural homomorphism.

Andrei Rapinchuk’s remark that R�/k (µ3) is a direct product of C and (the
naturally embedded subgroup) µ3 has helped us to simplify the following
discussion.

H1(k, C) can be identified with �×/k×�×3, and for any place v of k,
H1(kv, C) can be identified with (kv ⊗k �)×/k×

v (kv ⊗k �)×3. Now let S be
the finite set of nonarchimedean places of k which split in � and Pv is an
Iwahori subgroup of G(kv). If v /∈ S is a nonarchimedean place which splits
in �, and w′, w′′ are the two places of � lying over v, then the subgroup
δv(Pv) gets identified with

k×
v

(

o
×
w′�

×
w′

3 × o×w′′�
×
w′′

3)
/k×

v

(

�×
w′

3 × �×
w′′

3)
,

where o×w′ (resp., o×w′′) is the group of units of �w′ (resp., �w′′), cf. [BP,
Lemma 2.3(ii)] and the proof of Proposition 2.7 in there.

Now let I f
k (resp., I f

� ) be the group of finite idèles of k (resp., �), i.e.,
the restricted direct product of the k×

v s (resp., �×
ws) for all nonarchimedean

places v of k (resp., w of �). We shall view I f
k as a subgroup of I f

� in
terms of its natural embedding. Then it is obvious that C is isomorphic to
the quotient of I f

� by the subgroup generated by I f
k · (I f

� )
3 · �× and all the

elements x = (xw) ∈ I f
� such that xw ∈ o×w for every nonarchimedean place

w of � which lies over a place of k which splits in � but is not in S. From
this it is obvious that C is a quotient of the class group Cl(�) of �, and its
exponent is 3. This implies that C is trivial if h�,3 = 1.

Let us now assume that � = Q(
√−23), and S = {2}. Then h�,3 = 3. But

as either of the two prime ideals lying over 2 in � = Q(
√−23) generates

the class group of �, we see that C is again trivial. Thus we have proved the
following.

5.3. Proposition. Let P = (Pv)v∈Vf and P ′ = (P′
v)v∈Vf be two coherent

collections of parahoric subgroups such that for every v, P′
v is conjugate

to Pv under an element of G(kv). Then there is an element in G(k) which
conjugates P ′ to P if h�,3 = 1. This is also the case if � = Q(

√−23),
and the set S of rational primes p which split in �, and Pp is an Iwahori
subgroup, consists of 2 alone.

5.4. Let G, C, and G be as in 5.1 and 5.2. As before, let T0 be the finite
set of nonarchimedean places of k where G is anisotropic.

We fix a coherent collection (Pv)v∈Vf of parahoric subgroups such that
Pv is maximal for every v which splits in �. Let Λ = G(k) ∩ ∏

v Pv, Γ

be the normalizer of Λ in G(kvo), and Γ be the image of Γ in G(kvo). We
know (see bound (0) in 2.3, and 2.2) that [Γ : Λ] � 31+ # T0h�,3. From
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[BP, Proposition 2.9] and a careful analysis of the arguments in 5.3, 5.5
and the proof of Proposition 0.12 of loc. cit. it can be deduced that, in fact,
[Γ : Λ] = 31+ # T0, if either h�,3 = 1 (then hk,3 = 1, see [W, Theorem 4.10]),
or (k, �) = (Q,Q(

√−23)) and T0 = {2}. We briefly outline the proof
below.

Let Θv (⊂ ∆v) be the type of Pv , and Θ = ∏

Θv. We have observed in 5.2
that the coboundary homomorphism δ : G(k) → H1(k, C) is surjective.
Using this fact we find that, for G at hand, the last term δ(G(k))′

Θ in the
short exact sequence of [BP, Proposition 2.9], for G′ = G, coincides with
the subgroup H1(k, C)Θ of H1(k, C) defined in [BP, 2.8]. Also, the order
of the first term of that short exact sequence is 3/#µ(�)3. So to prove
the assertion about [Γ : Λ], it would suffice to show that H1(k, C)Θ is
of order #µ(�)33#T0 if either h�,3 = 1, or (k, �) = (Q,Q(

√−23)) and
T0 = {2}.

As in 2.1, let �• = {x ∈ �× | N�/k(x) ∈ k×3}, and identify H1(k, C) with
�•/�×3. Let �3 (resp., �•

T0
) be the subgroup of �× (resp., �•) consisting of

elements x such that for every normalized valuation w of � (resp., every nor-
malized valuation w of � which does not lie over a place in T0), w(x) ∈ 3Z.
Let �•

3 = �3∩�•. We can identify H1(k, C)Θ with the group �•
T0

/�×3, see 2.3,
2.7 and 5.3–5.5 of [BP]. We claim that the order of �•

T0
/�×3 is #µ(�)33#T0 .

If h�,3 = 1 = hk,3, from 2.3 above and [BP, Proposition 0.12 ] we see that
#�•

3/�
×3 = #µ(�)3, and U(k)/U(k)3 → k3/k×3 is an isomorphism. Since

the homomorphism U(�)/U(�)3 → U(k)/U(k)3, induced by the norm map,
is onto (2.3), given an element y ∈ �× whose norm lies in k3, we can
find an element u ∈ U(�) such that uy ∈ �•, i.e., N�/k(uy) ∈ k×3. Now
it is easy to see that if h�,3 = 1, �•

T0
/�•

3 is of order 3#T0 . This implies that
#�•

T0
/�×3 = #µ(�)33#T0 .

Let (k, �) = (Q,Q(
√−23)) now. Then, as neither of the two prime

ideals of � = Q(
√−23) lying over 2 is a principal ideal, we see that

�•
{2} = �•

3. But since Q3 = Q×3, �•
3 = �3, and therefore, �•

{2}/�
×3 = �3/�

×3.
The latter group is of order 3 (= h�,3) since Q(

√−23) does not contain
a nontrivial cube-root of unity, see the proof of Proposition 0.12 in [BP].
This proves the assertion that [Γ : Λ] = 31+ # T0 if either h�,3 = 1, or
(k, �) = (Q,Q(

√−23)) and T0 = {2}.

5.5. In the rest of this section we will assume that k = Q and D is a cubic
division algebra with center � = Q(

√−a) given with an involution σ of the
second kind (cf. 4.1). Let G be the simple simply connected Q-group such
that

G(Q) = { z ∈ D× | zσ(z) = 1 and Nrd(z) = 1}.

5.6. Lemma. G(Q) is torsion-free if a �= 3 or 7. If a = 3 (resp., a = 7),
then the order of any nontrivial element of G(Q) of finite order is 3 (resp., 7).
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Proof. Let x ∈ G(Q) be a nontrivial element of finite order. Since the
reduced norm of −1 in D is −1, −1 /∈ G(Q). Therefore, the order of x is
odd, and the Q-subalgebra K := Q[x] of D generated by x is a nontrivial
field extension of Q. Note that the degree of any field extension of Q
contained in D is a divisor of 6. If K = �, then x lies in the center of G,
and hence it is of order 3. ButQ(

√−3) is the field generated by a nontrivial
cube-root of unity. Hence, if K = �, then a = 3 and x is of order 3. Let
us assume now that K �= �. Then K cannot be a quadratic extension of Q
since if it is a quadratic extension, K · � is a field extension of Q of degree 4
contained in D , which is not possible. So K is an extension of Q of degree
either 3 or 6. Since an extension of degree 3 of Q cannot contain a root
of unity different from ±1, K must be of degree 6, and so, in particular, it
contains � = Q(

√−a). Note that the only roots of unity of odd order which
can be contained in an extension of Q of degree 6 are the 7-th or the 9-th
roots of unity.

For an integer n, let Cn be the extension of Q generated by a primitive
n-th root ζn of unity. Then C7 = C14 ⊃ Q(

√−7), and C9 = C18 ⊃ C3 =
Q(

√−3), and Q(
√−7) (resp., Q(

√−3)) is the only quadratic extension
of Q contained in C7 (resp., C9). As K ⊃ Q(

√−a), we conclude that the
group G(Q) is torsion-free if a �= 3 or 7, and if a = 3 (resp., a = 7),
then the order of x is 9 (resp., 7). In particular, if a = 3 (resp., a = 7),
then K = Q(ζ9) (resp., K = Q(ζ7)). However, if a = 3, NK/�(ζ9) =
ζ3

9 �= 1, and if a = 7, NK/�(ζ7) = 1. This implies the last assertion of the
lemma.

5.7. Let a be one of the following five integers: 1, 2, 7, 15, and 23, and
let p = pa be the prime associated to a (see 4.4–4.5). Let � = Q(

√−a).
Let D be a cubic division algebra with center � whose local invariants at
the two places of � lying over p are nonzero and negative of each other,
and the local invariant at all the other places of � is zero. (There are two
such division algebras, they are opposite of each other.) Then Qp ⊗Q D =
(Qp ⊗Q �) ⊗� D = D ⊕ Do, where D is a cubic division algebra with
center Qp, and Do is its opposite. D admits an involution σ of the second
kind. Let the simple simply connected Q-group G be as in 5.5. We may
(and do) assume that σ is so chosen that G(R) ∼= SU(2, 1). We observe
that any other such involution of D , or of its opposite, similarly determines
aQ-group which isQ-isomorphic to G (1.2). As σ(D) = Do, it is easily seen
that G(Qp) is the compact group SL1(D) of elements of reduced norm 1
inD.

We fix a coherent collection (Pq) of maximal parahoric subgroups Pq of
G(Qq) which are hyperspecial for every rational prime q �= p which does
not ramify in �. Let Λ = G(Q) ∩ ∏

q Pq , and let Γ be its normalizer in
G(R). Let Γ be the image of Γ in G(R).

5.8. Proposition. If (a, p) = (23, 2), then Γ is torsion-free.
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Proof. We assume that (a, p) = (23, 2), and begin by observing that Γ is
contained in G(Q), see, for example, [BP, Proposition 1.2]. Since H1(Q, C)

is a group of exponent 3, so is the group G(Q)/ϕ(G(Q)). Now as G(Q) is
torsion-free (5.6), any nontrivial element of G(Q) of finite order has order 3.

To be able to describe all the elements of order 3 of G(Q), we consider
the connected reductive Q-subgroup G of GL1,D , which contains G as
a normal subgroup, such that

G(Q) = { z ∈ D× | zσ(z) ∈ Q×}.
Then the center C of G is Q-isomorphic to R�/Q(GL1). The adjoint action
of G on the Lie algebra of G induces a Q-isomorphism G/C → G. As
H1(Q,C) = {0}, we conclude that the natural homomorphism G(Q) →
G(Q) is surjective. Now given an element g of G(Q) whose image in G(Q)
is an element of order 3, λ := g3 lies in �×. Let a = gσ(g) ∈ Q×. Then
(i) λσ(λ) = a3. The field L := �[X]/(X3 − λ) admits an involution τ (i.e.,
an automorphism of order 2) whose restriction to the subfield � coincides
with σ |�; τ is defined as follows: let x be the unique cube-root of λ in L ,
then τ(x) = a/x. There is a unique embedding of L in D which maps x
to g. In this embedding, τ = σ |L . The reduced norm of x (x considered as
an element of D) is clearly λ, and the image of g in H1(Q, C) ⊂ �×/�×3

is the class of λ in �×/�×3. Now if g stabilizes the collection (Pv), then
its image in H1(Q, C) must lie in the subgroup H1(Q, C)Θ, and hence,
(ii) w(λ) ∈ 3Z for every normalized valuation w of � not lying over 2
(cf. 5.4).

The conditions (i) and (ii) imply that λ ∈ �•
{2} = �3 = ⋃

i α
i�×3 (cf. 5.4),

where α = (3 + √−23)/2. Since λ is not a cube in �, λ ∈ α�×3 ∪ α2�×3.
But Q2 contains a cube-root of α (this can be seen using Hensel’s Lemma),
and hence for λ ∈ α�×3 ∪ α2�×3, L = �[X]/(X3 − λ) is not embeddable in
D . (Note that L is embeddable in D if, and only if, Q2 ⊗Q L is a direct
sum of two field extensions of Q2, both of degree 3.) Thus we have shown
that G(Q) does not contain any nontrivial elements of finite order which
stabilize the collection (Pv). Therefore, Γ is torsion-free.

5.9. Examples of fake projective planes By Lemma 5.6 the subgroup Λ
described in 5.7 is torsion-free if (a, p) = (1, 5), (2, 3), (15, 2) or (23, 2).
Now let (a, p) = (7, 2). Then G(Q2) is the group SL1(D) of elements of
reduced norm 1 in a cubic division algebra D with center Q2 (cf. 5.7). The
first congruence subgroup G(Q2)

+ := SL(1)
1 (D) of SL1(D) is the unique

maximal normal pro-2 subgroup of G(Q2) of index (23 − 1)/(2 − 1) = 7
(see [Ri, Theorem 7(iii)(2)]). By the strong approximation property [PlR,
Theorem 7.12], Λ+ := Λ ∩ G(Q2)

+ is a subgroup of Λ of index 7.
Lemma 5.6 implies that Λ+ is torsion-free since G(Q2)

+ is a pro-2 group.
As µ(G(R)/Λ) = 1/7 (see 4.5), µ(G(R)/Λ+) = 1, and hence the Euler–
Poincaré characteristic of Λ+ is 3.



Fake projective planes 343

Since Λ, and for a = 7, Λ+ are congruence subgroups, according
to [Ro, Theorem 15.3.1], H1(Λ,C), and for a = 7, H1(Λ+,C) vanish.
By Poincaré-duality, then H3(Λ,C), and for a = 7, H3(Λ+,C) also van-
ish. For a = 1, 2, and 15, as µ(G(R)/Λ) = 1 (4.5), the Euler–Poincaré
characteristic χ(Λ) of Λ is 3, and for a = 7, χ(Λ+) is also 3, we conclude
that for a = 1, 2, and 15, Hi(Λ,C) is 1-dimensional for i = 0, 2, and 4,
and if a = 7, this is also the case for Hi(Λ+,C). Thus if B is the symmetric
space of G(R), then for a = 1, 2 and 15, B/Λ, and for a = 7, B/Λ+, is
a fake projective plane.

Let Λ(resp., Λ
+

) be the image of Λ (resp., Λ+) in G(R). There is a natural
faithful action of Γ/Λ (resp., Γ/Λ

+
), which is a group of order 3 (resp., 21),

on B/Λ (resp., B/Λ+). As Γ is the normalizer of Λ, and also of Λ+, in
G(R), Γ/Λ (resp., Γ/Λ

+
) is the full automorphism group of B/Λ (resp.,

B/Λ+).
In 5.10–5.13, we will describe the classes of fake projective planes

associated with each of the five pairs (a, p).

5.10. In this paragraph we shall study the fake projective planes arising
from the pairs (a, p) = (1, 5), (2, 3), and (15, 2). Let Λ and Γ be as
in 5.7. Let Π ⊂ Γ be the fundamental group of a fake projective plane
and ˜Π be its inverse image in Γ. Then as 1 = χ(˜Π) = 3µ(G(R)/˜Π) =
µ(G(R)/Λ), ˜Π is of index 3 (= [Γ : Λ]/3) in Γ, and hence Π is a torsion-
free subgroup of Γ of index 3. Conversely, if Π is a torsion-free subgroup
of Γ of index 3 such that H1(Π,C) = {0} (i.e., Π/[Π,Π] is finite), then
as χ(Π) = 3, B/Π is a fake projective plane, and Π is its fundamental
group.

5.11. We will now study the fake projective planes arising from the
pair (7, 2). In this case, as in 5.7, let Λ+ = Λ∩ G(Q2)

+, which is a torsion-
free subgroup of Λ of index 7. We know that B/Λ+ is a fake projective
plane.

Now let ˜Π be the inverse image in Γ of the fundamental group Π ⊂ Γ
of a fake projective plane. Then as µ(G(R)/Γ) = µ(G(R)/Λ)/9 = 1/63,
and µ(G(R)/˜Π) = χ(˜Π)/3 = 1/3, ˜Π is a subgroup of Γ of index 21, and
hence [Γ : Π] = 21. Conversely, if Π is a torsion-free subgroup of Γ of
index 21, then as χ(Π) = 3, B/Π is a fake projective plane if, and only
if, Π/[Π,Π] is finite. Mumford’s fake projective plane is given by one
such Π.

5.12. We finally look at the fake projective planes arising from the pair
(23, 2). In this case, µ(G(R)/Γ) = µ(G(R)/Λ)/9 = 1/3 (see 4.5). Hence,
if ˜Π is the inverse image in Γ of the fundamental group Π ⊂ Γ of a fake
projective plane, then as µ(G(R)/˜Π) = χ(˜Π)/3 = 1/3 = µ(G(R)/Γ),
˜Π = Γ. Therefore, the only subgroup of Γ which can be the fundamental
group of a fake projective plane is Γ itself.
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As Γ is torsion-free (Proposition 5.8), χ(Γ) = 3, and Λ/[Λ,Λ], hence
Γ/[Γ,Γ], and so also Γ/[Γ, Γ] are finite, B/Γ is a fake projective plane and
Γ is its fundamental group. Since the normalizer of Γ in G(R) equals Γ, the
automorphism group of B/Γ is trivial.

5.13. We recall that the hyperspecial parahoric subgroups of G(kv) are
conjugate to each other under G(kv), see [Ti2, 2.5]. Using the observations
in 2.2 and Proposition 5.3 we see that if a �= 15 (resp., a = 15), then up to
conjugation by G(Q), there are exactly 2 (resp., 4) coherent collections (Pq)
of maximal parahoric subgroups such that Pq is hyperspecial whenever q
does not ramify in Q(

√−a), since if a �= 15 (resp., a = 15), there is
exactly one prime (resp., there are exactly two primes, namely 3 and 5)
which ramify in � = Q(

√−a).
From the results in 5.10–5.12 we conclude that for each a ∈ {1, 2, 7, 23},

there are two distinct finite classes, and for a = 15, there are four distinct
finite classes, of fake projective planes. Thus the following theorem holds.

5.14. Theorem. There exist exactly twelve distinct classes of fake projective
planes with k = Q.

5.15. Remark. To the best of our knowledge, only three fake projective
planes were known before the present work. The first one was constructed
by Mumford [Mu] and it corresponds to the pair (a, p) = (7, 2); see 5.11.
Two more examples have been given by Ishida and Kato [IK] making use
of the discrete subgroups of PGL3(Q2), which act simply transitively on
the set of vertices of the Bruhat–Tits building of the latter, constructed by
Cartwright, Mantero, Steger and Zappa. In both of these examples, (a, p)
equals (15, 2). We have learnt from JongHae Keum that he has recently
constructed a fake projective plane which is birational to a cyclic cover
of degree 7 of a Dolgachev surface. This fake projective plane admits an
automorphism of order 7, so it appears to us that it corresponds to the pair
(7, 2), and its fundamental group is the group Λ+ of 5.9 for a suitable choice
of a maximal parahoric subgroup P7 of G(Q7).

6. Lower bound for discriminant in terms of the degree
of a number field

6.1. Definition. We define Mr(d) = minK D1/d
K , where the minimum is

taken over all totally real number fields K of degree d. Similarly, we de-
fine Mc(d) = minK D1/d

K by taking the minimum over all totally complex
number fields K of degree d.

It is well-known that Mr(d) � (dd/d!)2/d from the classical estimates
of Minkowski. The precise values of Mr(d) for small values of d are known
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due to the work of many mathematicians as listed in [N]. For d � 8, the
values of Mr(d) are given in the following table.

d 2 3 4 5 6 7 8
Mr(d)d 5 49 725 14641 300125 20134393 282300416.

An effective lower bound for Mr (d), better than Minkowski’s bound for d
large, has been given by Odlyzko [O1]. We recall the following algorithm
given in [O1, Theorem 1], which provides a useful estimate for Mr(d) for
arbitrary d.

6.2. Let b(x) = [5 + (12x2 − 5)1/2]/6. Define

g(x, d) = exp
[

log(π) − Γ′

Γ
(x/2) + (2x − 1)

4

(

Γ′

Γ

)′
(b(x)/2)

+ 1

d

{

− 2

x
− 2

x − 1
− 2x − 1

b(x)2 − 2x − 1

(b(x) − 1)2

}]

.

Let α =
√

14−√
128

34 . As we are considering only totally real number fields,
according to [O1, Theorem 1 ], Mr(d) � g(x, d) provided that x > 1 and
b(x) � 1 + αx.

Now let x0 be the positive root of the quadratic equation b(x) = 1 +αx.

Solving this equation, we obtain x0 = α+
√

2−5α2

2(1−3α2)
= 1.01... . For a fixed

value of d, define N(d) = lim supx�x0
g(x, d).

6.3. Lemma. For each d > 1, Mr(d) � N(d), and N(d) is an increasing
function of d.

Proof. It is obvious from our choice of x0 that Mr(d) � N(d). We will now
show that N(d) is an increasing function of d.

For a fixed value of x > 1, g(x, d) is clearly an increasing function of d
since the only expression involving d in it is

(1/d){−2/x − 2/(x − 1) − (2x − 1)/b(x)2 − (2x − 1)/(b(x) − 1)2},
which is nonpositive. Now for a given d, and a positive integer n, choose
a xn � x0 such that g(xn, d) � N(d) − 10−n . Then

N(d + 1) = lim sup
x�x0

g(x, d + 1) � g(xn, d + 1) � g(xn, d) � N(d)−10−n.

Hence, N(d + 1) � N(d).

6.4. In the next section, we will use the lower bound for the root-discrimin-
ant D1/d

K of totally complex number fields K obtained by Odlyzko in [O2].
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We will denote by Nc(n0) the entry for totally complex number fields given
in the last column of Table 2 of [O2] for n = n0. We recall from [O2]
that for every number field K of degree n � n0, the root-discriminant
D1/n

K > Nc(n0).
For small d, we will also use Table IV of [Ma]. This table was originally

constructed by Diaz y Daiz.

7. Upper bounds for the degree d of k, Dk and D�

In this, and the next two sections, we will determine totally real number
fields k of degree d > 1, their totally complex quadratic extensions �,
k-forms G of SU(2, 1) and coherent collections (Pv)v∈Vf of parahoric sub-
groups Pv of G(kv) such that for all v ∈ R�, Pv is maximal, and the image Γ

in G(kvo) (where vo is the unique real place of k such that G(kvo )
∼= SU(2, 1))

of the normalizer Γ of Λ := G(k) ∩ ∏

v∈Vf
Pv in G(kvo) contains a torsion-

free subgroup Π of finite index with χ(Π) = 3. Then χ(Γ) is a reciprocal
integer. In particular, it is � 1.

In this section, we will use bounds (2), (3), (6), and (7)–(10) obtained in
Sect. 2, the lower bound for the discriminant given in the preceding section,
and Hilbert class fields, to prove that d � 5. We will also find good upper
bounds for Dk, D�, and D�/D2

k for d � 5. Using these bounds, in the next
section we will be able to make a complete list of (k, �) of interest to us. It
will follow then that d cannot be 5.

7.1. Let f(δ, d) be the function occurring in bound (10). It is obvious that
for c > 1, c1/(3−δ)d decreases as d increases. Now for δ � 0.002, as

δ(1 + δ)

0.00136
> 1,

infδ f(δ, d), where the infimum is taken over the closed interval
0.002 � δ � 2, decreases as d increases. A direct computation shows that
f(0.9, 20) < 16.38. On the other hand, for d � 20, Lemma 6.3 gives
us

Mr(d) � N(20) � g(1.43, 20) > 16.4,

where g(x, d) is the function defined in 6.2. From these bounds we conclude
that d = [k : Q] < 20.

To obtain a better upper bound for d, we observe using Table 2 in [O2]
that Mr(d) > 17.8 for 15 � d < 20. But by a direct computation we see
that f(0.9, 15) < 17.4. So the monotonicity of f(δ, d), as a function of d
for a fixed δ, implies that d cannot be larger than 14.
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7.2. Now we will prove that d � 7 with the help of Hilbert class fields.
Let us assume, if possible, that 14 � d � 8.

We will use the following result from the theory of Hilbert class fields.
The Hilbert class field L := H(�) of a totally complex number field � is the
maximal unramified abelian extension of �. Its degree over � is the class
number h� of �, and DL = Dh�

� .
We consider the two cases where h� � 63 and h� > 63 separately.

Case (a). h� � 63: In this case h�,3 � 27, and from bound (8) we obtain

D1/d
k < ϕ2(d, h�,3) < ϕ3(d) := 271/4d(16π5)1/4.

The function ϕ3(d) decreases as d increases. A direct computation shows
that ϕ3(d) � ϕ3(8) < 9.3. Hence, D1/d

k < 9.3. On the other hand, from
Table 2 in [O2] we find that, for 14 � d � 8, Mr(d) > 10.5, so D1/d

k > 10.5.
Therefore, if h� � 63, d � 7.

Case (b). h� > 63: In this case, let L be the Hilbert class field of �. Then
[L : �] = h�, DL = Dh�

� , and 2dh� > 16 × 63 > 1000. From 6.4 we
conclude that

D1/2d
� = D1/2dh�

L � Mc(2dh�) � Nc(1000) = 20.895,

where the last value is from Table 2 of [O2]. However, as f(0.77, d) �
f(0.77, 8) < 20.84, bound (10) implies that D1/2d

� < 20.84. Again, we
have reached a contradiction. So we conclude that d � 7.

7.3. To find good upper bounds for d, Dk and D�, we will make use of
improved lower bounds for R�/w� for totally complex number fields given
in [Fr], Table 2. We reproduce below the part of this table which we will
use in this paper.

r2 = d for D1/2d
� < R�/w� �

2 17.2 0.0898
3 24.6 0.0983
4 29.04 0.1482
5 31.9 0.2261
6 33.8 0.4240
7 34.4 0.8542.

We also note here that except for totally complex sextic fields of dis-
criminants

−9747, −10051, −10571, −10816, −11691, −12167,

and totally complex quartic fields of discriminants

117, 125, 144,

R�/w� is bounded from below by 1/8 for every number field �, see [Fr,
Theorem B′].
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7.4. We consider now the case where d = 7. Bound (10) implies that
D1/14

� < f(0.75, 7) < 22.1. Using the lower bound for R�/w� given in the
table above and bound (7), we conclude by a direct computation that

D1/14
� < ϕ1(7, 0.8542, 0.8) < 18.82.

On the other hand, the root-discriminant of any totally complex number
field of degree � 260 is bounded from below by Nc(260), see 6.4. From
Table 2 in [O2] we find that Nc(260) = 18.955. So we conclude that the
class number h� of � is bounded from above by 260/2d = 260/14 < 19,
for otherwise the root-discriminant of the Hilbert class field of � would be
greater than 18.955, contradicting the fact that it equals D1/14

� (< 18.82).
As h� � 18, h�,3 � 9. Now we will use bound (8). We see by a direct

computation that ϕ2(7, 9) < 9.1. Hence, D1/7
k � D1/14

� < 9.1. On the other
hand, we know from 6.1 that Mr(7) = 201343931/7 > 11. This implies that
d cannot be 7. Therefore, d � 6.

7.5. Employing a method similar to the one used in 7.2 and 7.4 we will
now show that d cannot be 6.

For d = 6, from bound (10) we get D1/12
� < f(0.71, 6) < 24. Using

the lower bound for R�/w� provided by the table in 7.3 and bound (7),

we conclude by a direct computation that D1/12
� < ϕ1(6, 0.424, 0.8) < 20.

From Table 2 in [O2] we find that Nc(480) > 20. Now, arguing as in 7.4,
we infer that the class number h� of � is bounded from above by 480/12 =
40, which implies that h�,3 � 27. As ϕ2(6, 27) < 10, bound (8) implies
that D1/6

k � D1/12
� < 10. Now since Nc(21) > 10, we see that the class

number of � cannot be larger than 21/12 < 2. Hence, h� = 1 = h�,3. We
may now apply bound (8) again to conclude that D1/6

k < ϕ2(6, 1) < 8.365.
Checking from the Table t66.001 of [1], we know that the two smallest
discriminants of totally real sextics are 300125 as mentioned in 6.1, followed
by 371293. As 3712931/6 > 8.47, the second case is not possible and we
are left with only one candidate, Dk = 300125. As p(6, 300125, 1) <
1.3, we conclude from bound (9) that D�/D2

k = 1. Hence, if d = 6,
(Dk, D�) = (300125, 3001252) is the only possibility. From the tables in [1]
we find that there is a unique totally real number field k of degree 6 with
Dk = 300125. Moreover, the class number of this field is 1. Gunter Malle,
using the procedure described in 8.1 below, has shown that there does
not exist a totally complex quadratic extension � of this field with D� =
3001252. Therefore d cannot be 6.

7.6. For d = 5, bound (10) implies that D1/10
� < f(0.7, 5) < 26.1.

It is seen from the table in 7.3 that R�/w� � 0.2261. Hence, D1/10
� <

ϕ1(5, 0.2261, 0.72) < 21.42. As Nc(2400) > 21.53, arguing as in 7.4 we
see that the class number h� of � is bounded from above by 2400/10 = 240.
Hence, h�,3 � 81 = 34. Now we note that ϕ2(5, 81) < 10.43, but
Nc(23) > 10.43. So, h� < 23/10, and therefore, h�,3 = 1. But then
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D1/5
k � D1/10

� < ϕ2(5, 1) < 8.3649. As Mr(5)5 � 14641 and p(5, 14641, 1)

< 5.2, we conclude from bound (9) that D�/D2
k � 5.

7.7. Let now d = 4. In this case, k is a totally real quartic and � is
a totally complex octic containing k. Table 4 of [Fr] gives the lower bound
Rk � 41/50 for the regulator. Since � is a CM field which is a totally
complex quadratic extension of k, we know that R� = 2d−1 Rk/Q, where
Q = 1 or 2 is the unit index of k (cf. [W]). We will now estimate w�, the
number of roots of unity in �.

We know that the group of roots of unity in � is a cyclic group of even
order, say m. Let ζm be a primitive m-th root of unity. As the degree of the
cyclotomic field Q(ζm) is φ(m), where φ is the Euler function, we know
that φ(m) is a divisor of 2d = 8. The following table gives the values of m
and φ(m) for φ(m) � 8.

m 2 4 6 8 10 12 14 16 18 20 24 30
φ(m) 1 2 2 4 4 4 6 8 6 8 8 8.

If φ(m) = 8, then m = 16, 20, 24 or 30, and Q(ζm) equals �. Note
that Q(ζ30) = Q(ζ15). The class number of these four cyclotomic fields
are all known to be 1 (see [W], pp. 230 and 432). So in these four cases,
h�,3 = 1. Bound (8) implies that D1/4

k � D1/8
� < ϕ2(4, 1) < 8.3640. As

Mr(4)4 = 725 and p(4, 725, 1) < 21.3, we conclude from bound (9) that
D�/D2

k � 21.
Assume now that φ(m) �= 8. Then m � 12. Hence, w� � 12. So we

conclude that except for the four cyclotomic fields dealt with earlier,

R�/w� � 23 Rk/12Q � Rk/3 � 41/150.

Applying bound (7), we conclude that D1/8
� < ϕ1(4, 41/150, 0.69)

< 21.75 by a direct computation. From Table IV of [Ma], we know that
totally complex number fields of degree � 4000 have unconditional root-
discriminant lower bound 21.7825. It follows, as before, using the Hilbert
Class field of �, that the class number h� of � is at most 4000/8 = 500.

Hence, h�,3 � 35 = 243. Bound (8) now gives that D1/8
� < ϕ2(4, 243)

< 11.8. But from Table 2 of [O2] we find that Nc(32) > 11.9. So we
conclude h� � 32/8 = 4. Hence, h�,3 � 3. Applying bound (8) again we
infer that D1/8

� < ϕ2(4, 3) < 8.96. As Nc(18) > 9.2, we conclude that
h� < 18/8. But then h�,3 = 1, and the argument in the preceding para-
graph leads to the conclusion that D1/4

k � D1/8
� < ϕ2(4, 1) < 8.3640 and

D�/D2
k � 21.

7.8. We consider now the case d = 3. Suppose that D1/6
� < 21.7. Since

according to Table IV of [Ma], Mc(4000) � 21.7825, we infer using the
Hilbert class field of �, that h� � 4000/6 < 667. Then h�,3 � 243 = 35.

It follows from bound (8) that D1/6
� < ϕ2(3, 243) < 13.3. From Table 2
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of [O2] we find that Nc(44) > 13.37. Therefore, h� � 44/6 < 8. Hence,
h�,3 � 3. Now we observe that ϕ2(3, 3) < 9.17. But as Nc(18) � 9.28,
h� < 18/6 = 3, which implies that h�,3 = 1. We then deduce from bound
(8) that D1/3

k � D1/6
� < ϕ2(3, 1) < 8.3591. Also since Dk � 49 (see 6.1),

and p(3, 49, 1) < 52.8, we conclude from bound (9) that D�/D2
k � 52.

We assume now that D1/6
� � 21.7 (and d = 3). We will make use of

a lower bound for R�/w� which is better than the one provided in 7.3.
Table 4 of [Fr] gives that Rk � 0.524. Recall from 7.7 that R�/w� =
2d−1 Rk/Qw� � 2Rk/w� � 2(0.524)/w�. From the table of values of the
Euler function given in 7.7, we see that φ(m) is a proper divisor of 6 only
for m = 2, 4, 6. So we conclude that w� � 6 unless � is either Q(ζ14)
or Q(ζ18). Since both Q(ζ14) = Q(ζ7) or Q(ζ18) = Q(ζ9) are known to
have class number 1 (cf. [W], pp. 229 and 412), the bounds obtained in the
last paragraph apply to these two cases as well. Hence, it remains only to
consider the cases where w� � 6. So we assume now that w� � 6. Then
R�/w� � 2(0.524)/6 > 0.17.

Observe that bounds (2), (3) and (6) imply that

D1/d
k > ξ(d, D�, R�/w�, δ) :=

[

(R�/w�)ζ(2d)1/2

δ(δ + 1)

]1/d

× (2π)1+δ

16π5Γ(1 + δ)ζ(1 + δ)2
(D1/2d

� )4−δ.

As D1/6
� � 21.7, it follows from this bound by a direct computation that

D1/3
k > ξ(3, 21.76, 0.17, 0.65) > 16.4.

Recall now a result of Remak, stated as bound [Fr, 3.15],

Rk �
[

log Dk − d log d

{γd−1d1/(d−1)(d3 − d)/3}1/2

]d−1

,

where d = 3 and γd−1 = 2/
√

3 as given in [Fr, p. 613]. Since R� =
2d−1 Rk/Q � 2Rk, we obtain the following lower bound

R�/w� � r(Dk, w�) := 2

w�

[

log Dk − 3 log 3

{2(32 − 1)}1/2

]2

.

As in the argument in the last paragraph, we assume that w� � 6. Then
from the preceding bound we get the following:

R�/w� � r(16.43, 6) > 0.54.

We now use bound (7) to conclude that D1/6
� < ϕ1(3, 0.54, 0.66) < 20.8

< 21.7, contradicting our assumption that D1/6
� � 21.7.

Therefore, D1/3
k � D1/6

� < 8.3591 and D�/D2
k � 52.
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7.9. Finally we consider the case d = 2. In this case, we know from 7.3
that R�/w� � 1/8 except in the three cases mentioned there. So bound (7)
implies that D1/4

� < ϕ1(2, 1/8, 0.52) < 28.96. Hence, D� � 703387. This
bound holds for the three exceptional cases of 7.3 as well. Since quartics of
such small discriminant are all known, we know the class number of all such
fields explicitly. In particular, the number fields are listed in t40.001–t40.057
of [1], where each file contains 1000 number fields listed in ascending order
of the absolute discriminants. There are altogether 5700 number fields in the
files, the last one has discriminant 713808. So [1] is more than adequate for
our purpose. Inspecting by hand, or using PARI/GP and a simple program,
we find that the largest class number of an � with D� � 703387 is 64.
The corresponding number field has discriminant 654400 with a defining
polynomial x4 − 2x3 + 27x2 − 16x + 314.

Once we know that h� � 64, we find that h�,3 � 27. We may now
apply bound (8) to conclude that D1/4

� < ϕ2(2, 27) < 12.57. Now since in
Table 2 of [O2] we find that Nc(38) > 12.73, we infer that h� < 38/4 < 10,
which implies that h�,3 � 9. But ϕ2(2, 9) < 10.96, and Nc(26) > 11.01. So
h� < 26/4 < 7, and hence h�,3 � 3. It follows from bound (8) that D1/2

k �
D1/4

� < ϕ2(2, 3) < 9.5491. From this we conclude that Dk � 91. As Dk � 5
(see 6.1) and p(2, 5, 3) < 104.2, bound (9) implies that D�/D2

k � 104.

7.10. The results in 7.6–7.9 are summarized in the following table.

d D1/d
k � D1/2d

� � h�,3 � D�/D2
k �

5 8.3649 1 5
4 8.3640 1 21
3 8.3591 1 52
2 9.5491 3 104

8. (k, �) with d = 2, 3, 4, and 5

8.1. To make a list of all pairs (k, �) of interest to us, we will make
use of the tables of number fields given in [1]. In the following table, in
the column under rd (resp., cd) we list the largest integer less than the d-th
power (resp., an integer slightly larger than the 2d-th power) of the numbers
appearing in the second column of the table in 7.10. The column under xd
reproduces the numbers appearing in the last column of the table in 7.10.
Therefore, we need only find all totally real number fields k of degree d,
2 � d � 5, and totally complex quadratic extensions � of each k, such
that Dk � rd , D� � cd , and moreover, D�/D2

k � xd . Thanks to a detailed
computation carried out at our request by Gunter Malle, for each d, we know
the exact number of pairs of (k, �) satisfying these constraints. This number
is listed in the last column of the following table. The data is obtained in the
following way. The number fields k with Dk in the range we are interested
in are listed in [1]. Their class numbers, and a set of generators of their
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group of units, are also given there. For d = 2, the quadratic extensions �
are also listed in [1]. Any quadratic extension of k is of the form k(

√
α),

with α in the ring of integers ok of k. For d > 2, the class number of any
totally real k of interest turns out to be 1; hence, ok is a unique factorization
domain. Now using factorization of small primes and explicit generators
of the group of units of k, Malle listed all possible α modulo squares, and
then for each of the α, the discriminant of k(

√
α) could be computed. Using

this procedure, Malle explicitly determined all totally complex quadratic
extensions � with D� satisfying the conditions mentioned above.

d rd cd xd #(k, �)
5 40954 17 × 108 5 0
4 4893 24 × 106 21 7
3 584 35 × 104 52 4
2 91 8320 104 52

Thus there are no (k, �) with d = 5. For 2 � d � 4, there are 52 + 4 + 7
= 63 pairs (k, �) satisfying the constraints on rd, cd and xd imposed by the
considerations in 7.6–7.9.

8.2. For each of the 63 potential pairs (k, �) mentioned above, we know
defining polynomials for k and �, and also the values of Dk, D�, and h�,3.
It turns out that h�,3 = 1 or 3. We are able to further cut down the list of
pairs (k, �) such that there is a k-form of SU(2, 1), described in terms of the
quadratic extension � of k, which may provide an arithmetic subgroup Γ of
SU(2, 1) with χ(Γ) � 1, by making use of bound (9) for D�/D2

k , and the
fact that this number is an integer. We are then left with only 40 pairs. These
are listed below.

In the lists below, there are only three pairs (k, �) with d = 3. In
the list provided by Malle there was a fourth pair with (Dk, D�, h�) =
(321, 309123, 1). Bound (9) for this pair gives us D�/D2

k < 2.7, and there-
fore, D� � 2D2

k . But 309123 > 2 × 3212, that is why the fourth pair with
d = 3 does not appear in the lists below.

(k, �) k �

C1 x2 − x − 1 x4 − x3 + x2 − x + 1
C2 x2 − x − 1 x4 − x3 + 2x2 + x + 1
C3 x2 − x − 1 x4 + 3x2 + 1
C4 x2 − x − 1 x4 − x3 + 3x2 − 2x + 4
C5 x2 − x − 1 x4 − x3 + 5x2 + 2x + 4
C6 x2 − x − 1 x4 − 2x3 + 6x2 − 5x + 5
C7 x2 − x − 1 x4 + 6x2 + 4
C8 x2 − 2 x4 + 1
C9 x2 − 2 x4 + 2x2 + 4
C10 x2 − 2 x4 − 2x3 + 5x2 − 4x + 2
C11 x2 − 3 x4 − x2 + 1
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(k, �) k �

C12 x2 − 3 x4 + 4x2 + 1
C13 x2 − x − 3 x4 − x3 + 4x2 + 3x + 9
C14 x2 − x − 3 x4 − x3 + 2x2 + 4x + 3
C15 x2 − x − 4 x4 − x3 − 2x + 4
C16 x2 − x − 4 x4 − x3 + 5x2 + 4x + 16
C17 x2 − x − 5 x4 − x3 − x2 − 2x + 4
C18 x2 − 6 x4 − 2x2 + 4
C19 x2 − 6 x4 + 9
C20 x2 − 7 x4 − 3x2 + 4
C21 x2 − x − 8 x4 − x3 − 2x2 − 3x + 9
C22 x2 − 11 x4 − 5x2 + 9
C23 x2 − 14 x4 − 2x3 + 9x2 − 8x + 2
C24 x2 − x − 14 x4 − x3 − 4x2 − 5x + 25
C25 x2 − 15 x4 − 5x2 + 25
C26 x2 − 15 x4 − 7x2 + 16
C27 x2 − x − 17 x4 − x3 − 5x2 − 6x + 36
C28 x2 − 19 x4 − 9x2 + 25
C29 x2 − x − 19 x4 + 9x2 + 1
C30 x2 − 22 x4 − 2x3 + 11x2 − 10x + 3
C31 x3 − x2 − 2x + 1 x6 − x5 + x4 − x3 + x2 − x + 1
C32 x3 − x2 − 2x + 1 x6 − x5 + 3x4 + 5x2 − 2x + 1
C33 x3 − 3x − 1 x6 − x3 + 1
C34 x4 − x3 − 4x2 + 4x + 1 x8 − x7 + x5 − x4 + x3 − x + 1
C35 x4 − 5x2 + 5 x8 − x6 + x4 − x2 + 1
C36 x4 − 4x2 + 2 x8 + 1
C37 x4 − 4x2 + 1 x8 − x4 + 1
C38 x4 − 2x3 − 7x2 + 8x + 1 x8 − 3x6 + 8x4 − 3x2 + 1
C39 x4 − 6x2 − 4x + 2 x8 − 4x7 + 14x6 − 28x5 + 43x4

− 44x3 + 30x2 − 12x + 2
C40 x4 − 2x3 − 3x2 + 4x + 1 x8 − 4x7 + 5x6 + 2x5 − 11x4

+ 4x3 + 20x2 − 32x + 16

The relevant numerical values are given below, where µ is the expression
2−2dζk(−1)L�|k(−2).

(k, �) Dk D� ζk(−1) L�|k(−2) µ

C1 5 125 1/30 4/5 1/600
C2 5 225 1/30 32/9 1/135
C3 5 400 1/30 15 1/25

C4 5 1025 1/30 160 1/3
C5 5 1225 1/30 1728/7 18/35
C6 5 1525 1/30 420 7/8
C7 5 1600 1/30 474 79/24 · 5
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(k, �) Dk D� ζk(−1) L�|k(−2) µ

C8 8 256 1/12 3/2 1/27

C9 8 576 1/12 92/9 23/24 · 33

C10 8 1088 1/12 64 1/3
C11 12 144 1/6 1/9 1/25 · 33

C12 12 2304 1/6 138 23/24

C13 13 1521 1/6 352/9 11/33

C14 13 2197 1/6 1332/13 111/104
C15 17 2312 1/3 64 4/3
C16 17 2601 1/3 536/9 67/54
C17 21 441 1/3 32/63 2/189
C18 24 576 1/2 2/3 1/48
C19 24 2304 1/2 23 23/32
C20 28 784 2/3 8/7 1/21
C21 33 1089 1 4/3 1/12
C22 44 1936 7/6 3 7/32
C23 56 3136 5/3 48/7 5/7
C24 57 3249 7/3 44/9 77/108
C25 60 3600 2 60/9 5/6
C26 60 3600 2 8 1
C27 69 4761 2 32/3 4/3
C28 76 5776 19/6 11 209/96
C29 77 5929 2 96/7 12/7
C30 88 7744 23/6 18 69/16
C31 49 16807 −1/21 −64/7 1/147
C32 49 64827 −1/21 −2408/9 43/23 · 33

C33 81 19683 −1/9 −104/27 13/23 · 35

C34 1125 1265625 4/15 128/45 2/33 · 52

C35 2000 4000000 2/3 12 1/25

C36 2048 16777216 5/6 411 5 · 137/29

C37 2304 5308416 1 46/3 23/27 · 3
C38 3600 12960000 8/5 160/3 1/3
C39 4352 18939904 8/3 96 1
C40 4752 22581504 8/3 928/9 29/27

8.3. Remark. The second table above lists the values of ζk (−1) and L�|k(−2).
These were obtained with the help of PARI/GP and the functional equations

ζk(2) = (−2)dπ2d D−3/2
k ζk(−1),

L�|k(3) = (−2)dπ3d(Dk/D�)
5/2L�|k(−2).

The values have been rechecked using MAGMA. The latter software gives
us precision up to more than 40 decimal places. On the other hand, we know
from a result of Siegel [Si] that both ζk(−1) and L�|k(−2) are rational num-
bers. Furthermore, the denominator of ζk(−1) can be effectively estimated
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as explained in [Si]. Similar estimates for L�|k(−2) are given in [Ts]. In this
way, we know that the values listed in the above table are exact. Alterna-
tively, the values can also be obtained from the formulae in [Si] and [Ts],
but the computations will be quite tedious.

Using Proposition 2.12, and the value of µ given in the second table
of 8.2, we conclude the following at once.

8.4. The pair (k, �), with degree d = [k : Q] > 1, can only be one of the
following fifteen: C1, C2, C3, C4, C8, C10, C11, C18, C20, C21, C26, C31, C35,
C38 and C39.

It is convenient to have the following concrete description provided to us
by Tim Steger of the fifteen pairs occurring above. As before, in the sequel,
ζn will denote a primitive n-th root of unity.

C1 = (Q(
√

5),Q(ζ5)),

C2 = (Q(
√

5),Q(
√

5, ζ3)),

C3 = (Q(
√

5),Q(
√

5, ζ4)),

C4 =
(

Q(
√

5),Q(

√

(−13 + √
5)/2)

)

,

C8 = (Q(
√

2),Q(ζ8)),

C10 =
(

Q(
√

2),Q(

√

−7 + 4
√

2)
)

,

C11 = (Q(
√

3),Q(ζ12)),

C18 = (Q(
√

6),Q(
√

6, ζ3)),

C20 = (Q(
√

7),Q(
√

7, ζ4)),

C21 = (Q(
√

33),Q(
√

33, ζ3)),

C26 = (Q(
√

15),Q(
√

15, ζ4)),

C31 = (Q(ζ7 + ζ−1
7 ),Q(ζ7)),

C35 = (Q(ζ20 + ζ−1
20 ),Q(ζ20)),

C38 = (Q(
√

3,
√

5),Q(
√

3,
√

5, ζ4)),

C39 =
(

Q(

√

5 + 2
√

2),Q(

√

5 + 2
√

2, ζ4)
)

.

For the � occurring in any of these fifteen pairs, h�,3 = 1.

8.5. We will now assume that the pair (k, �) is one of the fifteen listed
above; D and the k-group G be as in 1.2. Let (Pv)v∈Vf be a coherent
collection of parahoric subgroups Pv of G(kv) such that for all v ∈ R�, Pv

is maximal. Let Λ = G(k) ∩ ∏

v∈Vf
Pv, and Γ be its normalizer in G(kvo).

Let T be the set of nonarchimedean places of k which are unramified in �
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and Pv is not a hyperspecial parahoric subgroup, and T0 be the subset of T
consisting of places where G is anisotropic. The places in T0 split in �,
cf. 2.2.

We first treat the case where D is a cubic division algebra. In this case,
T0 is nonempty.

8.6. Proposition. Assume that D is a cubic division algebra. If the orbifold
Euler–Poincaré characteristic χ(Γ) of Γ is a reciprocal integer, then the
pair (k, �) must be one of the following six: C2, C3, C10, C18, C31 and C39.
Moreover, T0 consists of exactly one place v, and T = T0. Except for the
pairs C3 and C18, v is the unique place of k lying over 2; for C3 it is the
unique place of k lying over 5, and for C18 it is the unique place of k lying
over 3.

Proof. We recall from Sects. 1 and 2 that χ(Γ) = 3µ(G(kvo)/Γ), and
µ(G(kvo)/Γ) = µ·∏v∈T e′(Pv)/[Γ : Λ], where, as before, µ = 2−2dζk(−1)
L�|k(−2). Moreover, e′(Pv) is an integer for every v, and, as we have shown
in 2.3, [Γ : Λ], which is a power of 3, is at most 31+ # T0h�,3

∏

v∈T −T0
#ΞΘv

.
We note that h�,3 = 1 for the � occurring in any of the fifteen pairs (k, �)
listed in 8.4. From 2.5(ii) we know that for v ∈ T0, e′(Pv) = (qv−1)2(qv+1).
Now the proposition can be proved by a straightforward case-by-case ana-
lysis carried out for each of the fifteen pairs (k, �), keeping in mind Propos-
ition 2.12, the fact that every v ∈ T0 splits in �, and making use of the values
of e′(Pv) and #ΞΘv

given in 2.5 and 2.2 respectively. We can show that
unless (k, �) is one of the six pairs C2, C3, C10, C18, C31 and C39, T , T0 are
as in the proposition, and Pv is maximal for all v ∈ Vf , and is hyperspecial
whenever G(kv) contains such a subgroup, at least one of the following two
assertions will hold:

• The numerator of µ · ∏

v∈T e′(Pv) is divisible by a prime other than 3.
• µ · ∏

v∈T e′(Pv)/3#T0
∏

v∈T −T0
#ΞΘv

> 1.

8.7. Let k, �, and G be as in 1.2 with D = �. We assume here that
d = [k : Q] > 1, h�,3 = 1, and � contains a root ζ of unity of order s.
We will now show that then given any coherent collection (Pmv )v∈Vf of
maximal parahoric subgroups, the principal arithmetic subgroup Λm :=
G(k)∩∏

v∈Vf
Pmv contains an element of order s. In particular, Λm contains

an element of order 2. Moreover, if for every nonarchimedean place v of k
which does not split in �, �v := kv ⊗k � contains a primitive cube-root
of unity, then Λm contains an element of order 3. (In several cases of
interest, Tim Steger, using an argument different from the one employed
below, showed that Λm contains elements of order 2 or 3.) For the proof, let
�′ = k(ω) = k[X]/(X2 + X + 1), where ω is a primitive cube-root of unity,
and Q be the quaternion division algebra with center k, which is unramified
at all nonarchimedean places of k, and which is ramified at all real places
of k if d is even, and if d is odd, it is ramified at all real places v �= vo. It is
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obvious that, as both � and �′ are totally complex quadratic extension of k,
they embed in Q. We will view Q as a �-vector space of dimension 2 in terms
of a fixed embedding of � in Q (the action of � on Q is by multiplication on
the left). Then the reduced-norm-form on Q gives us an hermitian form h0
on the two-dimensional �-vector space Q. Now we choose a ∈ k× so that
the hermitian form h0 ⊥ 〈a〉 is indefinite at vo, and definite at all real places
v �= vo. We may (and we do) assume that h is this form, see 1.2. We will
view G0 := SU(h0) as a subgroup of G = SU(h) in terms of its natural
embedding.

Let cζ ∈ G(k) be the element which on Q acts by multiplication on the
left by ζ , and on the one-dimensional �-subspace of the hermitian form 〈a〉
it acts by multiplication by ζ−2. It is obvious that cζ is of order s, and it
commutes with G0.

We assume in this paragraph that � does not contain a primitive cube-
root of unity but for every nonarchimedean place v of k which does not split
in �, �v := kv ⊗k � contains a primitive cube-root of unity. Let c be the
element of G0(k) which acts on Q by multiplication by ω on the right; c is
of order 3. Let v be a nonarchimedean place of k which does not split in �.
Then Qv := kv ⊗k Q = �v ⊗k �′ = �v[X]/(X − ω) ⊕ �v[X]/(X − ω2).
Let ev = (1, 0) and fv = (0, 1) in �v[X]/(X −ω)⊕ �v[X]/(X −ω2) = Qv.
Then ev and fv are eigenvectors of c for the eigenvalues ω and ω2

respectively. As ev · fv = 0, the reduced norm of both ev and fv in Qv

is zero. For x ∈ k×
v , let sv(x) ∈ G0(kv) be the element which maps ev

onto xev and fv onto x−1 fv. Then there is a 1-dimensional kv-split torus Sv

of G0 such that Sv(kv) = { sv(x) | x ∈ k×
v }. It is obvious that c commutes

with Sv.
As c and cζ are k-rational elements of finite order, they lie in Pmv for

all but finitely many v ∈ Vf . We assert that for every v ∈ Vf , c (resp., cζ )
belongs to a conjugate of Pmv under an element of G(kv). This is obvious
if v splits in � since then the maximal parahoric subgroups of G(kv) form
a single conjugacy class under G(kv). If v does not split in �, then both G
and G0 are of rank 1 over kv, and as c commutes with the maximal kv-split
torus Sv of G described above, it fixes the apartment corresponding to Sv, in
the building of G(kv), pointwise. On the other hand, as cζ commutes with
all of G0, it fixes pointwise the apartment corresponding to any maximal
kv-split torus of G contained in G0. From these observations our assertion
follows. Now Proposition 5.3 implies that a conjugate of c (resp., cζ ) under
the group G(k) lies in Λm.

We will now prove the following proposition where Γ is as in 2.1,
Λ = Γ ∩ G(k), and Γ is the image of Γ in G(kvo).

8.8. Proposition. If D = �, and Γ contains a torsion-free subgroup Π
which is cocompact in G(kvo) and whose Euler–Poincaré characteristic
is 3, then the pair (k, �) can only be one of the following five: C1, C8, C11,
C18 and C21.



358 G. Prasad, S.-K. Yeung

Proof. It follows from 4.1 that d > 1, so (k, �) can only be one of the fifteen
pairs listed in 8.4. We will use the result proved in 8.7 to exclude the ten
pairs not listed in the proposition.

Let ˜Π be the inverse image of Π in G(kvo). As observed in 1.3, the
orbifold Euler–Poincaré characteristic χ(˜Π) of ˜Π is 1, hence the orbifold
Euler–Poincaré characteristic χ(Γ) of Γ is a reciprocal integer. Moreover,
[Γ : Λ] is a power of 3. Let Λm be a maximal principal arithmetic sub-
group of G(k) containing Λ. From the volume formula (11) we see that
µ(G(kvo)/Λ

m) is an integral multiple aµ of µ = 2−2dζk(−1)L�|k(−2). We
assume now that D = �, and (k, �) is one of the following ten pairs: C2,
C3, C4, C10, C20, C26, C31, C35, C38 and C39. These are the pairs appearing
in 8.4 excluding the five listed in the proposition. To each of these pairs we
associate a prime p as follows. For all these pairs except C3 and C35, p is
2. For C3, p is 3. The totally complex number field � in C35 equals Q(ζ20).
For the pair C35, p is 5. We observe that the denominator of µ, for each of
the ten pairs, is prime to the corresponding p.

We will first treat the following nine pairs: C2, C4, C10, C20, C26, C31, C35,
C38 and C39. As � occurring in each of these pairs contains a root of unity
of order p, and h�,3 = 1, it follows from 8.7 that Λm contains an element of
order p. Hence, either Λ contains an element of order p, or its index in Λm is
a multiple of p. This implies that either Γ contains an element of order p, or
the numerator of µ(G(kvo)/Γ) = µ(G(kvo)/Λ

m)[Λm : Λ]/[Γ : Λ] = aµ ·
[Λm : Λ]/[Γ : Λ] is a multiple of p. This in turn implies that either ˜Π
contains an element of order p, or the numerator of χ(˜Π) = 3µ(G(kvo)/

˜Π)
is a multiple of p. Both these alternatives are impossible, the former because
any element of finite order in ˜Π is of order 3, whereas p = 2 or 5, and the
latter because χ(˜Π) = 1.

We will now work with the remaining pair C3. In this pair, k = Q(
√

5),
and � = Q(

√
5, ζ4); � does not contain a primitive cube-root of unity, but for

every nonarchimedean place v of k which does not split in �, �v := kv ⊗k �
does contain a primitive cube-root of unity. (To see this, note that if K is
a nonarchimedean local field which does not contain a primitive cube-root
of unity, and whose residue field is of characteristic different from 3, then
K(ζ3) is its unique unramified extension of degree 2. Observe also that there
is just one nonarchimedean place of k which ramifies in �, it is the place v
lying over 2. As the residue field of kv is the field with 4 elements, kv contains
a primitive cube-root of unity. On the other hand, the unique place of k lying
over 3 splits in �.) For v ∈ Vf , let Pv be as in 2.1. Then Λ = G(k)∩∏

v∈Vf
Pv.

Using the volume formula (11), the values of e′(Pv) given in 2.5, and the
value of µ given in the second table in 8.2, it is easy to see that for all
v ∈ Vf , Pv is a maximal parahoric subgroup and it is hyperspecial whenever
G(kv) contains such a subgroup. Hence, Λ is a maximal principal arithmetic
subgroup of G(k), and χ(Λ) = 3µ(G(kvo)/Λ) = 3µ. We know from 5.4
that [Γ : Λ] = 3 since h�,3 = 1 and T0 is empty. Then χ(Γ) = χ(Λ)/3 = µ.
Since χ(˜Π) = 1, the index of ˜Π in Γ is 1/µ, which is a power of 2 in the
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case presently under consideration. As � does not contain a primitive cube-
root of unity, the center of G(k), and so also of Λ, is trivial, and therefore,
Γ = Λ ·C(kvo), where C(kvo) is the center of G(kvo) which is a cyclic group
of order 3. We conclude now that the image Γ of Γ in the adjoint group
G(kvo) = PU(2, 1) coincides with the image Λ of Λ, and the index of Π

in Λ is 1/µ. As Λ is a maximal principal arithmetic subgroup of G(k), it
follows from 8.7 that it, and so also Λ, contains an element of order 3. But
then any subgroup of Λ of index a power of 2, in particular, Π, contains an
element of order 3. This contradicts the fact that Π is torsion-free. Thus we
have proved the proposition.

9. Five additional classes of fake projective planes

Until 9.5, (k, �) will be one of the following six pairs (see Proposition 8.6).

C2 = (Q(
√

5),Q(
√

5, ζ3)),

C3 = (Q(
√

5),Q(
√

5, ζ4)),

C10 =
(

Q(
√

2),Q(

√

−7 + 4
√

2)
)

,

C18 = (Q(
√

6),Q(
√

6, ζ3)),

C31 = (Q(ζ7 + ζ−1
7 ),Q(ζ7)),

C39 =
(

Q(

√

5 + 2
√

2),Q(

√

5 + 2
√

2, ζ4)
)

.

Let v be the unique place of k lying over p := 2 if (k, �) �= C3, C18;
if (k, �) = C3, let v be the unique place of k lying over p := 5; and if
(k, �) = C18, let v be the unique place of k lying over p := 3. Let qv be the
cardinality of the residue field of kv.

9.1. Let D be a cubic division algebra with center � whose local invariants
at the two places of � lying over v are nonzero and negative of each other,
and whose local invariant at all the other places of � is zero. There are
two such division algebras, they are opposite of each other. kv ⊗k D =
(kv ⊗k �) ⊗� D = D ⊕ Do, where D is a cubic division algebra with
center kv, and Do is its opposite.

We fix a real place vo of k, and an involution σ of D of the second kind
so that k = {x ∈ � | σ(x) = x}, and if G is the simple simply connected
k-group with

G(k) = {z ∈ D× | zσ(z) = 1 and Nrd(z) = 1},
then G(kvo)

∼= SU(2, 1), and G is anisotropic at all real places of k different
from vo. Any other such involution of D , or of its opposite, similarly
determines a k-group which is k-isomorphic to G (cf. 1.2).
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The set T0 of nonarchimedean places of k where G is anisotropic
equals {v}. As σ(D) = Do, it is easily seen that G(kv) is the compact
group SL1(D) of elements of reduced norm 1 in D. The first congruence
subgroup SL(1)

1 (D) of SL1(D) is known to be a pro-p group, and C :=
SL1(D)/SL(1)

1 (D) is a cyclic group of order (q3
v−1)/(qv−1) = q2

v+qv+1,
see [Ri, Theorem 7(iii)(2)].

Let (Pv)v∈Vf be a coherent collection of maximal parahoric subgroups Pv

of G(kv), v ∈ Vf , such that Pv is hyperspecial whenever G(kv) contains
such a subgroup (recall that according to Proposition 8.6, T = T0). Let
Λ = G(k) ∩ ∏

v∈Vf
Pv. Let Γ be the normalizer of Λ in G(kvo). It follows

from 5.4 that [Γ : Λ] = 9 since #T0 = 1.
Then χ(Λ) = 3µ(G(kvo)/Λ) = 3µ · e′(Pv), and (see 2.5 (ii)) e′(Pv) =

(qv − 1)2(qv + 1). We list qv, µ and χ(Λ) in the table given below.

(k, �) C2 C3 C10 C18 C31 C39

qv 4 5 2 3 8 2
µ 1/135 1/32 1/3 1/48 1/147 1

χ(Λ) 1 9 3 1 9 9

Let G be the adjoint group of G. Let Λ (resp., Γ) be the image of Λ

(resp., Γ) in G(kvo).
We shall now prove the following lemma.

9.2. Lemma. G(k) is torsion-free except when (k, �) is either C2 or C18,
in which case any nontrivial element of G(k) of finite order is central and
hence is of order 3.

Proof. Let x ∈ G(k) (⊂ D) be a nontrivial element of finite order, say of
order m. As the reduced norm of −1 is −1, −1 /∈ G(k), and so m is odd.
Let L be the �-subalgebra of D generated by x. Then L is a field extension
of � of degree 1 or 3. If L = �, then x is clearly central, and hence it is of
order 3. As � does not contain a nontrivial cube-root of unity unless (k, �)
is C2 or C18, to prove the lemma, we can assume that L is an extension of �
of degree 3. Then [L : Q] = 6d, where d = 2, 3 or 4.

(i) (k, �) = C2 or C18: Then d = 2, [L : Q] = 12, and ζ3 is in �. Hence,
we can assume that m is a multiple of 3. Then as φ(m), where φ is the Euler
function, must divide 12, we conclude that m is either 9 or 21. We assert
that if (k, �) = C2 or C18, then m = 9. For if m = 21, then L ∼= Q(ζ21),
and since 3 and 7 are the only primes which ramify in Q(ζ21), whereas 5
ramifies in k ⊂ L , if (k, �) = C2, so m cannot be 21 in this case. Next
we observe that if (k, �) = C10, C18, or C39, then as 7 � D�, 7 does not
ramify in �, and hence the ramification index of L at 7 is at most 3. But the
ramification index of Q(ζ7) at 7 is 6. So if (k, �) = C10, C18, or C39, then
L cannot contain a nontrivial 7-th root of unity. We conclude, in particular,
that if (k, �) = C18, m = 9.

Now let (k, �) = C2 or C18. Then, as � contains ζ3 , and x3 is of order 3, the
latter is contained in �. So any automorphism of L/� will fix x3, and hence it
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will map x to either x, or to x4, or to x7. Therefore, Nrd(x) = x12 = x3 �= 1
and x cannot belong to G(k).

(ii) (k, �) = C3: Then SL(1)
1 (D) is a pro-5 group, and C is a group of

order 31. Since φ(31) = 30 > 6d = 12, we conclude that m must be
a power of 5. But �, and hence L , contains ζ4, so L contains ζ4m . This is
impossible since φ(4m) is not a divisor of 12.

(iii) (k, �) = C10, or C31, or C39: Then SL(1)
1 (D) is a pro-2 group,

and C is a group of order 7 if (k, �) = C10 or C39, and is of order 73 if
(k, �) = C31. Therefore, if (k, �) = C31, m = 73, but this is impossible
since φ(73) = 72 > 6d = 18. On the other hand, if (k, �) = C10 or C39,
then m = 7. But this is impossible since, as we observed above, L does not
contain a nontrivial 7-th root of unity.

9.3. Classes of fake projective planes arising from C2 and C18. We
assume here that (k, �) is either C2 or C18. Then � contains a nontriv-
ial cube-root of unity, and hence the center C(k) of G(k) is a group of
order 3 which is contained in Λ. The naural homomorphism Λ → Λ

is surjective and its kernel equals C(k). Hence, χ(Λ) = 3χ(Λ) = 3.
Lemma 9.2 implies that Λ is torsion-free. According to [Ro, The-
orem 15.3.1], H1(Λ,C) vanishes which implies that so does H1(Λ,C).
By Poincaré-duality, H3(Λ,C) also vanishes. We conclude that if B is the
symmetric space of G(kvo), then B/Λ is a fake projective plane. Its funda-
mental group is Λ. There is a natural faithful action of Γ/Λ on B/Λ.
As the normalizer of Λ in G(kvo) is Γ, the automorphism group of B/Λ

equals Γ/Λ.
Clearly, [Γ : Λ] = [Γ : Λ] = 9. Now let Π be a torsion-free subgroup

of Γ of index 9. Then χ(Π) = 3, and so if H1(Π,C) = 0 (or, equivalently,
Π/[Π,Π] is finite), then B/Π is a fake projective plane, and its fundamental
group is Π. The set of these fake projective planes is the class associated
with Γ.

9.4. Remark. Let (k, �) = C2, and D, Λ and Λ be as in 9.1. Then as
SL1(D)/SL(1)

1 (D) is a cyclic group of order 21, SL1(D) contains a (unique)
normal subgroup N of index 3 containing SL(1)

1 (D). Let Λ+ = Λ∩ N. Then
since SL(1)

1 (D) is a pro-2 group, Λ+ is a torsion-free normal subgroup of Λ

of index 3. It maps isomorphically onto Λ.
It is not clear that in case (k, �) = C18, Λ contains a subgroup which

maps isomorphically onto Λ.

9.5. The class of fake projective planes arising from C10. We now
assume that (k, �) = C10. Then Λ is torsion-free (9.2). Hence, Λ ∼= Λ, and
therefore, χ(Λ) = χ(Λ) = 3. Theorem 15.3.1 of [Ro] once again implies
that H1(Λ,C), and so also H1(Λ,C), vanishes. From this we conclude, as
above, that if B is the symmetric space of G(kvo), then B/Λ is a fake project-
ive plane. Its fundamental group is Λ ∼= Λ. There is a natural faithful action
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of Γ/Λ on B/Λ. As the normalizer of Λ in G(kvo) is Γ, the automorphism
group of B/Λ equals Γ/Λ.

Since [Γ : Λ] = 9, [Γ : Λ] = 3, and as in 9.3, any torsion-free
subgroup Π of Γ of index 3 with vanishing H1(Π,C) is the fundamental
group of a fake projective plane, namely, that of B/Π. The set of these fake
projective planes is the class associated with Γ.

9.6. The constructions in 9.3 and 9.5 give us five distinct classes of fake
projective planes. To see this, note that the construction is independent of
the choice of a real place of k since (in 9.3 and 9.5) k is a quadratic ex-
tension of Q and the nontrivial Galois automorphism of k/Q interchanges
the two real places of k. On the other hand, if v is a nonarchimedean place
of k which is unramified in �, the parahoric Pv involved in the construction
of Λ is hyperspecial, and the hyperspecial parahoric subgroups of G(kv)

are conjugate to each other under G(kv), see [Ti2, 2.5]. But if v is a nonar-
chimedean place of k which ramifies in �, there are two possible choices
of a maximal parahoric subgroup Pv of G(kv) up to conjugation. Hence, it
follows from Proposition 5.3 that each of the pairs C2 and C10 gives two
distinct classes of fake projective planes, and the pair C18 gives only one
since in case (k, �) = C2 or C10, there is (just) one nonarchimedean place
of k which ramifies in �, and if (k, �) = C18, every nonarchimedean place
of k is unramified in � since D� = D2

k .

9.7. We will now show that the pairs C3, C31 and C39 do not give rise to any
fake projective planes. For this purpose, let (k, �) be one of these pairs here.
Then hk = 1 = h�. We first recall that Λ is a torsion-free subgroup (9.2) and
its Euler–Poincaré characteristic is 9. Therefore, χ(Λ) = 9. As [Γ : Λ] = 9,
[Γ : Λ] = 3. Hence, the orbifold Euler–Poincaré characteristic χ(Γ) of Γ
equals 3. So no proper subgroup of Γ can be the fundamental group of
a fake projective plane. We will prove presently that Γ contains an element
of order 3. This will imply that it cannot be the fundamental group of a fake
projective plane either.

As before, let v be the unique place of k lying over 5 if the pair is C3, and
the unique place of k lying over 2 if the pair is either C31 or C39. Let v′ and v′′
be the two places of � lying over v. Recall that the cubic division algebra D
ramifies only at v′ and v′′. Hence, v is the only nonarchimedean place of k
where G is anisotropic, at all the other nonarchimedean places of k it is
quasi-split. Let v′ and v′′ be the normalized valuations of � corresponding
to v′ and v′′ respectively.

To find an element of G(k) of order 3 which normalizes Λ (and hence lies
in Γ) we proceed as follows. Since h� = 1, there is an element a ∈ �× such
that v′(a) = 1, and for all the other normalized valuations v of �, v(a) = 0.
Let λ = a/σ(a). Then v′(λ) = 1, v′′(λ) = −1, for all normalized valuations
v �= v′, v′′, of �, v(λ) = 0, and N�/k(λ) = 1. The field L := �[X]/(X3 − λ)
admits an involution τ (i.e., an automorphism of order 2) whose restriction
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to the subfield � coincides with σ |�; τ is defined as follows: let x be the
unique cube-root of λ in L , then τ(x) = x−1.

We assert that there is an embedding ι of L in D such that, in terms of this
embedding, σ |L = τ . Since kv ⊗k L = (kv ⊗k �) ⊗� L is clearly a direct
sum of two cubic extensions of kv, L does embed in D . Now to see that there
is an embedding such that σ |L = τ , we can apply [PrR, Proposition A.2].
The existence of local embeddings respecting the involutions σ and τ need
to be checked only at the real places of k, since at all the nonarchimedean
places of k, G is quasi-split (see p. 340 of [PlR]). We will now show that
for every real place v of k, there is an embedding ιv of kv ⊗k L in kv ⊗k D
such that τ = ι−1

v σιv. This will imply that there is an embedding ι of L in D
with the desired property.

Let y = x + τ(x) = x + x−1. Then Lτ = k[y]. As y3 = x3 + x−3 +
3(x + x−1) = λ + σ(λ) + 3y, y3 − 3y − b = 0, where b = λ + σ(λ) ∈ k.
The discriminant of the cubic polynomial Y 3 − 3Y − b is 27(4 − b2) =
27{4λσ(λ)−(λ+σ(λ))2} = −27(λ−σ(λ))2. Since � is totally complex, for
any real place v of k, kv ⊗k � = C, and λ−σ(λ) is purely imaginary. So the
discriminant −27(λ − σ(λ))2 is positive in kv = R. Therefore, for any real
place v of k, all the roots of Y 3 −3Y −b are in kv. Hence, the smallest Galois
extension of k containing Lτ is totally real, and so it is linearly disjoint from
the totally complex quadratic extension � of k. Moreover, kv ⊗k L is a direct
sum of three copies of C, each of which is stable under τ . This implies the
existence of an embedding ιv of kv ⊗k L in kv ⊗k D , and hence of an
embedding ι of L in D , with the desired property. We use ι to identify L
with a maximal subfield of D .

For a nonzero element h ∈ Lτ , which we will choose latter, we denote
by σh the involution of D defined as follows

σh(z) = hσ(z)h−1 for z ∈ D.

Now let G (resp., G) be the connected simple (resp., reductive) k-subgroup
of GL1,D such that

G(k) = {

z ∈ D× | zσh(z) = 1 and Nrd(z) = 1
}

(

resp., G(k) = {

z ∈ D× | zσh(z) ∈ k×})

.

G is a normal subgroup of G, the center C of the latter is k-isomorphic
to R�/k(GL1). The adjoint action of G on the Lie algebra of G induces
a k-isomorphism of G/C onto the adjoint group G of G.

As xσh(x) = 1, x is an element of G(k). Let g be its image in G(k).
Since x3 = λ ∈ �, g is an element of order 3. Let T be the centralizer of g
in G. Then T is a maximal k-torus of G, and its group of k-rational points
is L× ∩ G(k).

We will choose h so that (1) G(kvo) is isomorphic to SU(2, 1), and for
all real places v �= vo of k, G(kv) is isomorphic to the compact group
SU(3). This condition will clearly hold if for every real place v of k, h
is a square in kv ⊗k Lτ , or, equivalently, in every embedding of Lτ in R,
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h is positive. It will imply that the group G defined here in terms of the
involution σh of D is k-isomorphic to the group introduced in 9.1; see
1.2. (2) For every nonarchimedean place v of k such that G(kv) contains
a hyperspecial parahoric subgroup (this is the case if, and only if, v �= v
and v is unramified in �), g normalizes one.

The assertions in the next four paragraphs hold for an arbitrary nonzero
h ∈ Lτ . We will choose h in the fifth paragraph below.

We first observe that the reduced norm of x (x considered as an element
of D) is λ, and the image of g in H1(k, C) ⊂ �×/�×3, where C is the center
of G, is the class of λ−1 in �×/�×3. Now let v �= v be a nonarchimedean place
of k which splits in �. Then G(kv) ∼= SL3(kv), and hence every maximal
parahoric subgroup of G(kv) is hyperspecial. As λ is a unit in both the
embeddings of � in kv, g does normalize a maximal parahoric subgroup
of G(kv), see [BP, 2.7 and 2.3(i)].

Let v now be a nonarchimedean place of k which does not split in �, and
�v := kv ⊗k � is an unramified field extension of kv. If 3 does not divide
qv + 1 (for example, if v lies over 3), then g must normalize a hyperspecial
parahoric subgroup of G(kv). To see this, we assume that g normalizes
a non-hyperspecial maximal parahoric subgroup. The number of edges in
the Bruhat–Tits building of G(kv) emanating from the vertex corresponding
to this maximal parahoric subgroup is qv + 1. Since g is a k-automorphism
of G of order 3, and 3 does not divide qv + 1, at least one of these edges is
fixed by g. This implies that g normalizes a hyperspecial parahoric subgroup
of G(kv).

If v is a nonarchimedean place of k which does not lie over 3, then
according to the main theorem of [PY], the set of points fixed by g in
the Bruhat–Tits building of G(kv) is the Bruhat–Tits building of T(kv). We
conclude from this that if T is anisotropic at v (i.e., T(kv) is compact), then
as the building of T(kv) consists of a single point, g fixes a unique point in
the building of G(kv). This implies that if T is anisotropic at v (and v does
not lie over 3), then g normalizes a unique parahoric subgroup of G(kv);
if v is unramified in L , this parahoric subgroup is the unique parahoric
subgroup of G(kv) containing T(kv) ([Ti2, 3.6.1]). Since g is a k-rational
automorphism of G of finite order, it normalizes an arithmetic subgroup
of G(k). Hence, for all but finitely many nonarchimedean places v of k,
g normalizes a hyperspecial parahoric subgroup of G(kv). Thus, for all
but finitely many v in the set of nonarchimedean places of k where T is
anisotropic, the unique parahoric subgroup of G(kv) containing T(kv) is
hyperspecial.

We assume now that v is a nonarchimedean place of k which does not
split in �, does not lie over 3, and �v := kv ⊗k � is an unramified field
extension of kv. Then �v contains all the cube-roots of unity, and �v ⊗� L
is either an unramified field extension of �v in which case kv ⊗k Lτ is
an unramified field extension of kv, or �v ⊗� L is a direct sum of three
copies of �v in which case kv ⊗k Lτ is either the direct sum of kv and �v,
or it is the direct sum of three copies of kv. In case kv ⊗k Lτ is a field,
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the torus T is anisotropic over kv and its splitting field is the unramified
cubic extension kv ⊗k L = �v ⊗� L of �v. This implies at once that the
unique parahoric subgroup of G(kv) containing T(kv) is hyperspecial. This
parahoric is normalized by g. On the other hand, if kv ⊗k Lτ = kv ⊕ �v,
then T is isotropic over kv. The apartment in the Bruhat–Tits building
of G(kv) corresponding to this torus is fixed pointwise by g. In particular,
g fixes a hyperspecial parahoric subgroup of G(kv).

Now let S be the set of all real places of k, and all the nonarchimedean
places v such that (i) v does not lie over 3, (ii) �v := kv ⊗k � is an unramified
field extension of kv, and (iii) kv ⊗k Lτ is the direct sum of three copies of kv.
Then kv ⊗k L = (kv ⊗k Lτ ) ⊗k � is the direct sum of three copies of �v

each of which is stable under σh . This implies that for all nonarchimedean
v ∈ S, T(kv) is compact, i.e., T is anisotropic over kv. We note that S does
not contain the place of k lying over 2. As the smallest Galois extension of k
containing Lτ is linearly disjoint from � over k, there is a nonarchimedean
place w of k such that kw ⊗k L is an unramified field extension of kw of
degree 6. For this w, the field kw ⊗k L = kw ⊗k Lτ ⊗k � is a quadratic
extension of the subfield kw ⊗k Lτ . Hence, by local class field theory,
N�/k((kw ⊗k L)×) is a subgroup of index 2 of (kw ⊗k Lτ )×. Using this,
and the fact that as L is a quadratic extension of Lτ , by global class field
theory NL/Lτ (IL) · Lτ× is a subgroup of index 2 of ILτ , where IL and ILτ

are the idèle groups of L and Lτ respectively, and NL/Lτ : IL → ILτ is the
norm map, we conclude that NL/Lτ (I S

L ) · Lτ× = I S
Lτ , where I S

L (resp., I S
Lτ )

denotes the restricted direct product of (kv ⊗k L)× (resp., (kv ⊗k Lτ )×),
v ∈ S. This implies that there is an element h ∈ Lτ× which is positive in
every embedding of Lτ in R, and is such that for every nonarchimedean
v ∈ S, we can find an isomorphism of �v ⊗� D with the matrix algebra
M3(�v) which maps �v ⊗� L onto the subalgebra of diagonal matrices
(the image of T(kv) ⊂ (�v ⊗� D)× under such an isomorphism is the
group of diagonal matrices of determinant 1 whose diagonal entries are
elements of �v of norm 1 over kv), and which carries the involution σh into
the standard involution of M3(�v). We choose such an h. Then for every
nonarchimedean v ∈ S, the unique parahoric subgroup of G(kv) containing
T(kv) is hyperspecial, this parahoric subgroup is normalized by g.

From the discussion above, it follows that if v �= v is any nonar-
chimedean place of k which is unramified in �, then g normalizes a hyper-
special parahoric subgroup of G(kv). We will now show that if v ramifies
in �, then g normalizes a conjugate of every maximal parahoric subgroup
of G(kv).

For (k, �) = C39, since D� = D2
k , every nonarchimedean place of k is

unramified in �. If (k, �) = C3, the only place of k which ramifies in �
is the place v lying over 2, the residue field of kv has 4 elements, so in
the Bruhat–Tits building of G(kv), 5 edges emanate from every vertex. If
(k, �) = C31, there is a unique nonarchimedean place v of k which ramifies
in �. It is the unique place of k lying over 7. The residue field of kv has 7
elements, so in the Bruhat–Tits building of G(kv), 8 edges emanate from
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every vertex. We infer that if (k, �) is either C3 or C31, g must fix an edge.
This implies that g normalizes a conjugate of every maximal parahoric
subgroup of G(kv).

As g normalizes an arithmetic subgroup of G(k), it does normalize
a coherent collection of parahoric subgroups of G(kv), v ∈ Vf . Since any
two hyperspecial parahoric subgroups of G(kv) are conjugate to each other
under an element of G(kv), from the considerations above we conclude that
g normalizes a coherent collection (P′

v)v∈Vf of maximal parahoric subgroups
such that for every v ∈ Vf , P′

v is conjugate to Pv (Pv’s are as in 9.1) under
an element of G(kv). Proposition 5.3 implies that a conjugate of g (in G(k))
normalizes (Pv)v∈Vf , and hence it normalizes Λ, and therefore lies in Γ. This
proves that Γ contains an element of order 3.

Combining the results of 8.6, 9.3, and 9.5–9.7 we obtain the following.

9.8. Theorem. There exist exactly five distinct classes of fake projective
planes with the underlying totally real number field k of degree > 1,
a totally complex quadratic extension � of k, and a cubic division alge-
bra D with center �. The pair (k, �) = (Q(

√
5),Q(

√
5, ζ3)) gives two of

these five, the pair (Q(
√

2),Q(
√

−7 + 4
√

2)) also gives two, and the pair
(Q(

√
6),Q(

√
6, ζ3)) gives one more.

10. Some geometric properties of the fake projective planes

In the following, P will denote any of the fake projective planes constructed
in 5.9–5.12 and 9.3, 9.5, and Π will denote its fundamental group. Let the
pair (k, �), the k-form G of SU(2, 1), and the real place vo of k, be the ones
associated to Π. Let G be the adjoint group of G, C the center of G, and
ϕ : G → G be the natural isogeny. Then Π is a torsion-free cocompact
arithmetic subgroup of G(kvo) (∼= PU(2, 1)). Let ˜Π be the inverse image of
Π in G(kvo). Let Λ and Γ be as in 1.3. Then Λ = Γ ∩ G(k), and Γ is the
normalizer of Λ in G(kvo).

10.1. Theorem. H1(P,Z) = H1(Π,Z) = Π/[Π,Π] is nontrivial.

Proof. The image Γ of Γ, and hence the image Π of ˜Π, in G(kvo) is
contained in G(k), see [BP, Proposition 1.2]. There is a nonarchimedean
place v of k such that the group G(kv) is the compact group SL1(D) of
elements of reduced norm 1 in a cubic division algebra D with center kv
(cf. 5.7 and 9.1). We will view Π ⊂ G(k) as a subgroup of G(kv). We
observe that G(kv) (∼= D×/k×

v ) is a pro-solvable group, i.e., if we define
the decreasing sequence {Gi} of subgroups of G := G(kv) inductively as
follows: G0 = G, and Gi = [Gi−1,Gi−1], then

⋂

Gi is trivial, to see this
use [Ri, Theorem 7(i)]. From this it is obvious that for any subgroup H
of G, [H,H] is a proper subgroup of H . We conclude, in particular, that
Π/[Π,Π] is nontrivial.
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10.2. Remark. We can use the structure of SL1(D) to provide an explicit
lower bound for the order of H1(P,Z).

In the following, P is one of the fake projective planes constructed in
5.9–5.12 and 9.5 (but not in 9.3).

10.3. Proposition. The short exact sequence

{1} → C(kvo) → ˜Π → Π → {1}
splits.

Proof. We know from 5.4 that [Γ : Λ] = 9. As observed in the proof
of the preceding theorem, the image Γ of Γ, so the image Π of ˜Π, in
G(kvo) is contained in G(k). Hence, Γ ⊂ G(k), where k is an algebraic
closure of k. Now let x be an element of Γ. As ϕ(x) lies in G(k), for
every γ ∈ Gal(k/k), ϕ(γ(x)) = ϕ(x), and hence γ(x)x−1 lies in C(k).
Therefore, (γ(x)x−1)3 = γ(x)3x−3 = 1, i.e., γ(x)3 = x3, which implies that
x3 ∈ Γ ∩ G(k) = Λ.

Let Λ be the image of Λ in G(kvo). Then Λ is a normal subgroup of Γ
of index 3 (we have excluded the fake projective planes arising in 9.3 to
ensure this). Now we observe that ˜Π ∩ Λ is torsion-free. This is obvious
from Lemmas 5.6 and 9.2 if � �= Q(

√−7), since then G(k), and hence Λ, is
torsion-free. On the other hand, if � = Q(

√−7), then any nontrivial element
of finite order of Λ, and so of ˜Π∩Λ, is of order 7 (Lemma 5.6), but as Π is
torsion-free, the order of such an element must be 3. We conclude that ˜Π∩Λ
is always torsion-free. Therefore, it maps isomorphically onto Π ∩ Λ. In
particular, if Π ⊂ Λ, then the subgroup ˜Π∩Λ maps isomorphically onto Π
and we are done.

Let us assume now that Π is not contained in Λ. Then Π projects onto
Γ/Λ, which implies that Π ∩ Λ is a normal subgroup of Π of index 3. We
pick an element g of Π − Λand let g̃ be an element of ˜Π which maps onto g.
Then g̃3 ∈ ˜Π ∩ G(k) = ˜Π ∩ Λ, and

⋃

0�i�2 g̃i(˜Π ∩ Λ) is a subgroup of ˜Π

which maps isomorphically onto Π. This proves the proposition.

10.4. We note here that whenever the assertion of Proposition 10.3 holds,
we get the geometric result that the canonical line bundle KP of P is three
times a holomorphic line bundle. To see this, we will use the following
embedding of the open unit ball B as an SU(2, 1)-orbit in P2

C
given in

Kollár [Ko, 8.1]. We think of SU(2, 1) as the subgroup of SL3(C) which
keeps the hermitian form h(x0, x1, x2) = −|x0|2 + |x1|2 + |x2|2 on C3

invariant. We use the homogeneous coordinates (x0 : x1 : x2) on P2
C

. The
affine plane described by x0 �= 0 admits affine coordinates z1 = x1/x0 and
z2 = x2/x0, and the open unit ball B = {(z1, z2) | |z1|2 + |z2|2 < 1 } in this
plane is an SU(2, 1)-orbit. We identify B with the universal cover ˜P of P.
In the subgroup (of the Picard group) consisting of SU(2, 1)-equivariant
line bundles on P2

C
, the canonical line bundle KP2

C

of P2
C

equals −3H for
the hyperplane line bundle H on P2

C
([Ko], Lemma 8.3). Proposition 10.3
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implies that Π can be embedded in SU(2, 1) as a discrete subgroup, and
hence, KP2

C

|
˜P and −H|

˜P descend to holomorphic line bundles K and L on
the fake projective plane P. As K = 3L and K is just the canonical line
bundle KP of P, the assertion follows.

10.5. Remark. It follows from Theorem 3(iii) of Bombieri [B] that three
times the canonical line bundle KP of P is very ample, and it provides an
embedding of P in P27

C
as a smooth surface of degree 81.

The above result can be improved whenever Proposition 10.3 holds.
From 10.4, K = KP = 3L for some holomorphic line bundle L; L is ample
as K is ample. From Theorem 1 of Reider [Re], K + 4L = 7L is very ample.
Kodaira Vanishing Theorem implies that hi(P, K + 4L) = 0 for i > 0. It
follows from Riemann–Roch, using the Noether formula for surfaces, that

h0(P, 7L) = 1

2
c1(7L)(c1(7L) − c1(3L)) + 1

12

(

c2
1(3L) + c2(P)

) = 15.

Let Φ : P → P14
C

be the projective embedding associated to 7L. The degree
of the image is given by

degΦ(P) =
∫

Φ(P)

c2
1(HP14

C

) =
∫

P
c2

1(Φ
∗ HP14

C

) = c2
1(7L) = 49.

Hence, holomorphic sections of 7L give an embedding of P as a smooth
surface of degree 49 in P14

C
.

Appendix: Table of class numbers

The following table lists (D�, h�, n�,3) for all complex quadratic extensions
� of Q with D� � 79.

(3, 1, 1) (4, 1, 1) (7, 1, 1) (8, 1, 1) (11, 1, 1)
(15, 2, 1) (19, 1, 1) (20, 2, 1) (23, 3, 3) (24, 2, 1)
(31, 3, 3) (35, 2, 1) (39, 4, 1) (40, 2, 1) (43, 1, 1)
(47, 5, 1) (51, 2, 1) (52, 2, 1) (55, 4, 1) (56, 4, 1)
(59, 3, 3) (67, 1, 1) (68, 4, 1) (71, 7, 1) (79, 5, 1).
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