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ON THE COHOMOLOGY OF PARABOLIC LINE
BUNDLES

Indranil Biswas

1. Introduction

Let X be a smooth projective variety over C of dimension n. Let
D =

∑d
i=1 Di be a divisor of normal crossing with decomposition into irre-

ducible components. Fix rational numbers {α1, . . . , αd} with 0 < αi < 1.
Assume that the Poincaré dual of the Q-divisor

∑d
i=1 αiDi is in the im-

age of H2(X, Z) in H2(X, Q). Such a data constitutes a parabolic bundle
in the sense of [MY]. Let P (X) be a component of the moduli space of
parabolic bundles of parabolic degree zero (which simply is a component
of the Picard group of X consisting of line bundles with first Chern class
−

∑d
i=1 αi[Di], where [Di] is the Poincaré dual of Di).

Let Pic0(X) be the abelian variety consisting of isomorphism classes of
topologically trivial line bundles. The group Pic0(X) acts on P (X) using
tensor product, and P (X) is an affine group for Pic0(X).

Define the subvariety

T i
m := {L ∈ P (X) | dimHi(X, L) ≥ m} ⊂ P (X).

We prove the following theorem.

Theorem A. Any irreducible component of T i
m is a translation of an

abelian subvariety of Pic0(X) by a point of P (X) for the above action.

The special case of the above theorem where D is empty was proved in
[GL2].

Let Y be smooth variety on which a finite group G acts, such that the
quotient, Y/G, is a smooth variety. We first observe that if we consider G-
invariant part of the cohomology, the result in [GL2] easily extends to the
case of the moduli space of the group of topologically trivial line bundles
on Y equipped with a lift of the action of G.

We now describe the main theme of this work. Using the “covering
lemma” of Y. Kawamata, the moduli space P (X) can be identified with
the moduli space G-equivariant line bundles of the above type for some
suitable Y and G.
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Using the above identification we deduce Theorem A from the corre-
sponding result on G-equivariant bundles.

2. Equivariant line bundles and parabolic line bundles

2a. Group action on a line bundle. Let Y be a connected smooth
projective variety over C of dimension n. The group of automorphisms of
Y is denoted by Aut(Y ). Let G be a finite group acting faithfully on Y .
In other words,

ρ : G −→ Aut(Y )
is a monomorphism of a finite group G into Aut(Y ).

Definition 2.1. An orbifold line bundle on Y is a line bundle L on Y
together with a lift of action of G, which means that G acts on the total
space of L, and for any g ∈ G, the action of g on L is an isomorphism
between L and ρ(g−1)∗L.

Remark. A line bundle L with the property that for any g ∈ G, the bundle
L is isomorphic to ρ(g−1)∗L, need not have an orbifold structure. For an
orbifold bundle L′, clearly there is a natural lift of action of G on H0(Y, L′).
But an abelian variety together with a power of a principal polarization
constitutes an example where a finite group of symmetry (the Heisenberg
group) of the line bundle does not lift to the space of sections [M].

Let Pic0(Y ) be the abelian variety parametrizing holomorphic isomor-
phism classes of topologically trivial line bundles on Y . The group G acts
on Pic0(Y ) by g◦L = ρ(g−1)∗L. Let PicG(Y ) ⊂ Pic0(Y ) be the set of fixed
points of this action of G. Note that PicG(Y ) is a complex submanifold of
Pic0(Y ); moreover, it is a closed subgroup of the abelian variety Pic0(Y ).

Take any L ∈ PicG(Y ). The above remark indicates that L need not
have an orbifold structure. We want to identify the obstruction to having
an orbifold structure. For g ∈ G fix an isomorphism

ψg : L −→ ρ(g−1)∗L.

So for g, h ∈ G, ψg ◦ ψh ◦ ψ(gh)−1 is an automorphism of L, and hence is a
nonzero scalar. The map G × G → C∗ defined by

(g, h) �−→ ψg ◦ ψh ◦ ψ(gh)−1

gives a 2-cocycle, which we denote by ψL. It is easy to check that the
cohomology class ψ̄L represented by ψL, does not depend upon the choices
of ψg, g ∈ G. The line bundle L has an orbifold structure if and only if
ψ̄L = 0.

Let PicG(Y )′ ⊂ Pic0(Y ) be the subset consisting of all those line bun-
dles which admit an orbifold structure. So we have PicG(Y )′ ⊂ PicG(Y ).
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For two orbifold bundles (L, ρ̄) and (L′, ρ̄′), there is an obvious orbifold
structure on L⊗L′. So PicG(Y )′ is a subgroup of PicG(Y ). The following
sequence of abelian groups is exact

0 −→ PicG(Y )′ −→ PicG(Y ) −→ H2(G, C∗)

where the last homomorphism is given by L �−→ ψ̄L described earlier. So
PicG(Y )′ is a both open and closed subset of PicG(Y ), i.e., a union of some
components of PicG(Y ).

Now we want to determine how many distinct orbifold structures a given
line bundle admits. Let (L, ρ̄) be an orbifold line bundle and λ a character
of G. Then we can construct a new orbifold structure, (L, l), on the line
bundle L using the following action of G : for any g ∈ G and v ∈ L

l(g)(v) = λ(g).ρ̄(g)(v).

Clearly for two different characters λ and λ′ the corresponding orbifold
structures l and l′ on L are different. It can be checked that any orbifold
structure on L is gotten this way.

The set of all isomorphism classes of orbifold bundles of the form (L, ρ̄),
where L ∈ Pic0(Y ), is denoted by P ′

G(Y ). Let Ĝ be the group of characters
of G. We put down the summary of the previous discussions in the form
of the following:

Lemma 2.2. The finite group of characters Ĝ acts freely on the group
P ′

G(Y ), with the quotient being PicG(Y )′. The Lie group PicG(Y )′ is a
finite index subgroup of the abelian group PicG(Y ).

Now we want to determine the tangent space of P ′
G(Y ). From the above

lemma it follows that for (L, ρ̄) ∈ P ′
G(Y ), the tangent space T(L,ρ̄)P

′
G(Y )

is canonically isomorphic to TL PicG(Y )′ = TL PicG(Y ).
There is an obvious lift of the action of G to the trivial bundle Y × C.

Let H1(Y,O)G be the space of invariants of H1(Y,O), i.e., the subspace
of H1(Y,O) on which G acts trivially.

Lemma 2.3. The Lie algebra of the complex abelian Lie group P ′
G(Y ) is

canonically isomorphic to H1(Y,O)G.

Proof. The action of the group G on Y induces a homomorphism

ρ̂ : G −→ Aut(Pic0(Y ));

Aut(Pic0(Y )) is the group of all automorphisms of the group Pic0(Y ). Now
PicG(Y ) ⊂ Pic0(Y ) is the subgroup which is pointwise invariant under
ρ̂(G). The Lie algebra of Pic0(Y ) is H1(Y,O). So the Lie algebra of
PicG(Y ) is H1(Y,O)G. But the Lie algebras of PicG(Y ) and P ′

G(Y ) are
isomorphic (follows from Lemma 2.2). This completes the proof.
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The following restriction is imposed on the group action:

Assumption. The quotient X := Y/G is a smooth variety. The quotient
map Y −→ X, which is a morphism between smooth varieties, is denoted
by π.

Let (L, ρ̄) be an orbifold bundle on Y . Consider the direct image sheaf
π∗L. Since π is finite and flat, π∗L is a locally free OX -coherent sheaf.
The action ρ̄ on L induces a homomorphism of G into Aut(π∗L), the au-
tomorphism group of the bundle π∗L. This homomorphism is denoted by
ρ′. Let LG ⊂ π∗L be the space of invariants, i.e., the subsheaf on which G
acts trivially. Clearly LG is a OX submodule of π∗L. The homomorphism

v �−→ 1
#G

∑

g∈G

ρ′(g)(v) ∈ π∗L

defines a projection φ : π∗L −→ LG. In particular, the following exact
sequence of OX -coherent sheaves on X

0 −→ LG −→ π∗L −→ π∗L/LG −→ 0

splits, and LG is a line subbundle of π∗L.
The higher direct images of π vanish and Hi(Y, L) is canonically iso-

morphic to Hi(X, π∗L). Also any ith cocycle of π∗L is a sum of cocycles
of LG and ker(φ). Let Hi(Y, L)G ⊂ Hi(Y, L) be the space of invariants.
We have proved the following:

Lemma 2.4. The inclusion of sheaves LG −→ π∗L induces an isomor-
phism between Hi(X, LG) and Hi(Y, L)G.

2b. Parabolic line bundles. Let X be a connected smooth projective
variety over C of dimension n. Let D be a divisor of normal crossing
on X. By this we mean that D is a reduced effective divisor and each
irreducible component of D is smooth and they intersect transversally.
Let D =

∑d
i=1 Di be the decomposition into irreducible components.

Following [MY] we define

Definition 2.5. A parabolic line bundle on on (X, D) is a pair of the form

(L, {α1, . . . , αi, . . . , αd})

where L is a holomorphic line bundle on X and any 0 ≤ αi < 1 is a real
numbers.

Assumptions. The weights {α1, . . . , αd} are fixed once and for all, and they
are assumed to be nonzero rational numbers; in particular αi = mi/N for
some integer N (independent of i) and 1 ≤ mi < N . For a divisor D ⊂ X
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let [D] ∈ H2(X, Z) denote the Poincaré dual of D. It is assumed that the
element

∑d
i=1 αi[Di] ∈ H2(X, Q) belongs to the image of H2(X, Z).

Notation. Let P (X) denote a component of the moduli space of holo-
morphic isomorphism classes of line bundles on X with first Chern class∑d

i=1 −αi[Di]. (From the assumption and Lefschetz 1-1 theorem it follows
that P (X) is non-empty.)

The “Covering Lemma” (Theorem 1.1.1 of [KMM], Theorem 17 of [K])
says that there is a connected smooth projective variety Y and a finite
Galois morphism

π : Y −→ X

with Galois group G = Gal(Rat(Y )/Rat(X)) such that D̃ := (π∗D)red

is a divisor of normal crossing on Y and π∗Di = kiN(π∗Di)red, 1 ≤ i ≤ d,
where ki are positive integers.

Define D̃i := (π∗Di)red; so π∗Di = kiND̃i. The divisor π∗Di is obvi-
ously invariant under the action of the Galois group G on Y , and hence,
the reduced divisor D̃i is also invariant under the action. In particular,
the line bundle O(D̃i) has an orbifold structure. For any k ∈ Z the bundle
O(kD̃i) has an induced orbifold structure.

Let ξ ∈ P (X). The pull-back bundle π∗ξ has an obvious orbifold struc-
ture. Define

L := π∗(ξ) ⊗O(
d∑

i=1

kimiD̃i). (2.6)

This line bundle L has an orbifold structure

c1(L) = π∗c1(ξ) +
d∑

i=1

kimi[D̃i] = π∗c1(ξ) +
d∑

i=1

mi

N
[kiND̃i].

By definition, [kiND̃i] = π∗[Di], so

c1(L) = π∗c1(ξ) +
d∑

i=1

mi

N
π∗[Di] = 0.

Hence, L ∈ Pic0(Y ). For a general point p of D̃i, the isotropy group is the
cyclic group Z/(kiN). The action of any n ∈ Z/(kiN) on the fiber Ly is
multiplication by exp(2π

√
−1nmi/N).

Let D̂ ⊂ Y be the reduced effective divisor consisting of all the points
y ∈ Y such that the isotropy group of y for the G action is nontrivial.
That D̂ is a divisor follows from the assumption that X is smooth. (The
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bundle map dπ : π∗Ω1
X −→ Ω1

Y fails to be an isomorphism precisely over
D̂.) So D̃ is contained in D̂.

Recall the group P ′
G(Y ) defined in Section 2a. Let PG(Y ) ⊂ P ′

G(Y )
be the set of all orbifold bundles L̄ such that for a general point p of D̃i,
the action of n ∈ Z/(kiN) (the group Z/(kiN) is the isotropy group of p)
on the fiber L̄p is multiplication by exp(2π

√
−1nmi/N), and on a general

point, y, of any other component of D̂ (not in D̃) the action of the isotropy
group of y on L̄y is trivial. From rigidity of the representations of a finite
group it follows that PG(Y ) is both open and closed in P ′

G(Y ).
Define the morphism F : P (X) −→ PG(Y ) using the correspondence

ξ �→ L obtained above.

Theorem 2.7. The morphism F : P (X) −→ PG(Y ) is an isomorphism.

Proof. For L ∈ PG(Y ) let LG be the line bundle on X gotten by taking
the invariant direct image (as done in Section 2a).

Let U := {z ∈ C | |z| < 1} be the open disk and U × C be the
trivial line bundle on U . Let the group Z/(mn) act on U by α ◦ z =
exp(2π

√
−1α/(mn))z, where α ∈ Z/(mn) and z ∈ U , and let Z/(mn) act

on U × C by

α ◦ (z, c) = (exp(2π
√
−1α/(mn))z, exp(2π

√
−1α/m)c).

Then the pull-back of the line bundle on U/(Z/(mn)) to U , given by
the Z/(mn)-invariant sections, is generated as an O(U)-module by the
section (z, zn) of U × C. This observation implies that L is isomorphic to
π∗(LG) ⊗O(

∑d
i=1 kimiD̃i). So

c1(π∗LG) = c1(L) −
d∑

i=1

kimi[D̃i] = −
d∑

i=1

mi

N
π∗[Di],

so LG ∈ P (X). Thus the correspondence L �→ LG gives a morphism

F ′ : PG(Y ) −→ P (X).

Assume that ξ ∈ P (X) and L are related as in (2.6). The divisor D̃i,
1 ≤ i ≤ d, is effective, so there is an inclusion of sheaves j : π∗(ξ) −→
π∗(ξ)⊗O(

∑d
i=1 kimiD̃i). Moreover this homomorphism j commutes with

the actions of G on π∗ξ and (π∗ξ)⊗O(
∑d

i=1 kimiD̃i). So j induces a homo-
morphism j′ : π∗ξ −→ π∗LG. This homomorphism, being G-equivariant,
induces a homomorphism j̄ : ξ −→ LG. However,

c1(ξ) = −
d∑

i=1

mi

N
[Di] = c1(LG),
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so j̄ must be an isomorphism. Thus we have proved that F ′ ◦ F = Id.
We saw earlier that L = π∗(LG) ⊗ O(

∑d
i=1 kimiD̃i). This implies that

F ◦ F ′ = Id, completing the proof.

Remark 2.8. P (X) is irreducible. So Theorem 2.7 implies that PG(Y ) is
also irreducible. Neither PG(Y ) nor P (X) have Lie group structure. But
they have affine group structure. The variety P (X) is an affine group for
the group Pic0(X). Let P̄G(Y ) ⊂ P ′

G(Y ) be the subgroup of all orbifold
bundles L̄ such that for a general point p of D̃i, the action of the isotropy
group of p on the fiber L̄y is trivial. Clearly PG(Y ) is an affine group
for the group P̄G(Y ), where the action is given by tensor product. From
Theorem 2.7 it follows that the two abelian groups Pic0(X) and P̄G(Y )
are canonically isomorphic. Using this isomorphism, the morphism F in
Theorem 2.7 is an isomorphism of affine groups.

3. Proof of Theorem A

We continue with the notation of the previous section.
Define the subvariety Si

m := {(L, ρ̄) ∈ PG(Y ) | dimHi(Y, L)G ≥ m}.
We want to prove the following:

Theorem 3.1. Any irreducible component of Si
m is a translation of an

abelian subvariety of P̄G(Y ) by a point of PG(Y ) for the action defined in
Remark 2.8.

The special case of the above theorem where G = {e} was proved in
[GL2]. It is easy to see that the proof in [GL2] goes through verbatim
in our situation. (The Theorem 1.6 of [GL1] is one of the key points in
the proof in [GL2]. The equivariant analogue of [Theorem 1.6 GL1] is
also easily seen to be true.) We refrain from reproducing the argument in
[GL2].

Define

T i
m := {L ∈ P (X) | dimHi(X, L) ≥ m}.

Lemma 2.4 implies that the isomorphism F between P (X) and PG(Y ),
obtained in Theorem 2.7, identifies the subvariety Si

m of PG(Y ) with the
subvariety T i

m of P (X).
After choosing a base point q ∈ P (X) the variety P (X) is identified with

the abelian variety Pic0(Y ). Given a subvariety V ⊂ P (X), whether it is a
translation of an abelian subvariety does not depend upon the choice of the
base point q. In Remark 2.8 we saw that the two affine group structures
of PG(Y ) and P (X) coincide. So Theorem 3.1 gives the Thereon A stated
in the introduction.
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